1
|
Guo Y, Wang Y, Li Q, Liu Q, Zhang X, Ren J, Wang C. Bisphenol A disrupts the neuronal F-actin cytoskeleton by activating the RhoA/ROCK/LIMK pathway in Neuro-2a cells. Toxicology 2024; 509:153994. [PMID: 39527977 DOI: 10.1016/j.tox.2024.153994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor that is widely present in the environment and has been reported to affect neuronal cytoskeleton and neural function. However, the exact molecular mechanisms remain unclear. In the present study, the effects of BPA on cytoskeleton rearrangement were examined, and the associated signaling pathways, which were influenced by the RhoA/ROCK/LIMK pathway in Neuro-2a cells in vitro, were identified. Specifically, Neuro-2a cells were exposed to BPA, and the effects of BPA exposure on the cytoskeleton of neuronal cells and on the activation or nonactivation of the RhoA/ROCK signaling pathway were evaluated using Cell Counting Kit-8 (CCK8), phalloidin staining, western blot, and real-time PCR. A RhoA inhibitor (Rhosin hydrochloride) and a ROCK inhibitor (Y-27632) were then used to elucidate the precise function of the pathway. The results demonstrated that 50-100 μM BPA exposure inhibited Neuro-2a cell viability and caused the formation of aberrantly polymerized F-actin and stress fibers. In addition, the RhoA/ROCK pathway was activated, and the expression levels of the pathway-related molecules-RhoA, ROCK2, LIMK1, Cofilin, Profilin, p-MLC2, and F-actin were dramatically elevated. The addition of Rhosin and Y-27632 resulted in a decrease in F-actin polymerization in the Neuro-2a cells, the disassembly of stress fibers, and a noteworthy drop in the levels of molecular proteins related to the RhoA/ROCK pathway affected by BPA. Together, these new findings indicated that BPA exposure thus activated the RhoA/ROCK signaling pathway and caused an abnormal accumulation of F-actin in the Neuro-2a cells, in turn altering the microfilament cytoskeleton. F-actin was restored when the RhoA/ROCK pathway was inhibited, suggesting that the process of BPA-induced neuronal cytoskeletal degradation is linked to the RhoA/ROCK signaling cascade.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qian Li
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Xuyuan Zhang
- Department of Respiratory and Intensive Care, Xian Gaoxin Hospital, Xian, Shaanxi 710000, China
| | - Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
2
|
Gezer A, Üstündağ H, Kılıç Baygutalp N, Erbaş E, Özkaraca M. The Protective Effect of Gallic Acid Against Bisphenol A-Induced Ovarian Toxicity and Endocrine Disruption in Female Rats. J Med Food 2024; 27:651-660. [PMID: 38975681 DOI: 10.1089/jmf.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1β], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1β, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | | | - Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
3
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
5
|
Lei X, Hao Z, Wang H, Tang Z, Zhang Z, Yuan J. Identification of core genes, critical signaling pathways, and potential drugs for countering BPA-induced hippocampal neurotoxicity in male mice. Food Chem Toxicol 2023; 182:114195. [PMID: 37992956 DOI: 10.1016/j.fct.2023.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Although the neurotoxicity of the common chemical bisphenol A (BPA) to the mouse hippocampus has been often reported, the mechanism underlying BPA-induced depression-like behavior in mice remains unclear. We evaluated BPA's role in inducing depressive-like behavior by exposing male mice to different BPA concentrations (0, 0.01, 0.1, and 1 μg/mL) and using the forced swimming test (FST) and tail suspension test (TST). We aimed to identify critical gene and anti-BPA-neurotoxicity compounds using RNA sequencing combined with bioinformatics analysis. Our results showed that 1 μg/mL BPA exposure increased mouse immobility during the FST and TST. Based on BPA-induced hippocampal transcriptome changes, we identified NADH: ubiquinone oxidoreductase subunit AB1 (Ndufab1) as a critical and potential therapeutic target gene, and Ndufab1 mRNA and protein levels were downregulated in the BPA-exposed groups. Furthermore, molecular docking identified phenelzine as a compound that could counteract BPA-related neurotoxicity. Conclusively, our analyses confirmed that BPA triggers depressive behavior in male mice by downregulating Ndufab1 expression and suggested that phenelzine might reduce BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Xuepei Lei
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhoujie Hao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Huimin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuo Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianqin Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Ecological Animal Sciences and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
6
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
7
|
Li C, Sang C, Zhang S, Zhang S, Gao H. Effects of bisphenol A and bisphenol analogs on the nervous system. Chin Med J (Engl) 2023; 136:295-304. [PMID: 36848196 PMCID: PMC10106255 DOI: 10.1097/cm9.0000000000002170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Estrogen impacts neural development; meanwhile, it has a protective effect on the brain. Bisphenols, primarily bisphenol A (BPA), can exert estrogen-like or estrogen-interfering effects by binding with estrogen receptors. Extensive studies have suggested that neurobehavioral problems, such as anxiety and depression, can be caused by exposure to BPA during neural development. Increasing attention has been paid to the effects on learning and memory of BPA exposure at different developmental stages and in adulthood. Further research is required to elucidate whether BPA increases the risk of neurodegenerative diseases and the underlying mechanisms, as well as to assess whether BPA analogs, such as bisphenol S and bisphenol F, influence the nervous system.
Collapse
Affiliation(s)
- Chunxia Li
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Sai Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Hui Gao
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
8
|
Zhang Z, Wang H, Lei X, Mehdi Ommati M, Tang Z, Yuan J. Bisphenol a exposure decreases learning ability through the suppression of mitochondrial oxidative phosphorylation in the hippocampus of male mice. Food Chem Toxicol 2022; 165:113167. [DOI: 10.1016/j.fct.2022.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
|
9
|
Astaxanthin improves the development of the follicles and oocytes through alleviating oxidative stress induced by BPA in cultured follicles. Sci Rep 2022; 12:7853. [PMID: 35551214 PMCID: PMC9098901 DOI: 10.1038/s41598-022-11566-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
This study is to investigate whether astaxanthin could alleviate the oxidative stress damages of follicles induced by BPA and improve the development of the cultured follicles and oocytes. Compared with BPA group, the survival rate, antrum formation rate, oocyte maturation rate and adherence area of the D8 and D10 follicles of the BPA+Asta group were significantly higher. The estrogen and progesterone in the culture medium of BPA+Asta group were significantly higher. PCNA in D8 and D10 granulosa cells and ERα in D10 granulosa cells of follicles in BPA+Asta group were significantly higher. The levels of malondialdehyde in the follicle culture medium, levels of ROS in the oocytes, the expression levels of caspase 3 and cathepsin B in the oocytes of the BPA+Asta group were significantly lower. However, the mitochondrial membrane potential, and the expression levels of antioxidant genes (CAT, SOD1 and SOD2) and anti-apoptotic gene Bcl-2 in the oocytes in the BPA+Asta group were significantly higher. Astaxanthin improves the development of follicles and oocytes through increasing the antioxidant capacity of follicles and oocytes, and relieving the BPA-induced oxidative stress during follicular development and oocyte maturation.
Collapse
|
10
|
Chronic exposure of bisphenol-A impairs cognitive function and disrupts hippocampal insulin signaling pathway in male mice. Toxicology 2022; 472:153192. [PMID: 35489422 DOI: 10.1016/j.tox.2022.153192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Bisphenol-A (BPA), a well-known estrogenic endocrine disruptor, is generally applied to turn out plastic consumer products. Available data have manifested that exposure to BPA can trigger insulin resistance. Hence, the purpose of the actual study was to consider the impacts of BPA exposure on cognitive function and insulin signaling pathway in the hippocampus of male offspring mice. For this purpose, the pregnant female mice were treated either vehicle (0.1% ethanol) or BPA (0.01, 0.1, and 1µg/mL) via drinking water from day 1 of gestation until delactation (D1-PND21, newborn exposure). Afterward, the three-week-old male offspring mice took orally with the same doses of BPA for nine weeks (PND84). The behavioral tests, blood sugar level, histological observation, transcriptome sequencing, glucose transporter 4 (GLUT4), and hippocampal insulin signaling pathway were checked for the male offspring mice at 13 weeks of age (PND91). Our data indicated that BPA exposure impaired cognitive function, disrupted the hippocampal regular cell arrangement, increased blood glucose levels, disturbed the insulin signaling pathway including phosphorylated insulin receptor substrate1 (p-IRS1), protein kinase B (p-AKT), and glycogen synthase kinase 3β (p-GSK3β). At the same time, the mRNA and protein expressions of GLUT4 were markedly down-regulated in the BPA-exposed groups. To sum up, it has been suggested from these results that BPA has detrimental effects on the insulin signaling pathway, which might subsequently be conducive to the impairment of cognitive function in the adult male offspring mice. Therefore, BPA exposure might in part be an element of risk for the long-term neurodegeneration in male offspring mice.
Collapse
|
11
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Mohsenzadeh MS, Razavi BM, Imenshahidi M, Tabatabaee Yazdi SA, Mohajeri SA, Hosseinzadeh H. Potential role of green tea extract and epigallocatechin gallate in preventing bisphenol A-induced metabolic disorders in rats: Biochemical and molecular evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153754. [PMID: 34607205 DOI: 10.1016/j.phymed.2021.153754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an artificial chemical widely used in the production of polycarbonate plastics and epoxy resins. Accumulating evidence indicates that BPA exposure is associated with metabolic disorders. The beneficial effects of green tea and epigallocatechin gallate (EGCG), major catechin present in green tea, on alleviating BPA-induced metabolic disorders have been shown in various studies. PURPOSE Protective effects of green tea extract and EGCG on BPA-induced metabolic disorders and possible underlying mechanisms were investigated. METHODS Rats were randomly divided into control, green tea extract (50 and 100 mg/kg, IP), EGCG (20 and 40 mg/kg, IP), BPA (10 mg/kg, gavage), BPA plus green tea extract (25, 50, and 100 mg/kg, IP), BPA plus EGCG (10, 20, and 40 mg/kg, IP), and BPA plus vitamin E (200 IU/kg, IP). After two months, body weight, blood pressure, biochemical blood tests, hepatic malondialdehyde (MDA), and glutathione (GSH) were assessed. By enzyme-linked immunosorbent assay, serum levels of insulin, leptin, adiponectin, TNFα, and IL-6, and by western blotting, hepatic insulin signaling (IRS-1, PI3K, Akt) were measured. RESULTS BPA increased body weight, blood pressure, and MDA, decreased GSH, elevated serum levels of low-density lipoprotein cholesterol, total cholesterol, triglyceride, glucose, insulin, leptin, TNFα, IL-6, and liver enzymes including alanine aminotransferase and alkaline phosphatase, and lowered high-density lipoprotein cholesterol and adiponectin levels. In western blot, decreased phosphorylation of IRS-1, PI3K, and Akt was obtained. Administration of green tea extract, EGCG, or vitamin E with BPA reduced the detrimental effects of BPA. CONCLUSION These findings indicate that green tea extract and EGCG can be effective in preventing or reducing metabolic disorders induced by BPA linked to their antioxidant and anti-inflammatory activity, regulating the metabolism of lipids, and improving insulin signaling pathways.
Collapse
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Faheem NM, El Askary A, Gharib AF. Lycopene attenuates bisphenol A-induced lung injury in adult albino rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49139-49152. [PMID: 33932206 DOI: 10.1007/s11356-021-14140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) leads to ROS production that considered the core of different inflammatory and chronic obstructive pulmonary diseases. As a natural antioxidant, lycopene plays a significant role in the prevention of many chronic diseases. This study aimed to investigate the possible protective role of lycopene against BPA-induced lung alterations using morphometric, histological, immunohistochemical and biochemical methods. Forty rats aged 3 months were divided into four groups (n=10): control group, lycopene group comprising rats that received lycopene by gavage (10 mg/kg /day) for 30 days, BPA group comprising rats that received BPA by gavage (50 mg/kg/day) for 30 days and lycopene + BPA group. On the 30th day, blood and lung tissue samples were collected for biochemical, histological and immunohistochemical studies. Morphometrical and statistical analyses were performed. The BPA group revealed significantly elevated IL-1B, IL-6, MDA and NO, and it showed significantly reduced IL-10, SOD, CAT and GSH when compared to the control and lycopene + BPA groups. Upon histopathological and immunohistochemical examination, lycopene supplementation improved the BPA-induced alveolar collapse, lymphocytic infiltration, extravasated RBCs and fibrosis. The lycopene + BPA group showed significantly reduced mean percentage of 8-OHdG immunopositive and mean area percentages of Bax and caspase 3 immunopositive cells and significantly reduced mean area percentage of Bcl2 immunopositive cells as compared with the BPA group. Lycopene is a protective agent against BPA-induced lung injury because of its anti-apoptotic, anti-inflammatory and antioxidant effects, as confirmed by biochemical and histological studies.
Collapse
Affiliation(s)
- Nermeen Mohammed Faheem
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Physiotherapy, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia.
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine (New Damietta), Al Azhar University, Cairo, Egypt
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
15
|
Meli R, Monnolo A, Annunziata C, Pirozzi C, Ferrante MC. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants (Basel) 2020; 9:E405. [PMID: 32397641 PMCID: PMC7278868 DOI: 10.3390/antiox9050405] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the "fil rouge" of BPA's toxic mechanisms of action with pleiotropic outcomes on reproduction. Here, we focus on the protective effects of five classes of antioxidants-vitamins and co-factors, natural products (herbals and phytochemicals), melatonin, selenium, and methyl donors (used alone or in combination)-that have been found useful to counteract BPA toxicity in male and female reproductive functions.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| |
Collapse
|