1
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
2
|
Gong YS, Hu K, Yang LQ, Guo J, Gao YQ, Song FL, Hou FL, Liang CY. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. Free Radic Biol Med 2017; 108:163-173. [PMID: 28342849 DOI: 10.1016/j.freeradbiomed.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
The effects of chronic EtOH consumption, associated or not with thiamine deficiency (TD), on cognitive impairment, oxidative damage, and β-amyloid (Aβ) peptide accumulation in the brain were investigated in male C57BL/6 mice. We established an alcoholic mouse model by feeding an EtOH liquid diet, a TD mouse model by feeding a thiamine-depleted liquid diet, and an EtOH treatment associated with TD mouse model by feeding a thiamine-depleted EtOH liquid diet for 7 weeks. The learning and memory functions of the mice were detected through the Y-maze test. Biochemical parameters were measured using corresponding commercial kits. The Aβ expression in the hippocampus was observed by immunohistochemical staining. Several results were obtained. First, EtOH significantly reduced cognitive function by significantly decreasing the Glu content in the hippocampus; increasing the AChE activity in the cortex; and reducing the thiamine level, and superoxide dismutase (SOD), glutathione peroxidase (GPx), and choline acetyltransferase (ChAT) activities in both the hippocampus and cortex. The treatment also increased the levels of malondialdehyde (MDA), protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), and nitric oxide (NO) and the activities of total nitric oxide synthase (tNOS), inducible nitric oxide synthase (iNOS), and monoamine oxidase B (MAO-B). Furthermore, EtOH enhanced the expression levels of Aβ1-42 and Aβ1-40 in the hippocampus. Second, TD induced the same dysfunctions caused by EtOH in the biochemical parameters, except for learning ability, 8-OHdG content, and GPx, tNOS, and AChE activities in the cortex. Third, the modification of MDA, protein carbonyl and NO levels, and GPx, iNOS, ChAT, and MAO-B activities in the brain induced by chronic EtOH treatment associated with TD was greater than that induced by EtOH or TD alone. The synergistic effects of EtOH and TD on Aβ1-40 and Glu release, as well as on SOD activity, depended on their actions on the hippocampus or cortex. These findings suggest that chronic EtOH consumption can induce TD, cognitive impairment, Aβ accumulation, oxidative stress injury, and neurotransmitter metabolic abnormalities. Furthermore, the association of chronic EtOH consumption with TD causes dramatic brain dysfunctions with a severe effect on the brain.
Collapse
Affiliation(s)
- Yu-Shi Gong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lu-Qi Yang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yong-Qing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Feng-Lin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fang-Li Hou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Cui-Yi Liang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
3
|
Gong YS, Guo J, Hu K, Gao YQ, Xie BJ, Sun ZD, Yang EN, Hou FL. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose. Exp Gerontol 2016; 74:21-8. [DOI: 10.1016/j.exger.2015.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
4
|
Wu D, Tseng IJ, Yuan RY, Hsieh CY, Hu CJ. Memory consolidation and inducible nitric oxide synthase expression during different sleep stages in Parkinson disease. Sleep Med 2013; 15:116-20. [PMID: 24286896 DOI: 10.1016/j.sleep.2013.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disease characterized by motor and nonmotor dysfunctions, which include sleep disturbances. Rapid eye movement (REM) sleep is associated with numerous physiologic changes such as memory consolidation. Compelling evidence suggests that nitric oxide (NO) is crucial to both sleep regulation and memory consolidation. In our study, we explored changes in biologic molecules during various sleep stages and the effects of sleep on memory consolidation in PD. METHODS Ten PD patients and 14 volunteers without PD participated in our study. The gene expression of inducible NO synthase (iNOS) in all sleep stages was measured using realtime polymerase chain reaction (PCR) based on polysomnography (PSG)-guided peripheral blood sampling. In addition, the efficiency of memory consolidation during the sleep of the participants was measured using the Wechsler Memory Scale, third edition (WMS-III). RESULTS The iNOS expression increased in all sleep stages among the PD patients compared to the control participants, in whom iNOS expression decreased during REM sleep. Regarding memory consolidation, the performance of the controls in logic memory and the patients in visual reproduction tasks improved after sleep. CONCLUSIONS The iNOS synthase expression was different from control participants among PD patients, and the expression was dissimilar in various sleep stages. Sleep might enhance memory consolidation and there are different memory consolidation profiles between PD and control participants demonstrating distinct memory consolidation profiles.
Collapse
Affiliation(s)
- Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Sleep Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ing-Jy Tseng
- College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Rey-Yue Yuan
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yu Hsieh
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Sleep Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan; Sleep Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Sleep Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan; Sleep Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Cespuglio R, Amrouni D, Meiller A, Buguet A, Gautier-Sauvigné S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med Rev 2012; 16:265-79. [PMID: 22406306 DOI: 10.1016/j.smrv.2012.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) production involves four different NO-synthases (NOSs) that are either constitutive (neuronal, nNOS; endothelial, eNOS; mitochondrial, mNOS) or inducible (iNOS) in nature. Three main processes regulate NO/NOSs output, i.e., the L-arginine/arginase substrate-competing system, the L-citrulline/arginosuccinate-recycling system and the asymmetric dimethyl-/monomethyl-L-arginine-inhibiting system. In adult animals, nNOS exhibits a dense innervation intermingled with pontine sleep structures. It is well established that the NO/nNOS production makes a key contribution to daily homeostatic sleep (slow-wave sleep, SWS; rapid eye movement sleep, REM sleep). In the basal hypothalamus, the NO/nNOS production further contributes to the REM sleep rebound that takes place after a sleep deprivation (SD). This production may also contribute to the sleep rebound that is associated with an immobilization stress (IS). In adult animals, throughout the SD time-course, an additional NO/iNOS production takes place in neurons. Such production mediates a transitory SD-related SWS rebound. A transitory NO/iNOS production is also part of the immune system. Such a production contributes to the SWS increase that accompanies inflammatory events and is ensured by microglial cells and astrocytes. Finally, with aging, the iNOS expression becomes permanent and the corresponding NO/iNOS production is important to ensure an adequate maintenance of REM sleep and, to a lesser extent, SWS. Despite such maintenance, aged animals, however, are not able to elicit a sleep rebound to deal with the challenge of SD or IS. Sleep regulatory processes in adult animals thus become impaired with age. Reduced iNOS expression during aging may contribute to accelerated senescence, as observed in senescence-accelerated mice (SAMP-8 mice).
Collapse
Affiliation(s)
- Raymond Cespuglio
- University of Lyon, Faculty of Medicine, Neurosciences Research Center of Lyon, 8 Avenue Rockefeller, F-69373 Lyon, France.
| | | | | | | | | |
Collapse
|
6
|
Tseng IJ, Liu HC, Yuan RY, Sheu JJ, Yu JM, Hu CJ. Expression of inducible nitric oxide synthase (iNOS) and period 1 (PER1) clock gene products in different sleep stages of patients with cognitive impairment. J Clin Neurosci 2010; 17:1140-3. [DOI: 10.1016/j.jocn.2010.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/23/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
|
7
|
Kitaoka K, Sano A, Chikahisa S, Yoshizaki K, Séi H. Disturbance of rapid eye movement sleep in senescence-accelerated mouse prone/8 mice is improved by retinoic acid receptor agonist Am80 (tamibarotene). Neuroscience 2010; 167:573-82. [DOI: 10.1016/j.neuroscience.2010.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
8
|
Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain. BMC Neurosci 2006; 7:81. [PMID: 17184520 PMCID: PMC1766358 DOI: 10.1186/1471-2202-7-81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/21/2006] [Indexed: 12/02/2022] Open
Abstract
Background Nitric oxide (NO) is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs) acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8) mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS) is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS). To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control) animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx-) levels, in three brain areas (n = 7 animals in each group). Calibrated reverse transcriptase (RT) and real-time polymerase chain reaction (PCR) and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels derived from nNOS and iNOS at an early age constitute a major factor of risk for sleep and/or memory impairments in SAMP8.
Collapse
|
9
|
Clément P, Sarda N, Cespuglio R, Gharib A. Potential role of inducible nitric oxide synthase in the sleep–wake states occurrence in old rats. Neuroscience 2005; 135:347-55. [PMID: 16112470 DOI: 10.1016/j.neuroscience.2005.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/26/2022]
Abstract
Extensive evidences now suggest that an association between inducible nitric oxide synthase and oxidative stress takes place during aging. Since the part played by inducible nitric oxide synthase in the sleep impairments associated with aging still remains unexplored, we compared its involvement in old rats (20-24 months) versus adult ones (3-5 months) using polygraphic, biochemical, voltammetric and immunohistochemical techniques. The experiments were conducted either in basal condition or after a systemic injection of selected inducible nitric oxide synthase inhibitors. We found that 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (10 mg/kg, i.p.) or aminoguanidine (400 mg/kg, i.p.) was capable to suppress rapid-eye-movement sleep and induce a delayed enhancement in slow-wave sleep in old rats. These effects did not occur in adult animals. Within the frontal cortex, the laterodorsal tegmentum and dorsal raphe nuclei, the basal inducible nitric oxide synthase activity was 85-200% higher in old rats than in adult ones. In contrast, the neuronal nitric oxide synthase activity did not vary in both groups. 2-Amino-5,6-dihydro-6-methyl-4H-1,3-thiazine administration significantly reduced inducible nitric oxide synthase activity (70-80% according to the brain areas) independently of age, but significantly decreased the cortical nitric oxide release in old rats. Finally, in frontal cortex and dorsal raphe immunohistochemical analysis showed inducible nitric oxide synthase-positive cells again only in old animals. These data support the idea that nitric oxide produced by inducible nitric oxide synthase plays a role in the triggering and maintenance of rapid-eye-movement sleep during aging.
Collapse
Affiliation(s)
- P Clément
- INSERM, U480, 8 av. Rockefeller, Lyon, F-69373 France
| | | | | | | |
Collapse
|