1
|
Talaee N, Azad Yekta M, Vaseghi S. New insights into individual differences in response to chronic unpredictable mild stress (CUMS) in rats with respect to hippocampal BDNF and GSK3-β expression levels. Physiol Behav 2024; 287:114718. [PMID: 39426694 DOI: 10.1016/j.physbeh.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Preclinical and clinical studies have shown a wide-range of individual differences in response to stressors or novel environments which can affect the susceptibility to develop abnormal behaviors and neuropsychiatric disorders. Both vulnerability and resiliency have been observed in animals and humans experiencing stressful events. Chronic unpredictable mild stress (CUMS) is a rodent depression model consisting of various stressors. This protocol leads to depressive- and anhedonic-like behaviors in rodents. The present study aimed to evaluate potential individual differences in response to CUMS in rats, with respect to the expression level of brain-derived neurotrophic factor (BDNF) and glycogen synthase kinases 3-beta (GSK3-β) (proteins involved in the modulation of mood, neuroplasticity, and cognition) in the hippocampus. CUMS was performed for four consecutive weeks. Depressive-like behavior, locomotor activity, anxiety-like behavior, and pain threshold were also evaluated using forced swim test (FST), open field test (OFT), and the hot plate (HP), respectively. Real-time PCR was used to evaluate BDNF and GSK3-β expression levels. The results showed that CUMS rats can be classified as two clusters: affected and non-affected (depressed and non-depressed). Affected rats showed depressive- and anxiety-like behaviors, decreased locomotor activity, and increased pain threshold. However, non-affected rats were similar to controls. In addition, there was a downregulation of BDNF and upregulation of GSK3-β in affected rats. Spearman correlation analysis also showed a relationship between BDNF and GSK3-β expression levels with individual differences. In conclusion, the present study showed that BDNF and GSK3-β may be involved in individual differences in CUMS rats.
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Azad Yekta
- Department of Psychology, Faculty of Educational Sciences and Psychology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
2
|
Aranđelović J, Ivanović J, Batinić B, Mirković K, Matović BD, Savić MM. Sucrose binge-eating and increased anxiety-like behavior in Sprague-Dawley rats exposed to repeated LPS administration followed by chronic mild unpredictable stress. Sci Rep 2024; 14:22569. [PMID: 39343983 PMCID: PMC11439944 DOI: 10.1038/s41598-024-72450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Exposure to persistent mild stress is a frequently encountered chronic challenge in a rapidly evolving society. Depending on various factors including sex, the response to stressors varies and is closely linked to the phenomenon of resilience. Depression and anxiety can be considered maladaptive responses to such stress. In this rat study, we investigated the sex-dependent effects of low-grade systemic inflammation during 1 week in combination with chronic unpredictable mild stress during the following 4 weeks on anxiety-like behavior and episodic feeding behavior. Increased anxiety-like behavior and increased sucrose intake were identified in stressed compared to control animals regardless of sex. Interestingly, two nearly equally distributed subpopulations were found in the stressed groups within each sex at the end of the 5-week protocol of combined stress exposure: the resistant and the susceptible, which were characterized by unchanged and increased sucrose intake, respectively. This difference in susceptibility to protracted combined mild stress and ensuing response to a sucrose eating binge demonstrates the complexity of the underlying regulatory mechanisms associated with emotional hyperreactivity. This model carries the potential for further investigation of the molecular basis of resilience and susceptibility to combined stressors and for testing treatments with potential preventive or therapeutic effects.
Collapse
Affiliation(s)
- Jovana Aranđelović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Jana Ivanović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Kristina Mirković
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Branka Divović Matović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia.
| |
Collapse
|
3
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
5
|
Pan S, Lan Y, Chen B, Zhou Y, Ying X, Hua Y. Tanshinone IIA changed the amniotic fluid volume and regulated expression of AQP1 and AQP3 in amniotic epithelium cells: a promising drug treating abnormal amniotic fluid volume. Mol Med 2023; 29:83. [PMID: 37386378 DOI: 10.1186/s10020-023-00687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Many studies have confirmed the association of aquaporins (AQPs) with abnormal amniotic fluid volume (AFV). In our previous experiments, we found that Tanshinone IIA was able to regulate the expression of AQP1 and AQP3. However, the exact mechanism by which Tanshinone IIA regulates AQPs protein expression and its effect on AFV remains unclear. The purpose of this study was to investigate the effects of Tanshinone IIA on AFV and the possible molecular mechanism of regulation of AQP1 and AQP3. METHODS The expression of AQPs protein in the amniotic membranes was compared between pregnant women with normal pregnancy and those with isolated oligohydramnios. The AQP1 knockout (AQP1-KO) mice and wild-type (WT) mice were treated with saline or Tanshinone IIA (10 mg/kg) at 13.5GD and 16.5GD. Human amniotic epithelium cells (hAECs) from pregnant women with normal AFV and isolated oligohydramnios were incubated with 35 μmmol/L Tanshinone IIA or 25 mmol/L LiCl [inhibitor of glycogen synthetic kinase 3β (GSK-3β)]. The protein expressions of AQPs, GSK-3β, phospho-GSK-3β (Ser9) in fetal membranes of mice and human amniotic epithelium cells were detected by western blotting. RESULTS The expression of AQP1 protein in the amniotic membrane of isolated oligohydramnios was increased compared with normal pregnancy. The AFV in AQP1-KO mice is higher than that in WT mice. In wild-type mice, AFV in Tanshinone IIA group was significantly higher than that in control group, and AQP1 protein expression was significantly lower than that in control group, but in AQP1 knockout mice, Tanshinone IIA reduced amniotic fluid volume and AQP3 protein expression at 16.5GD. Tanshinone IIA reduced AQP1, AQP3 and p-GSK-3β (Ser9) protein expression in normal hAECs, and this effect was inhibited by LiCl. In hAECs with oligohydramnios, the down-regulation of AQP1 and up-regulation of AQP3 by Tanshinone IIA was independent of GSK-3β signaling pathway. CONCLUSIONS Tanshinone IIA may increase AFV in normal pregnancy by downregulating AQP1 protein expression in the fetal membranes, which may be associated with p-GSK-3β signaling pathway. But a larger AFV in AQP1-KO mice was significantly attenuated by Tanshinone IIA, which may be related to AQP3. Tanshinone IIA is a promising drug for the treatment of amniotic fluid abnormality.
Collapse
Affiliation(s)
- Shuangjia Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yehui Lan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yujia Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
6
|
Zohny SM, Habib MZ, Mohamad MI, Elayat WM, Elhossiny RM, El-Salam MFA, Hassan GAM, Aboul-Fotouh S. Memantine/Aripiprazole Combination Alleviates Cognitive Dysfunction in Valproic Acid Rat Model of Autism: Hippocampal CREB/BDNF Signaling and Glutamate Homeostasis. Neurotherapeutics 2023; 20:464-483. [PMID: 36918475 PMCID: PMC10121975 DOI: 10.1007/s13311-023-01360-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Significant efforts are increasingly directed towards identifying novel therapeutic targets for autism spectrum disorder (ASD) with a rising role of aberrant glutamatergic transmission in the pathogenesis of ASD-associated cellular and behavioral deficits. This study aimed at investigating the role of chronic memantine (20 mg/kg/day) and aripiprazole (3 mg/kg/day) combination therapy in the management of prenatal sodium valproate (VPA)-induced autistic-like/cognitive deficits in male Wistar rats. Pregnant female rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like behaviors in their offspring. Prenatal VPA induced autistic-like symptoms (decreased social interaction and the appearance of stereotyped behavior) with deficits in spatial learning (in Morris water maze) and cognitive flexibility (in the attentional set-shifting task) in addition to decreased hippocampal protein levels of phosphorylated cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and gene expression of glutamate transporter-1 (Glt-1) with a decline in GABA/glutamate ratio (both measured by HPLC). These were accompanied by the appearance of numerous neurofibrillary tangles (NFTs) with enhanced apoptosis in hippocampal sections. Memantine/aripiprazole combination increased the protein levels of p-CREB, BDNF, and Glt-1 gene expression with restoration of GABA/glutamate balance, attenuation of VPA-induced neurodegenerative changes and autistic-like symptoms, and improvement of cognitive performance. This study draws attention to the favorable cognitive effects of memantine/aripiprazole combination in autistic subjects which could be mediated via enhancing CREB/BDNF signaling with increased expression of astrocytic Glt-1 and restoration of GABA/glutamate balance, leading to inhibition of hippocampal NFTs formation and neuronal apoptosis.
Collapse
Affiliation(s)
- Sohir M Zohny
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Ghada A M Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Al Galala, Egypt
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wu J, Zhang J, Xie Q, He X, Guo Z, Zheng B, Wang S, Yang Q, Du C. Bergaptol Alleviates LPS-Induced Neuroinflammation, Neurological Damage and Cognitive Impairment via Regulating the JAK2/STAT3/p65 Pathway. J Inflamm Res 2022; 15:6199-6211. [PMID: 36386582 PMCID: PMC9656435 DOI: 10.2147/jir.s383853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Neuroinflammation is considered a critical pathological process in various central nervous system (CNS) diseases and is closely related to neuronal death and dysfunction. Bergaptol is a natural 5-hydroxyfurocoumarin found in lemon, bergamot and other plants. Some studies have confirmed its anti-cancer, anti-inflammatory and anti-atherogenic functions, indicating that it may have significant medicinal value. In this study, we investigated the potential effect of Bergaptol in vitro and in vivo neuroinflammatory models. Methods Mice were injected with LPS (40 μg/kg) into the hippocampal CA1 region and then injected intraperitoneally with Bergaptol (10, 20 and 40 mg/kg) once a day for two weeks. In addition, to verify the effect of Bergaptol on BV2 cells, Bergaptol with different concentrations (5, 10 and 20 μg/mL) was firstly incubated for 1 hour, then LPS with a concentration of 1 μg/mL was added and incubated for 23 hours. Results Bergaptol treatment significantly improved the cognitive impairment induced by LPS. In addition, Bergaptol significantly inhibited the reduction of dendritic spines and the mRNA level of inflammatory factors (TNF-α, IL-6 and IL-1β) in hippocampal induced by LPS. In vitro, Bergaptol inhibited the production of TNF-α, IL-6 and IL-1β from LPS-treated BV-2 cells. In addition, Bergaptol treatment significantly reduced the phosphorylation levels of JAK2, STAT3 and p65 in LPS-stimulated BV-2 cells. Conclusion In conclusion, our results suggest that Bergaptol alleviates LPS-induced neuroinflammation, neurological damage and cognitive impairment by regulating the JAK2/STAT3/P65 pathway, suggesting that Bergaptol is a promising neuroprotective agent.
Collapse
Affiliation(s)
- Jianbing Wu
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Qiangli Xie
- Department of Cardiovascular Medicine, Chengdu Qingbaijiang District People’s Hospital, Chengdu, 610300, People’s Republic of China
| | - Xiaohuan He
- Department of the Fifth Dispatched Outpatient, The General Hospital of Western Theater Command, Chengdu, 610083, People’s Republic of China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Bo Zheng
- Department of Neurology, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Sisong Wang
- Department of Neurosurgery, the Chengdu 363 Affiliated Hospital of Southwest Medical University, Chengdu, 610041, People’s Republic of China
| | - Qiumei Yang
- Department of Geriatrics, Luzhou People’s Hospital, Luzhou, 646000, People’s Republic of China
| | - Chunfu Du
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
- Correspondence: Chunfu Du, Department of Neurosurgery, Ya’an People’s Hospital, 358 Chenghou Road, Ya’an, Sichuan, 625000, People’s Republic of China, Tel +86-835-2862065, Email
| |
Collapse
|
9
|
Lithium produces bi-directionally regulation of mood disturbance, acts synergistically with anti-depressive/-manic agents, and did not deteriorate the cognitive impairment in murine model of bipolar disorder. Transl Psychiatry 2022; 12:359. [PMID: 36055984 PMCID: PMC9440114 DOI: 10.1038/s41398-022-02087-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Lithium (Li) is a well-established mood disorder treatment and may be neuroprotective. Bi-directional regulation (i.e. affecting manic symptoms and depressive symptoms) by Li has not been demonstrated. This study explored: (1) bidirectional regulation by Li in murine models of depression, mania, and bipolar disorder (BP); and (2) potential Li synergism with antidepressant/anti-mania agents. The chronic unpredictable mild stress (CUMS) and ketamine-induced mania (KM) models were used. These methods were used in series to produce a BP model. In vivo two-photon imaging was used to visualize Ca2+ activity in the dorsolateral prefrontal cortex. Depressiveness, mania, and cognitive function were assessed with the forced swim task (FST), open field activity (OFA) task, and novel object recognition task, respectively. In CUMS mice, Ca2+ activity was increased strongly by Li and weakly by lamotrigine (LTG) or valproate (VPA), and LTG co-administration reduced Li and VPA monotherapy effects; depressive immobility in the FST was attenuated by Li or LTG, and attenuated more strongly by LTG-VPA or LTG-Li; novel object exploration was increased strongly by Li and weakly by LTG-Li, and reduced by LTG, VPA, or LTG-VPA. In KM mice, Li or VPA attenuated OFA mania symptoms and normalized Ca2+ activity partially; Li improved cognitive function while VPA exacerbated the KM alteration. These patterns were replicated in the respective BP model phases. Lithium had bi-directional, albeit weak, mood regulation effects and a cognitive supporting effect. Li co-administration with antidepressant/-manic agents enhanced mood-regulatory efficacy while attenuating their cognitive-impairing effects.
Collapse
|
10
|
Liu X, Song W, Yu Y, Su J, Shi X, Yang X, Wang H, Liu P, Zou L. Inhibition of NLRP1-Dependent Pyroptosis Prevents Glycogen Synthase Kinase-3β Overactivation-Induced Hyperphosphorylated Tau in Rats. Neurotox Res 2022; 40:1163-1173. [PMID: 35951283 DOI: 10.1007/s12640-022-00554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Our previous study indicated that inhibition of NLRP1-dependent pyroptosis could decrease intracerebroventricular (ICV) injection of a protein kinase A (PKA) agonist- or streptozotocin (STZ)-induced hyperphosphorylated tau. In this study, we used a glycogen synthase kinase-3β (GSK-3β) overactivation rat model to reconfirm our previous results. ICV injection of wortmannin (WT, a PI3K inhibitor) and GF-109203X (GFX, a PKC inhibitor) was used to induce overactivation of GSK-3β in rats. We injected NLRP1 siRNA together with WT/GFX to evaluate the effect of the inhibition of NLRP1-dependent neuronal pyroptosis on hyperphosphorylated tau. Our results indicated that ICV injection of NLRP1 siRNA prevented ICV-WT/GFX-induced neuronal death, further improving the spatial memory of the rats in the Morris water maze test. ICV injection of NLRP1 siRNA downregulated the expression of ASC, caspase-1, and GSDMD and the contents of IL-1β and IL-18 in rat brains. ICV injection of NLRP1 siRNA also decreased hyperphosphorylated tau and the activity of GSK-3β. Thus, these results support our previous study that NLRP1-dependent pyroptosis could enhance hyperphosphorylation of tau protein.
Collapse
Affiliation(s)
- Xiangying Liu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenjing Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ying Yu
- Liaoning Medical Device Test Institute, 600-1 Maizitun, Hunnan District, Shenyang, 110171, China
| | - Jianhua Su
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoyan Shi
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Yang
- Department of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Honghui Wang
- Department of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
11
|
He MC, Feng R, Wang J, Xia SH, Wang YJ, Zhang Y. Prevention and treatment of natural products from Traditional Chinese Medicine in depression: Potential targets and mechanisms of action. Front Aging Neurosci 2022; 14:950143. [PMID: 35923544 PMCID: PMC9339961 DOI: 10.3389/fnagi.2022.950143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular pathology involved in the development of depression is complex. Many signaling pathways and transcription factors have been demonstrated to display crucial roles in the process of depression occurrence and development. The multi-components and multi-targets of Traditional Chinese Medicine (TCM) are uniquely advantageous in the prevention and treatment of chronic diseases. This review summarizes the pharmacological regulations of natural products from TCM in the prevention and treatment of depression from the aspects of transcription factors (CREB, NF-κB, Nrf2) and molecular signaling pathways (BDNF-TrkB, MAPK, GSK-3β, TLR-4).
Collapse
Affiliation(s)
- Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Feng
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Shi-Hui Xia
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yan Zhang,
| |
Collapse
|
12
|
Novel role of peroxisome proliferator activated receptor-α in valproic acid rat model of autism: Mechanistic study of risperidone and metformin monotherapy versus combination. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110522. [PMID: 35131336 DOI: 10.1016/j.pnpbp.2022.110522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of heterogenous etiology exhibiting a challenge in understanding its exact neuro-pathophysiology. Recently, peroxisome proliferator activated receptor (PPAR)-α activation was found to play a fundamental role in neuroprotection and improving autistic-like-behaviors in experimental animal models of ASD through alleviating neuroinflammation, oxidative-stress, astrocyte reactivity, tauopathy in addition to its favorable role in metabolic regulation, thus attracting attention as a possible target in treatment of ASD. This study aimed to investigate the role of PPAR-α, astrocytic dysfunction and tauopathy in ASD and detect the possible neuroprotective effects of metformin (MET), through PPAR-α activation, and risperidone (RIS) either monotherapy or in combination in alleviating autistic-like-changes at behavioral and neurobiological levels in male Wistar rats. Pregnant female Wistar rats received valproic-acid (VPA) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic intra-peritoneal MET (100 mg/kg/day) and RIS (1 mg/kg/day) either monotherapy or in combination started from postnatal day (PND) 24 till PND61 (38 days). Prenatal VPA exposure simulated the autistic core behaviors associated with neurochemical and histopathological neurodevelopmental degenerative changes. Both MET and RIS either monotherapy or in combination were able to reverse these changes. The effect of MET was comparable to RIS. Moreover, MET was able to alleviate the RIS induced weight gain and improve cognitive functions highlighting its promising adjunctive role in alleviating ASD pathophysiology. Our study highlighted the favorable effects of MET and RIS both in monotherapy and in combination in alleviating the autistic-like-changes and proposed PPAR-α activation along with restoring astrocytes homeostasis as promising targets in novel therapeutic strategies in ASD.
Collapse
|
13
|
Zhuo C, Chen G, Chen J, Tian H, Ma X, Li Q, Yang L, Zhang Q, Li R, Song X, Huang C. Lithium bidirectionally regulates depression- and mania-related brain functional alterations without worsening cognitive function in patients with bipolar disorder. Front Psychiatry 2022; 13:963005. [PMID: 36186884 PMCID: PMC9520085 DOI: 10.3389/fpsyt.2022.963005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lithium monotherapy has been proposed to have antidepressant and antimanic effects in patients with bipolar disorder (BP). However, so far, it is lack of evidence to support this proposition. The main aim of this study was to test the hypothesis that lithium bidirectionally regulates depression- and mania-related brain functional abnormalities in patients with BP. We also assessed the effects of lithium, alone and in combination with other pharmacological treatments, on patients' cognitive performance. We enrolled 149 drug-naïve patients with BP; 99 patients experiencing first depressive episodes were allocated randomly to four treatment groups [lithium (DP/Li), lithium with lamotrigine (LTG; DP/Li+LTG), LTG (DP/LTG), and valproate (VPA) with LTG (DP/VPA+LTG)], and 50 experiencing first hypo-manic episodes were allocated to two treatment groups (MA/Li and MA/VPA). For comparative analysis, 60 age-matched healthy individuals were also recruited. Whole-brain global and regional resting-state cerebral blood flow (rs-CBF) and cognitive alterations were examined before and after 12-week treatment. We have the following findings: DP/Li+LTG, and to a lesser extent DP/Li, alleviated the depression-related reduction in rs-CBF. MA/VPA and MA/Li reversed the mania-related elevation of rs-CBF completely and partially, respectively. Lithium alone improved cognitive performance during depressive and manic episodes; other tested treatments have no such effect or worsened cognitive ability. Our results showed that lithium bidirectionally regulates depression- and mania-associated brain functional abnormalities in patients with BP. Lithium monotherapy has a better antimanic effect than VPA, is superior to other tested treatments in improving cognition during the course of BP, and has satisfactory antidepressant effects in patients with BP.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xiaoyan Ma
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Ranli Li
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunhai Huang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|