1
|
Cao X, Sui B, Wu B, Geng Z, Song B. MR study on white matter injury in patients with acute diquat poisoning. Neurotoxicology 2024; 106:37-45. [PMID: 39643089 DOI: 10.1016/j.neuro.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To explore the microstructural damage of white matter in acute diquat (DQ) poisoning patients using diffusion kurtosis imaging (DKI) and Tract-based Spatial Statistics (TBSS). METHODS This study included 19 DQ poisoning patients and 19 age-matched controls. MRI was performed using a 3.0 T Philips Achieva scanner with sequences including 3D T1WI, T2WI, DWI, 3D T2WI-FLAIR, and DKI (3 b-values, 15 directions). DICOM to NIFTI image form conversion was done using MRIcron's Dcm2niigui, followed by motion and eddy current correction with FSL to create a brain mask. Scalar indicators (MK, AK, RK, FAK) were calculated with DKE software. TBSS was used for spatial normalization, skeletonization, and projection of DKI indices for group analysis with TFCE for multiple comparison correction (P < 0.025). RESULTS After the screening and enrollment process, 19 DQ-poisoned patients and 19 healthy volunteers were analyzed. No significant age or sex differences were found between groups. For Mean Kurtosis (MK), the right corticospinal tract showed a significant difference with a mean difference of 0.21 (95 % CI: 0.15-0.27) and P = 0.000503. Axial Kurtosis (AK) in the left superior longitudinal fasciculus had a mean difference of 0.18 (95 % CI: 0.12-0.24) and P = 0.0024. Fractional Anisotropy of Kurtosis (FAK) in the right corticospinal tract showed a mean difference of 0.19 (95 % CI: 0.13-0.25) and P = 0.0000318. Axial Kurtosis (AK) positively correlated with blood drug levels (r = 0.52, P < 0.05). Seven patients developed subcortical leukodystrophy, mainly in the frontal parietal lobe, with possible insular lobe involvement. CONCLUSIONS DQ poisoning primarily damages the right corticospinal tract, right cingulate gyrus, and left superior longitudinal fasciculus, potentially causing movement and visual impairments. The injury involves demyelination and axonal degeneration, with asymmetrical damage between hemispheres. The left superior longitudinal fasciculus injury is dose-dependent, and unlike prior studies, dopaminergic nuclei were unaffected. The frontal parietal lobe is predominantly affected, with some insular lobe involvement in DQ poisoning patients.
Collapse
Affiliation(s)
- Xueshan Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Bo Sui
- Department of Radiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Bailin Wu
- Department of Radiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Zuojun Geng
- Department of Radiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
| | - Bo Song
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Liu H, Zheng H, Zhang G, Zhuang J, Li W, Wu B, Zheng W. A Graph Theory Study of Resting-State Functional MRI Connectivity in Children With Carbon Monoxide Poisoning. J Magn Reson Imaging 2023; 58:1452-1459. [PMID: 36994898 DOI: 10.1002/jmri.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The effect of carbon monoxide (CO) poisoning on the topology of brain functional networks is unclear, especially in children whose brains are still developing. PURPOSE To investigate the topological alterations of the whole-brain functional connectome in children with CO poisoning and characterize its relationship with disease severity. STUDY TYPE Cross-sectional and prospective study. SUBJECTS A total of 26 patients with CO poisoning and 26 healthy controls. FIELD STRENGTH/SEQUENCE A 3.0 T MRI system/echo planar imaging (EPI) and 3D brain volume imaging (BRAVO) sequences. ASSESSMENT We used the network-based statistics (NBS) method to explore between-group differences in functional connectivity strength and a graph-theoretical-based analytic method to explore the topology of brain networks. STATISTICAL TESTS Student's t-test, chi-square test, NBS, Pearson correlation coefficient, and false discovery rate correction. The statistical significance threshold was set at P < 0.05. RESULTS The case group's brain functional network topology was impaired in comparison to the control group (reduced global efficiency and small-worldness, increased characteristic path length). According to node and edge analyses, the case group showed topologically damaged regions in the frontal lobe and basal ganglia, as well as neuronal circuits with weaker connections. Also, there was a significant correlation between the patients' coma time and the degree (r = -0.4564), efficiency (r = -0.4625), and characteristic path length (r = 0.4383) of the nodes in the left orbital inferior frontal gyrus. Carbon monoxide hemoglobin content (COHb) concentration and right rolandic operculum node characteristic path length (r = -0.3894) were significantly correlated. The node efficiency and node degree of the right middle frontal gyrus (r = 0.4447 and 0.4539) and right pallidum (r = 0.4136 and 0.4501) significantly correlated with the MMSE score. DATA CONCLUSION The brain network topology of CO poisoned children is damaged, which is manifested by reduced network integration and may lead to a series of clinical symptoms in patients. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- HongKun Liu
- Department of Radiology, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - HongYi Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - GengBiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - JiaYan Zhuang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - WeiJia Li
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - BiXia Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - WenBin Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| |
Collapse
|
3
|
Zhu Q, Yan Z, Shi Z, Luo D, Ding S, Chen X, Li Y. Increased cortical lesion load contributed to pathological changes beyond focal lesion in cortical gray matter of multiple sclerosis: a diffusion kurtosis imaging analysis. Cereb Cortex 2023; 33:10867-10876. [PMID: 37718158 DOI: 10.1093/cercor/bhad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Biomarkers specific to cortical gray matter (cGM) pathological changes of multiple sclerosis (MS) are desperately needed to better understand the disease progression. The cGM damage occurs in cortical lesion (CL) and normal-appearing cGM (NAcGM) areas. While the association between CL load and cGM damage has been reported, little is known about how different CL types, i.e. intracortical lesion (ICL) and leukocortical lesion (LCL) would be associated with cGM damage. In our study, relapsing-remitting MS patients and healthy controls were divided into 4 groups according to CL load level. NAcGM diffusion kurtosis imaging (DKI)/diffusion tensor imaging (DTI) values and cGM volume (cGMV) were used to characterize the pathological changes in cGM. Univariate general linear model was used for group comparisons and stepwise regression analysis was used to assess the effects of ICL volume and LCL volume on NAcGM damage. We found peak values in DKI/DTI values, cGMV and neuropsychological scores in high CL load group. Kurtosis fractional anisotropy (KFA) was the most sensitive in characterizing NAcGM damage, and LCL volume related more to NAcGM damage. Our findings suggested KFA could become a surrogate biomarker to cGM damage, and LCL might be the main factor in whole brain NAcGM damage.
Collapse
Affiliation(s)
- Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Hsiao WC, Nouchi R, Chang HI, Hsu SW, Lee CC, Huang SH, Huang CW, Chang CC, Cheng CH. Clinical significance of fractional anisotropy in cerebral white matter regional vulnerability caused by carbon monoxide poisoning: A systematic review and meta-analysis. Neurotoxicology 2023; 96:92-100. [PMID: 37060949 DOI: 10.1016/j.neuro.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Carbon monoxide poisoning (COP) can lead to various cerebral white matter (WM) lesions across different disease phases and clinical manifestations, and fractional anisotropy (FA) of diffusion tensor imaging has been widely applied to investigate WM injury in these patients. Here we conduct a systematic review and meta-analysis to investigate the utility of FA in evaluating the regional vulnerability of WM injury caused by COP and explore differences between different disease phases and patient subtypes. We systematically searched PubMed, Medline, Scopus and reference lists of appropriate publications to identify relevant studies. Eight studies with 217 COP patients and 207 healthy controls (HCs) were included. Eight regions of interest were available to investigate regional vulnerability. The results showed the most significant decrease in FA in orbitofrontal subcortical regions. Comparisons of different disease phases revealed lower FA in the centrum semiovale and corpus callosum in the acute phase, while in the chronic phase, only FA in the centrum semiovale remained significantly decreased. Analysis of different patient subtypes showed that the FA values in the splenium of the corpus callosum were significantly decreased in the patients with delayed neurologic sequelae (DNS) but not in the mixed population (with and without DNS). In conclusion, this meta-analysis highlights the frontal-subcortical regional vulnerability in COP. FA changes in the corpus callosum across different disease phases reflect alterations in underlying microstructures. Extended corpus callosum injury involving the splenium could be an imaging biomarker of the occurrence of DNS.
Collapse
Affiliation(s)
- Wen-Chiu Hsiao
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Rui Nouchi
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Smart Aging Research Center (S.A.R.C), Tohoku University, Sendai, Japan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
5
|
Shi Z, Pan Y, Yan Z, Ding S, Hu H, Wei Y, Luo D, Xu Y, Zhu Q, Li Y. Microstructural alterations in different types of lesions and their perilesional white matter in relapsing-remitting multiple sclerosis based on diffusion kurtosis imaging. Mult Scler Relat Disord 2023; 71:104572. [PMID: 36821979 DOI: 10.1016/j.msard.2023.104572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), contrast enhancement lesions and chronic active lesions have been demonstrated to have different degrees of inflammation. Accordingly, they exist different degrees of tissue damage, one is short and acute, and another is slow and longstanding. This study aimed to explore whether diffusion parameters can differentiate different types of lesions, and investigate the microstructural damage between different types of MS lesions by using diffusion magnetic resonance imaging (dMRI) and its correlation with clinical biomarkers of disability and cognitive states. METHODS We retrospectively identified 77 contrast enhancement lesions (CELs), 384 iron rim lesions (IRLs), 393 non-iron rim lesions (NIRLs), their corresponding perilesional white matter (PLWM), and 68 normal-appearing white matter (NAWM) from 68 relapsing-remitting MS (RRMS). Additionally, 44 white matter in healthy controls (WM in HCs) were also enrolled in this study. The DTI and DKI parameters were measured in the above white matter, including kurtosis fractional anisotropy (KFA), fractional anisotropy (FA), mean kurtosis (MK), and mean diffusivity (MD). All the patients were assessed with the Digital Span Test (DST), the Symbol Digit Modalities Test (SDMT), the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Expanded Disability Status Scale (EDSS). RESULTS The lowest KFA, FA, MK values and the highest MD values were found in CELs, followed by IRLs, NIRLs, NAWM, and WM in HCs. In KFA and FA values, there were significant differences between each type of lesion, as well as each type of PLWM (P < 0.05). The MK values of CELs and IRLs were significantly lower than NIRLs, but inversely for MD (P < 0.05). There were no differences between CELs and IRLs for MK (P = 1) and MD (P = 0.261). The results of MK and MD values in CELs-PLWM and IRLs-PLWM were similar to the CELs and IRLs. There were no significant differences between NAWM and WM in HCs in all the enrolled diffusion parameters (P >0.05) and the FA values between NIRLs-PLWM and NAWM or between NIRLs-PLWM and WM in HCs were no significant differences (P >0.05). The KFA and MD values in IRLs-PLWM (r =0.443, P =0.021; r =-0.518, P =0.006) were correlated with the DST scores and the KFA of CELs-PLWM (r =0.396, P =0.041) was correlated with SDMT scores. CONCLUSION Our findings demonstrate that the KFA values have the potential to distinguish different types of MS white matter tissues. Furthermore, the diffusion parameters can reflect the microstructure abnormalities in different MS lesions and might help us better understand the pathological mechanism and lesion evolution.
Collapse
Affiliation(s)
- Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Pan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Healthand Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Hai Hu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhui Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Ren W, Zhou XS. Study of the value of homocysteine levels in predicting cognitive dysfunction in patients after acute carbon monoxide poisoning. BMC Emerg Med 2022; 22:133. [PMID: 35850740 PMCID: PMC9295281 DOI: 10.1186/s12873-022-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The purpose of this research was to assess the value of homocysteine (HCY) levels in predicting cognitive dysfunction in patients after acute carbon monoxide (CO) poisoning. METHODS A total of 115 patients who were admitted to the emergency department of Yinzhou NO. 2 Hospital after CO poisoning between January 2017 and December 2021 were enrolled in this retrospective study. All patients were followed up for 1 month. According to the Mini-Mental State Examination (MMSE) scores, patients were divided into two groups. The demographic and clinical characteristics and magnetic resonance imaging (MRI) results were gathered and statistically analysed. RESULTS Twenty-six and 89 patients were ultimately enrolled in the cognitive dysfunction and control groups, respectively. There were significant differences between the groups in terms of age, coma duration, and carboxyhaemoglobin (COHB), lactate and HCY levels (p < 0.05), but there were no significant differences in white blood cell (WBC) counts or aspartate transaminase (AST), alanine transaminase (ALT), creatinine, troponin T, creatinine kinase (CK), or creatinine kinase muscle and brain (CK-MB) levels (p > 0.05). Univariate and multivariate analyses identified that a higher HCY level (OR 2.979, 95% CI 1.851-5.596, p < 0.001) was an independent risk factor for patient cognitive dysfunction after acute CO poisoning. Linear regression analysis showed a negative correlation between MMSE scores and HCY levels (r = - 0.880, P < 0.001). According to the MRI results, the most common lesion site was the globus pallidus, and the central ovale, diffuse white matter, corona radiata, basal ganglia (other than the globus pallidus) and cerebral cortex were also involved. CONCLUSIONS Higher HCY levels were associated with cognitive impairment and were independent risk factors for cognitive impairment after acute CO poisoning. The level of HCY was negatively correlated with the degree of cognitive impairment.
Collapse
Affiliation(s)
- Wei Ren
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, 998 Qianhe Road, Yinzhou, Ningbo, Zhejiang, China
| | - Xiao Shuai Zhou
- Ningbo Yinzhou No. 2 Hospital, 998 Qianhe Road, Yinzhou, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Zhu Q, Zheng Q, Luo D, Peng Y, Yan Z, Wang X, Chen X, Li Y. The Application of Diffusion Kurtosis Imaging on the Heterogeneous White Matter in Relapsing-Remitting Multiple Sclerosis. Front Neurosci 2022; 16:849425. [PMID: 35360163 PMCID: PMC8960252 DOI: 10.3389/fnins.2022.849425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives To evaluate the microstructural damage in the heterogeneity of different white matter areas in relapsing-remitting multiple sclerosis (RRMS) patients by using diffusion kurtosis imaging (DKI) and its correlation with clinical and cognitive status. Materials and Methods Kurtosis fractional anisotropy (KFA), fractional anisotropy (FA), mean kurtosis (MK), and mean diffusivity (MD) in T1-hypointense lesions (T1Ls), pure T2-hyperintense lesions (pure-T2Ls), normal-appearing white matter (NAWM), and white matter in healthy controls (WM in HCs) were measured in 48 RRMS patients and 26 sex- and age-matched HCs. All the participants were assessed with the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Symbol Digit Modalities Test (SDMT) scores as the cognitive status. The Kurtzke Expanded Disability Status Scale (EDSS) scores were used to evaluate the clinical status in RRMS patients. Results The lowest KFA, FA, and MK values and the highest MD values were found in T1Ls, followed by pure-T2Ls, NAWM, and WM in HCs. The T1Ls and pure-T2Ls were significantly different in FA (p = 0.002) and MK (p = 0.013), while the NAWM and WM in HCs were significantly different in KFA, FA, and MK (p < 0.001; p < 0.001; p = 0.001). The KFA, FA, MK, and MD values in NAWM (r = 0.360, p = 0.014; r = 0.415, p = 0.004; r = 0.369, p = 0.012; r = −0.531, p < 0.001) were correlated with the MMSE scores and the FA, MK, and MD values in NAWM (r = 0.423, p = 0.003; r = 0.427, p = 0.003; r = −0.359, p = 0.014) were correlated with the SDMT scores. Conclusion Applying DKI to the imaging-based white matter classification has the potential to reflect the white matter damage and is correlated with cognitive impairment.
Collapse
|
8
|
Zheng H, Liu H, Zhang G, Zhuang J, Li W, Zheng W. Abnormal Brain Functional Network Dynamics in Acute CO Poisoning. Front Neurosci 2021; 15:749887. [PMID: 34867160 PMCID: PMC8636030 DOI: 10.3389/fnins.2021.749887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: Carbon monoxide poisoning is a common condition that can cause severe neurological sequelae. Previous studies have revealed that functional connectivity in carbon monoxide poisoning is abnormal under the assumption that it is resting during scanning and have focused on studying delayed encephalopathy in carbon monoxide poisoning. However, studies of functional connectivity dynamics in the acute phase of carbon monoxide poisoning may provide a more insightful perspective for understanding the neural mechanisms underlying carbon monoxide poisoning. To our knowledge, this is the first study that explores abnormal brain network dynamics in the acute phase of carbon monoxide poisoning. Methods: Combining the sliding window method and k-means algorithm, we identified four recurrent dynamic functional cognitive impairment states from resting-state functional magnetic resonance imaging data from 29 patients in the acute phase of carbon monoxide poisoning and 29 healthy controls. We calculated between-group differences in the temporal properties and intensity of dFC states, and we also performed subgroup analyses to separately explore the brain network dynamics characteristics of adult vs. child carbon monoxide poisoning groups. Finally, these differences were correlated with patients’ cognitive performance in the acute phase of carbon monoxide poisoning and coma duration. Results: We identified four morphological patterns of brain functional network connectivity. During the acute phase of carbon monoxide poisoning, patients spent more time in State 2, which is characterized by positive correlation between SMN and CEN, and negative correlation between DMN and SMN. In addition, the fractional window and mean dwell time of State 2 were positively correlated with coma duration. The subgroup analysis results demonstrated that the acute phase of childhood carbon monoxide poisoning had greater dFNC time variability than adult carbon monoxide poisoning. Conclusion: Our findings reveal that patients in the acute phase of carbon monoxide poisoning exhibit dynamic functional abnormalities. Furthermore, children have greater dFNC instability following carbon monoxide poisoning than adults. This advances our understanding of the pathophysiological mechanisms underlying acute carbon monoxide poisoning.
Collapse
Affiliation(s)
- Hongyi Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Hongkun Liu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Gengbiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Jiayan Zhuang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Weijia Li
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| |
Collapse
|
9
|
Lee JJ, Chang CC, Chang WN. Using fiber tractography and diffusion kurtosis imaging to evaluate neuroimaging changes in patients with cerebrotendinous xanthomatosis after stopping chenodeoxycholic acid treatment for three years. Biomed J 2021; 45:814-820. [PMID: 34543727 DOI: 10.1016/j.bj.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of this study was to use tractography and diffusion kurtosis imaging (DKI) to evaluate cerebral white matter (WM) changes in patients with cerebrotendinous xanthomatosis (CTX) after stopping chenodeoxycholic acid (CDCA) treatment. MATERIAL AND METHODS Two siblings with CTX aged 40 and 38 years, respectively, who had been diagnosed with CTX for 16 years were enrolled. They had received CDCA treatment from 2005 until 2015, after which CDCA was no longer available in Taiwan. Serial brain magnetic resonance imaging (MRI) studies were used to record brain changes, and a series of neuropsychiatric tests were used to evaluate cognitive changes 3 years after stopping CDCA treatment. RESULTS The conventional MRI studies revealed progressive changes in dentate nuclei and surrounding cerebellar hemispheres, but no obvious changes in cerebral white matter (WM). Tractography captured in 2018 showed a general reduction in fiber density, especially involving frontal lobe fibers, compared to 2015. In addition, the DKI studies performed in 2018 showed a decreased axonal water fraction in diffuse WM structures and increased RadEAD in frontal WM. Comparisons of the neuropsychiatric test results between 2015 and 2018 showed a marked decline in executive function including design fluency, digit backward span and digit forward span, and this cognitive impairment highly suggested frontal lobe dysfunction. CONCLUSIONS This study may suggest that cerebral tractography and DKI study results can identify changes in cerebral WM in CTX patients shortly after stopping CDCA treatment, and that they may have a better correlation with the results of neuropsychiatric tests.
Collapse
Affiliation(s)
- Jun-Jun Lee
- Department of Neurology, Chang-Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Chang-Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Chang-Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov DS, Kim SG. Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging. NMR IN BIOMEDICINE 2021; 34:e4496. [PMID: 33634508 PMCID: PMC8170918 DOI: 10.1002/nbm.4496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/08/2021] [Indexed: 05/10/2023]
Abstract
PURPOSE To assess the feasibility of using diffusion-time-dependent diffusional kurtosis imaging (tDKI) to measure cellular-interstitial water exchange time (τex ) in tumors, both in animals and in humans. METHODS Preclinical tDKI studies at 7 T were performed with the GL261 glioma model and the 4T1 mammary tumor model injected into the mouse brain. Clinical studies were performed at 3 T with women who had biopsy-proven invasive ductal carcinoma. tDKI measurement was conducted using a diffusion-weighted STEAM pulse sequence with multiple diffusion times (20-800 ms) at a fixed echo time, while keeping the b-values the same (0-3000 s/mm2 ) by adjusting the diffusion gradient strength. The tDKI data at each diffusion time t were used for a weighted linear least-squares fit method to estimate the diffusion-time-dependent diffusivity, D(t), and diffusional kurtosis, K(t). RESULTS Both preclinical and clinical studies showed that, when diffusion time t ≥ 200 ms, D(t) did not have a noticeable change while K(t) decreased monotonically with increasing diffusion time in tumors and t ≥ 100 ms for the cortical ribbon of the mouse brain. The estimated τex averaged median and interquartile range (IQR) of GL261 and 4T1 tumors were 93 (IQR = 89) ms and 68 (78) ms, respectively. For the cortical ribbon, the estimated τex averaged median and IQR were 41 (34) ms for C57BL/6 and 30 (17) ms for BALB/c. For invasive ductal carcinoma, the estimated τex median and IQR of the two breast cancers were 70 (94) and 106 (92) ms. CONCLUSION The results of this proof-of-concept study substantiate the feasibility of using tDKI to measure cellular-interstitial water exchange time without using an exogenous contrast agent.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Gregory Lemberskiy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
11
|
Microstructural white matter alterations in Alzheimer's disease and amnestic mild cognitive impairment and its diagnostic value based on diffusion kurtosis imaging: a tract-based spatial statistics study. Brain Imaging Behav 2021; 16:31-42. [PMID: 33895943 DOI: 10.1007/s11682-021-00474-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
This prospective study aimed to explore the white matter microstructural alterations in Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using the Tract-based Spatial Statistics (TBSS) method of diffusion kurtosis imaging (DKI).Diffusion images were collected from 45 AD patients, 42 aMCI patients, and 35 healthy controls (HC). The differences of DKI-derived parameters, including kurtosis fractional anisotropy (KFA), mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD), were compared across the three groups using the TBSS method. Correlation between the altered DKI-derived parameters and the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were analyzed. A receiver operating characteristic curve (ROC) was used to evaluate the diagnostic performance of different white matter parameters with the strongest correlations. As a result, compared with the HC group, KFA values decreased significantly in the aMCI group. Compared with both the HC and aMCI groups, the FA, KFA, and MK values decreased significantly and the MD value increased significantly in the AD group. FA, MD, KFA, and MK values of many white matter fiber tracts were significantly correlated with MMSE and MoCA scores. The area under the ROC curve (AUC) for the splenium of corpus callosum KFA values were highest for the diagnosis of aMCI and AD patients. In conclusion, the compactness and complexity of white matter microstructures were reduced in AD and aMCI patients. DKI can provide information about the severity of AD progression, and KFA might be more sensitive for the detection of white matter microstructural alterations.
Collapse
|
12
|
|
13
|
Zhang Y, Wang T, Lei J, Guo S, Wang S, Gu Y, Wang S, Dou Y, Zhuang X. Cerebral Damage after Carbon Monoxide Poisoning: A Longitudinal Diffusional Kurtosis Imaging Study. AJNR Am J Neuroradiol 2019; 40:1630-1637. [PMID: 31558500 DOI: 10.3174/ajnr.a6201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Previous DTI cross-sectional studies have showed the cerebral damage feature was different in the three clinical stages after carbon monoxide poisoning. Diffusional kurtosis imaging (DKI) is an advanced diffusion imaging model and considered to better provide microstructural contrast in comparison with DTI parameters. The primary aim of this study was to assess microstructural changes in gray and white matter with diffusional kurtosis imaging in the acute, delayed neuropsychiatric, and chronic phases after acute carbon monoxide (CO) poisoning. The secondary aim was to relate diffusional kurtosis imaging measures to neuropsychiatric outcomes of acute carbon monoxide poisoning. MATERIALS AND METHODS In all, 17 patients with acute carbon monoxide poisoning and 30 sex- and age-matched healthy volunteers were enrolled in the study. Patients were scanned within 1 week, 3-8 weeks, and 6 months after acute carbon monoxide poisoning. Diffusional kurtosis imaging metrics including mean kurtosis, mean diffusivity, fractional anisotropy, and kurtosis fractional anisotropy were measured in 11 ROIs and then further correlated with neuropsychiatric scores. RESULTS In WM, mean kurtosis tended to increase from the acute-to-delayed neuropsychiatric phases and then decrease in the chronic phase, while in GM mean kurtosis showed a constant decline. Contrary to mean kurtosis, mean diffusivity first decreased then tended to increase in WM, while in GM, from the acute to chronic phases, mean diffusivity showed a constant increase. In both WM and GM, the fractional anisotropy and kurtosis fractional anisotropy values progressively declined with time. Kurtosis fractional anisotropy showed the best diagnostic efficiency with an area under the curve of 0.812 (P = .000). Along with neuropsychiatric scores, kurtosis fractional anisotropy of the centrum semiovale and Digit Span Backward were most relevant (r = 0.476, P = .000). CONCLUSIONS Longitudinally, microstructural changes were inconsistent in WM and GM with time after acute carbon monoxide poisoning. Diffusional kurtosis imaging metrics provided important complementary information to quantify the damage to cognitive impairment.
Collapse
Affiliation(s)
- Y Zhang
- From the Department of Radiology (Y.Z., J.L., S.G., Shuaiwen Wang, Y.D., X.Z.), The First Hospital of Lan Zhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - T Wang
- Department of Neurology (T.W., Y.G.), The First Hospital of Lan Zhou University, Lan Zhou, China
| | - J Lei
- From the Department of Radiology (Y.Z., J.L., S.G., Shuaiwen Wang, Y.D., X.Z.), The First Hospital of Lan Zhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - S Guo
- From the Department of Radiology (Y.Z., J.L., S.G., Shuaiwen Wang, Y.D., X.Z.), The First Hospital of Lan Zhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - S Wang
- MR Scientific Marketing (Shaoyu Wang), Siemens Healthineers, Xi'an, China
| | - Y Gu
- Department of Neurology (T.W., Y.G.), The First Hospital of Lan Zhou University, Lan Zhou, China
| | - S Wang
- MR Scientific Marketing (Shaoyu Wang), Siemens Healthineers, Xi'an, China
| | - Y Dou
- From the Department of Radiology (Y.Z., J.L., S.G., Shuaiwen Wang, Y.D., X.Z.), The First Hospital of Lan Zhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - X Zhuang
- From the Department of Radiology (Y.Z., J.L., S.G., Shuaiwen Wang, Y.D., X.Z.), The First Hospital of Lan Zhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| |
Collapse
|