1
|
Resilience in the suprachiasmatic nucleus: Implications for aging and Alzheimer's disease. Exp Gerontol 2021; 147:111258. [PMID: 33516909 DOI: 10.1016/j.exger.2021.111258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/27/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
Many believe that the circadian impairments associated with aging and Alzheimer's disease are, simply enough, a byproduct of tissue degeneration within the central pacemaker, the suprachiasmatic nucleus (SCN). However, the findings that have accumulated to date examining the SCNs obtained postmortem from the brains of older individuals, or those diagnosed with Alzheimer's disease upon autopsy, suggest only limited atrophy. We review this literature as well as a complementary one concerning fetal-donor SCN transplant, which established that many circadian timekeeping functions can be maintained with rudimentary (structurally limited) representations of the SCN. Together, these corpora of data suggest that the SCN is a resilient brain region that cannot be directly (or solely) implicated in the behavioral manifestations of circadian disorganization often witnessed during aging as well as early and late progression of Alzheimer's disease. We complete our review by suggesting future directions of research that may bridge this conceptual divide and briefly discuss the implications of it for improving health outcomes in later adulthood.
Collapse
|
2
|
Wheaton KL, Hansen KF, Aten S, Sullivan KA, Yoon H, Hoyt KR, Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:497-514. [PMID: 30175684 DOI: 10.1177/0748730418791713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.
Collapse
Affiliation(s)
- Kelin L Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | | | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kyle A Sullivan
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
4
|
Jiao X, Beck KD, Myers CE, Servatius RJ, Pang KCH. Altered activity of the medial prefrontal cortex and amygdala during acquisition and extinction of an active avoidance task. Front Behav Neurosci 2015; 9:249. [PMID: 26441578 PMCID: PMC4569748 DOI: 10.3389/fnbeh.2015.00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022] Open
Abstract
Altered medial prefrontal cortex (mPFC) and amygdala function is associated with anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear conditioning, these structures are also involved in active avoidance. Given that avoidance perseveration represents a core symptom of anxiety disorders, the neural substrate of avoidance, especially its extinction, requires better understanding. The present study was designed to investigate the activity, particularly, inhibitory neuronal activity in mPFC and amygdala during acquisition and extinction of lever-press avoidance in rats. Neural activity was examined in the mPFC, intercalated cell clusters (ITCs) lateral (LA), basal (BA) and central (CeA) amygdala, at various time points during acquisition and extinction, using induction of the immediate early gene product, c-Fos. Neural activity was greater in the mPFC, LA, BA, and ITC during the extinction phase as compared to the acquisition phase. In contrast, the CeA was the only region that was more activated during acquisition than during extinction. Our results indicate inhibitory neurons are more activated during late phase of acquisition and extinction in the mPFC and LA, suggesting the dynamic involvement of inhibitory circuits in the development and extinction of avoidance response. Together, these data start to identify the key brain regions important in active avoidance behavior, areas that could be associated with avoidance perseveration in anxiety disorders.
Collapse
Affiliation(s)
- Xilu Jiao
- Neurobehavioral Laboratory, Veterans Bio-Medical Research Institute (VBRI) East Orange, NJ, USA
| | - Kevin D Beck
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| | - Catherine E Myers
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA ; Syracuse VA Medical Center, Department of Veterans Affairs Syracuse, NY, USA
| | - Kevin C H Pang
- Neurobehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences Newark, NJ, USA
| |
Collapse
|
5
|
Pantazopoulos H, Dolatshad H, Davis FC. A fear-inducing odor alters PER2 and c-Fos expression in brain regions involved in fear memory. PLoS One 2011; 6:e20658. [PMID: 21655193 PMCID: PMC3105109 DOI: 10.1371/journal.pone.0020658] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/06/2011] [Indexed: 12/04/2022] Open
Abstract
Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
6
|
Jiao X, Pang KCH, Beck KD, Minor TR, Servatius RJ. Avoidance perseveration during extinction training in Wistar-Kyoto rats: an interaction of innate vulnerability and stressor intensity. Behav Brain Res 2011; 221:98-107. [PMID: 21376086 DOI: 10.1016/j.bbr.2011.02.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Given that avoidance is a core feature of anxiety disorders, Wistar-Kyoto (WKY) rats may be a good model of anxiety vulnerability for their hypersensitivity to stress and trait behavioral inhibition. Here, we examined the influence of strain and shock intensity on avoidance acquisition and extinction. Accordingly, we trained WKY and Sprague-Dawley (SD) rats in lever-press avoidance using either 1.0-mA or 2.0-mA foot-shock. After extinction, neuronal activation was visualized by c-Fos for overall activity and parvalbumin immunoreactivity for gamma-aminobutyric acid (GABA) neuron in brain areas linked to anxiety (medial prefrontal cortex and amygdala). Consistent with earlier work, WKY rats acquired lever-press avoidance faster and to a greater extent than SD rats. However, the intensity of foot shock did not differentially affect acquisition. Although there were no differences during extinction in SD rats, avoidance responses of WKY rats trained with the higher foot shock perseverated during extinction compared to those WKY rats trained with lower foot shock intensity or SD rats. WKY rats trained with 2.0-mA shock exhibited less GABAergic activation in the basolateral amygdala after extinction. These findings suggest that inhibitory modulation in amygdala is important to ensure successful extinction learning. Deficits in avoidance extinction secondary to lower GABAergic activation in baslolateral amygdala may contribute to anxiety vulnerability in this animal model of inhibited temperament.
Collapse
Affiliation(s)
- Xilu Jiao
- Stress and Motivated Behavior Institute, NJMS-UMDNJ, Newark, NJ 07103, United States.
| | | | | | | | | |
Collapse
|
7
|
Arrieta-Cruz I, Pfaff DW, Shelley DN. Mouse model of diffuse brain damage following anoxia, evaluated by a new assay of generalized arousal. Exp Neurol 2007; 205:449-60. [PMID: 17448465 PMCID: PMC2211732 DOI: 10.1016/j.expneurol.2007.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 11/29/2022]
Abstract
Diffuse brain damage following anoxia due to cardiac failure, drowning, carbon monoxide exposure or other accidents constitutes a major medical problem. We have created a novel mouse model using the breathing of pure nitrogen, followed by a recently developed assay that reflects an operational definition of generalized arousal. The operational definition is precise, complete, and leads to quantitative, physical measures in a genetically tractable animal. Exposure to pure nitrogen for controlled periods had a surprising bifurcate effect: about half the mice survived with neurological measures that were virtually normal while the other half died. The new assay detected behavioral deficits unrevealed by neurological screening. Two important features of the results were that (i) deficits were not equal across the circadian cycle, and (ii) deficits were not equal across all the measures within the operational definition of arousal. Specific voluntary motor measurements were decreased in a manner that depended on the phase of the circadian cycle. Sensory responses were also decreased, with an emphasis on vertical movement responses; but, interestingly, fear learning was not damaged. This study establishes the first useful approach to diffuse brain damage in a genetically tractable animal. The model and its outcome measurements will be useful during future attempts at amelioration of acquired neurological disabilities following hypoxic-ischemic injuries.
Collapse
Affiliation(s)
- Isabel Arrieta-Cruz
- Laboratory of Neurobiology and Behavior, The Rockefeller University, Box 275, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
8
|
Sadki A, Bentivoglio M, Kristensson K, Nygård M. Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol Aging 2007; 28:296-305. [PMID: 16426706 DOI: 10.1016/j.neurobiolaging.2005.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/13/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
During aging, levels of inflammatory cytokines increase and circadian rhythms are frequently altered. We here investigated neurobiological correlates of neuroinflammation and its age-related variation in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker. Day/night variations of transcripts encoding cytokine receptors and suppressors of cytokine signaling (SOCS) were correlated in groups of mice of different ages with Fos induction elicited by intracerebroventricular injections of tumor necrosis factor-alpha and interferon-gamma. Cytokine-elicited Fos induction was high at early night, when SOCS1 and SOCS3 levels were low. Such Fos induction was significantly reduced in the older SCN at early night, and paralleled by reduced expression of interferon-gamma receptor transcripts as compared to the younger SCN. In addition, Fos induction at early night exhibited marked sub-regional differences in the SCN between the age groups. The study shows that SOCS1 and SOCS3 are expressed in the biological clock with a day/night variation that may regulate SCN responsiveness to cytokine exposure, and indicates that effects of pro-inflammatory cytokines on the SCN are markedly altered during senescence.
Collapse
Affiliation(s)
- Adil Sadki
- Department of Morphological and Biomedical Sciences, University of Verona, Italy
| | | | | | | |
Collapse
|
9
|
Pang KCH, Miller JP, Fortress A, McAuley JD. Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8). AGE (DORDRECHT, NETHERLANDS) 2006; 28:283-296. [PMID: 22253495 PMCID: PMC3259149 DOI: 10.1007/s11357-006-9013-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 07/05/2006] [Accepted: 08/10/2006] [Indexed: 05/31/2023]
Abstract
Common complaints of the elderly involve impaired cognitive abilities, such as loss of memory and inability to attend. Although much research has been devoted to these cognitive impairments, other factors such as disrupted sleep patterns and increased daytime drowsiness may contribute indirectly to impaired cognitive abilities. Disrupted sleep-wake cycles may be the result of age-related changes to the internal (circadian) clock. In this article, we review recent research on aging and circadian rhythms with a focus on the senescence-accelerated mouse (SAM) as a model of aging. We explore some of the neurobiological mechanisms that appear to be responsible for our aging clock, and consider implications of this work for age-related changes in cognition.
Collapse
Affiliation(s)
- Kevin C. H. Pang
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
- Stress & Motivated Behavior Institute, NeuroBehavioral Research Laboratory, VA Medical Center, 385 Tremont Avenue, Mailstop 129, East Orange, NJ 07018 USA
| | - Jonathan P. Miller
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Ashley Fortress
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| | - J. Devin McAuley
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| |
Collapse
|