1
|
Rubinski A, Dewenter A, Zheng L, Franzmeier N, Stephenson H, Deming Y, Duering M, Gesierich B, Denecke J, Pham AV, Bendlin B, Ewers M. Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner. Eur J Nucl Med Mol Imaging 2024; 51:1035-1049. [PMID: 38049659 PMCID: PMC10881623 DOI: 10.1007/s00259-023-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aβ) PET tracers bind to WM myelin. We assessed 43 Aβ-biomarker negative (Aβ-) cognitively normal participants and 108 Aβ+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aβ+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Henry Stephenson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jannis Denecke
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - An-Vi Pham
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Barbara Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
2
|
Wu CY, Hsieh HH, Huang SM, Chiu SC, Peng SL. Brain alterations in ovariohysterectomized rats revealed by diffusion tensor imaging. Neuroreport 2023; 34:649-654. [PMID: 37506310 DOI: 10.1097/wnr.0000000000001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Women undergoing hysterectomy with oophorectomy have an increased risk of Alzheimer's disease and Parkinson's disease. However, postoperative neuroimaging data on pathogenic processes in the brain are limited. The aim of this study was to investigate the potential effect of ovariohysterectomy on brain integrity in rat model using diffusion tensor imaging (DTI) technique for the first time. METHODS We enrolled 13 rats each in the control and ovariohysterectomy groups. Rats in the ovariohysterectomy group underwent the ovariohysterectomy at 7 weeks of age, and all rats underwent DTI scans at 9 weeks of age. The DTI-derived parameters, such as fractional anisotropy and mean diffusivity, were compared between the control and ovariohysterectomy groups. RESULTS Compared to the control group, the ovariohysterectomy group showed significantly lower fractional anisotropy in various brain regions, including the corpus callosum, bilateral striatum, and bilateral cortex (all P < 0.05), suggesting neuronal injury in ovariohysterectomized rats. Mean diffusivity did not differ significantly between groups (all P > 0.05). CONCLUSION Rats undergoing ovariohysterectomy had lower fractional anisotropy compared to control in widespread brain regions, suggesting neuronal injury and demyelination. Therefore, neuroimaging should be performed to monitor brain alterations in women after hysterectomy with bilateral oophorectomy in clinical settings.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Peng SL, Huang SM, Chu LWL, Chiu SC. Anesthetic modulation of water diffusion: Insights from a diffusion tensor imaging study. Med Eng Phys 2023; 118:104015. [PMID: 37536836 DOI: 10.1016/j.medengphy.2023.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Diffusion tensor imaging (DTI) in animal models are essential for translational neuroscience studies. A critical step in animal studies is the use of anesthetics. Understanding the influence of specific anesthesia regimes on DTI-derived parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), is imperative when comparing results between animal studies using different anesthetics. Here, the quantification of FA and MD under different anesthetic regimes, alpha-chloralose and isoflurane, is discussed. We also used a range of b-values to determine whether the anesthetic effect was b-value dependent. The first group of rats (n = 6) was anesthetized with alpha-chloralose (80 mg/kg), whereas the second group of rats (n = 7) was anesthetized with isoflurane (1.5%). DTI was performed with b-values of 500, 1500, and 1500s/mm2, and the MD and FA were assessed individually. Anesthesia-specific differences in MD were apparent, as manifested by the higher estimated MD under isoflurane anesthesia than that under alpha-chloralose anesthesia (P < 0.001). MD values increased with decreasing b-value in all regions studied, and the degree of increase when rats were anesthetized with isoflurane was more pronounced than that associated with alpha-chloralose (P < 0.05). FA quantitation was also influenced by anesthesia regimens to varying extents, depending on the brain regions and b-values. In conclusion, both scanning parameters and the anesthesia regimens significantly impacted the quantification of DTI indices.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
4
|
Wang Z, Bai L, Liu Q, Wang S, Sun C, Zhang M, Zhang Y. Corpus callosum integrity loss predicts cognitive impairment in Leukoaraiosis. Ann Clin Transl Neurol 2020; 7:2409-2420. [PMID: 33119959 PMCID: PMC7732249 DOI: 10.1002/acn3.51231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate regional white matter fibers loss in Leukoaraiosis (LA) and its relationship with cognitive impairments. Methods Fifty‐six participants with LA and 38 healthy controls underwent clinical evaluations and MR scans. Participants with LA were classified as cognitively normal (LA‐NC, n = 18), vascular cognitive impairment of none dementia (LA‐VCIND, n = 24), and vascular dementia (LA‐VaD, n = 14) by Mini‐Mental State Examination and Clinical Dementia Rating. Cognitive domains including visual‐spatial, naming, attention, language, abstraction, memory, and orientation were assessed. With the use of Tract‐based spatial statistics, mean fractional anisotropy (FA) of major white matter fiber tracts were compared between LA and controls and among LA groups with varying levels of cognitive impairments. Regression analyses were performed to evaluate relationships between FA values and cognitive performance. Results Participants showed significant FA reduction in the corpus callosum (CC), bilateral corona radiata, anterior limb of the internal capsule, external capsule, posterior thalamic radiation, and superior longitudinal fasciculus compared to controls and across LA groups. The LA‐VaD group showed consistent damage in the body and genu of CC compared to the LA‐NC and LA‐VCIND groups. A positive correlation between visual‐spatial and FA reduction in right anterior corona radiates in LA‐VCIND and body of CC in LA‐ VaD. Interpretation We found regional fiber loss in the CC across the cognitive spectrum in patients with LA and correlations between FA and visuospatial impairment in the anterior corona radiata in patients with LA‐VCIND and in the body of CC in patients with LA‐VaD.
Collapse
Affiliation(s)
- Zhuonan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Li K, Wang S, Luo X, Zeng Q, Jiaerken Y, Xu X, Wang C, Liu X, Li Z, Zhao S, Zhang T, Fu Y, Chen Y, Liu Z, Zhou J, Huang P, Zhang M. Progressive Memory Circuit Impairments along with Alzheimer's Disease Neuropathology Spread: Evidence from in vivo Neuroimaging. Cereb Cortex 2020; 30:5863-5873. [PMID: 32537637 DOI: 10.1093/cercor/bhaa162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
During the progression of Alzheimer's disease (AD), neuropathology may propagate transneuronally, cause disruption in memory circuit, and lead to memory impairment. However, there is a lack of in vivo evidence regarding this process. Thus, we aim to simulate and observe the progression of neuropathology in AD continuum. We included cognitively normal (CN), mild cognitive impairments (MCI), and AD subjects, and further classified them using the A/T/N scheme (Group 0: CN, A - T-; Group 1: CN, A + T-; Group 2: CN, A + T+; Group 3: MCI, A + T+; Group 4: AD, A + T+). We investigated alterations of three core memory circuit structures: hippocampus (HP) subfields volume, cingulum-angular bundles (CAB) fiber integrity, and precuneus cortex volume. HP subfields volume showed the trend of initially increased and then decreased (starting from Group 2), while precuneus volume decreased in Groups 3 and 4. The CAB integrity degenerated in Groups 3 and 4 and aggravated with higher disease stages. Further, memory circuit impairments were correlated with neuropathology biomarkers and memory performance. Conclusively, our results demonstrated a pattern of memory circuit impairments along with AD progression: starting from the HP, then propagating to the downstream projection fiber tract and cortex. These findings support the tau propagation theory to some extent.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tianyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanv Fu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
6
|
Drummond C, Coutinho G, Monteiro MC, Assuncao N, Teldeschi A, de Souza AS, Oliveira N, Bramati I, Sudo FK, Vanderboght B, Brandao CO, Fonseca RP, de Oliveira-Souza R, Moll J, Mattos P, Tovar-Moll F. Narrative impairment, white matter damage and CSF biomarkers in the Alzheimer's disease spectrum. Aging (Albany NY) 2019; 11:9188-9208. [PMID: 31682234 PMCID: PMC6834410 DOI: 10.18632/aging.102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Narrative discourse (ND) refers to one's ability to verbally reproduce a sequence of temporally and logically-linked events. Impairments in ND may occur in subjects with Amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD), but correlates across this function, neuroimaging and cerebrospinal fluid (CSF) AD biomarkers remain understudied. OBJECTIVES We sought to measure correlates among ND, Diffusion Tensor Imaging (DTI) indexes and AD CSF biomarkers in patients within the AD spectrum. RESULTS Groups differed in narrative production (NProd) and comprehension. aMCI and AD presented poorer inference abilities than controls. AD subjects were more impaired than controls and aMCI regarding WB (p<0.01). ROIs DTI assessment distinguished the three groups. Mean Diffusivity (MD) in the uncinate, bilateral parahippocampal cingulate and left inferior occipitofrontal fasciculi negatively correlated with NProd. Changes in specific tracts correlated with T-tau/Aβ1-42 ratio in CSF. CONCLUSIONS AD and aMCI patients presented more ND impairments than controls. Those findings were associated with changes in ventral language-associated and in the inferior parahippocampal pathways. The latest were correlated with biomarkers' levels in the CSF. METHODS AD (N=14), aMCI (N=31) and Control (N=39) groups were compared for whole brain (WB) and regions of interest (ROI) DTI parameters, ND and AD CSF biomarkers.
Collapse
Affiliation(s)
- Claudia Drummond
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Coutinho
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Psychology, Celso Lisboa University Center, Rio de Janeiro, Brazil
| | - Marina Carneiro Monteiro
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Naima Assuncao
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alina Teldeschi
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Andrea Silveira de Souza
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Natalia Oliveira
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ivanei Bramati
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Felipe Kenji Sudo
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Bart Vanderboght
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Rochele Paz Fonseca
- Laboratory of Clinical and Experimental Neuropsychology, Department of Psychology, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ricardo de Oliveira-Souza
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Paulo Mattos
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Psychiatry and Forensic Medicine, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Department of Neuroscience, D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Zhou CN, Chao FL, Zhang Y, Jiang L, Zhang L, Luo YM, Xiao Q, Chen LM, Tang Y. Sex Differences in the White Matter and Myelinated Fibers of APP/PS1 Mice and the Effects of Running Exercise on the Sex Differences of AD Mice. Front Aging Neurosci 2018; 10:243. [PMID: 30174598 PMCID: PMC6107833 DOI: 10.3389/fnagi.2018.00243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Previous studies have suggested that changes in the white matter might play an important role in the pathogenic processes of Alzheimer's disease (AD). However, no study has investigated sex differences in these changes. Previous studies found that running exercise could delay both the decline in spatial learning and memory abilities as well as the changes in the white matter during early AD in male mice. However, whether exercise also has an effect on the changes in the white matter in female AD mice remains unknown. To address these questions, 6- and 10-month-old male and female APP/PS1 double transgenic AD mice were used. The 6-month-old male and female APP/PS1 double transgenic AD mice underwent a 4-month running exercise regime. The white matter volume and parameters of the myelinated fibers in the white matter of the 10-month-old exercised and non-exercised male and female AD mice were investigated using electron microscopy and stereological methods. There were no significant differences in the mean escape latencies between the male and female AD mice in the non-exercised groups, but after 4 months of treadmill exercise, the mean escape latencies of the female exercised AD mice had significantly shortened compared with those of the male exercised AD mice. The total white matter volume and most of the parameters of the myelinated fibers of the white matter in the female AD mice were significantly lower than those of the male AD mice. The total length of the myelinated fibers with diameters ranging from 0.6 to 0.7 μm, the axonal diameter of the myelinated fibers and the g-ratio of the myelinated fibers in the white matter of the exercised female AD mice were significantly increased compared with those of the non-exercised female AD mice. There were sex-specific differences in the white matter and myelinated fibers of white matter in the AD mice. Running exercise more effectively delayed the decline in spatial learning and memory abilities and delayed the changes in the myelinated fibers of the white matter in female transgenic mice with early AD than in male transgenic mice.
Collapse
Affiliation(s)
- Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yan-Min Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
O'Callaghan J, Holmes H, Powell N, Wells JA, Ismail O, Harrison IF, Siow B, Johnson R, Ahmed Z, Fisher A, Meftah S, O'Neill MJ, Murray TK, Collins EC, Shmueli K, Lythgoe MF. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. Neuroimage 2017; 159:334-345. [PMID: 28797738 PMCID: PMC5678288 DOI: 10.1016/j.neuroimage.2017.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease is connected to a number of other neurodegenerative conditions, known collectively as 'tauopathies', by the presence of aggregated tau protein in the brain. Neuroinflammation and oxidative stress in AD are associated with tau pathology and both the breakdown of axonal sheaths in white matter tracts and excess iron accumulation grey matter brain regions. Despite the identification of myelin and iron concentration as major sources of contrast in quantitative susceptibility maps of the brain, the sensitivity of this technique to tau pathology has yet to be explored. In this study, we perform Quantitative Susceptibility Mapping (QSM) and T2* mapping in the rTg4510, a mouse model of tauopathy, both in vivo and ex vivo. Significant correlations were observed between histological measures of myelin content and both mean regional magnetic susceptibility and T2* values. These results suggest that magnetic susceptibility is sensitive to tissue myelin concentrations across different regions of the brain. Differences in magnetic susceptibility were detected in the corpus callosum, striatum, hippocampus and thalamus of the rTg4510 mice relative to wild type controls. The concentration of neurofibrillary tangles was found to be low to intermediate in these brain regions indicating that QSM may be a useful biomarker for early stage detection of tau pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- J O'Callaghan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK.
| | - H Holmes
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - N Powell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - J A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - O Ismail
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - I F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - B Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - R Johnson
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - Z Ahmed
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Fisher
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - S Meftah
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - M J O'Neill
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E C Collins
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - K Shmueli
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - M F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| |
Collapse
|
9
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
10
|
Caso F, Agosta F, Filippi M. Insights into White Matter Damage in Alzheimer's Disease: From Postmortem to in vivo Diffusion Tensor MRI Studies. NEURODEGENER DIS 2015; 16:26-33. [DOI: 10.1159/000441422] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
|
11
|
Wharton SB, Simpson JE, Brayne C, Ince PG. Age-associated white matter lesions: the MRC Cognitive Function and Ageing Study. Brain Pathol 2015; 25:35-43. [PMID: 25521175 DOI: 10.1111/bpa.12219] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Cerebral white matter lesions (WML) are common in the aging brain and are associated with dementia and depression. They are associated with vascular risk factors and small vessel disease, suggesting an ischemic origin, but recent pathology studies suggest a more complex pathogenesis. Studies using samples from the population-representative Medical Research Council Cognitive Function and Ageing Study neuropathology cohort used post-mortem magnetic resonance imaging to identify WML for further study. Expression of hypoxia-related molecules and other injury and protective cellular pathways in candidate immunohistochemical and gene expression microarray studies support a role for hypoxia/ischemia. However, these approaches also suggest that immune activation, blood-brain barrier dysfunction, altered cell metabolic pathways and glial cell injury contribute to pathogenesis. These abnormalities are not confined to WML, but are also found in apparently normal white matter in brains with lesions, suggesting a field effect of white matter abnormality within which lesions arise. WML are an active pathology with a complex pathogenesis that may potentially offer a number of primary and secondary intervention targets.
Collapse
Affiliation(s)
- Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
12
|
Lee SH, Coutu JP, Wilkens P, Yendiki A, Rosas HD, Salat DH. Tract-based analysis of white matter degeneration in Alzheimer's disease. Neuroscience 2015; 301:79-89. [PMID: 26026680 DOI: 10.1016/j.neuroscience.2015.05.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
Abstract
Although much prior work has focused on the known cortical pathology that defines Alzheimer's disease (AD) histologically, recent work has additionally demonstrated substantial damage to the cerebral white matter in this condition. While there is large evidence of diffuse damage to the white matter in AD, it is unclear whether specific white matter tracts exhibit a more accelerated pattern of damage and whether the damage is associated with the classical neurodegenerative changes of AD. In this study, we investigated microstructural differences in the large fascicular bundles of the cerebral white matter of individuals with AD and mild cognitive impairment (MCI), using recently developed automated diffusion tractography procedures in the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. Eighteen major fiber bundles in a total of 36 individuals with AD, 81 MCI and 60 control participants were examined with the TRActs Constrained by UnderLying Anatomy (TRACULA) procedure available as part of the FreeSurfer image processing software package. For each fiber bundle, the mean fractional anisotropy (FA), and mean, radial and axial diffusivities were calculated. Individuals with AD had increased diffusivities in both left and right cingulum-angular bundles compared to control participants (p<0.001). Individuals with MCI also had increased axial and mean diffusivities and increased FA in both cingulum-angular bundles compared to control participants (p<0.05) and decreased radial diffusivity compared to individuals with AD (p<0.05). We additionally examined how white matter deterioration relates to hippocampal volume, a traditional imaging measure of AD pathology, and found the strongest negative correlations in AD patients between hippocampal volume and the diffusivities of the cingulum-angular and cingulum-cingulate gyrus bundles and of the corticospinal tracts (p<0.05). However, statistically controlling for hippocampal volume did not remove all group differences in white matter measures, suggesting a unique contribution of white matter damage to AD unexplained by this disease biomarker. These results suggest that (1) AD-associated deterioration of white matter fibers is greatest in tracts known to be connected to areas of pathology in AD and (2) lower white matter tract integrity is more diffusely associated with lower hippocampal volume indicating that the pathology in the white matter follows to some degree the neurodegenerative staging and progression of this condition.
Collapse
Affiliation(s)
- S-H Lee
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Kangwon National University School of Medicine, Chuncheon, South Korea.
| | - J-P Coutu
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P Wilkens
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Yendiki
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - H D Rosas
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | | |
Collapse
|
13
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
14
|
Yin C, Li S, Zhao W, Feng J. Brain imaging of mild cognitive impairment and Alzheimer's disease. Neural Regen Res 2014; 8:435-44. [PMID: 25206685 PMCID: PMC4146132 DOI: 10.3969/j.issn.1673-5374.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.
Collapse
Affiliation(s)
- Changhao Yin
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China ; Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang 157004, Heilongjiang Province, China
| | - Siou Li
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang 157004, Heilongjiang Province, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang 157004, Heilongjiang Province, China
| | - Jiachun Feng
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
15
|
Amlien I, Fjell A. Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience 2014; 276:206-15. [DOI: 10.1016/j.neuroscience.2014.02.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/16/2022]
|
16
|
Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity. Acta Neuropathol Commun 2014; 2:83. [PMID: 25129614 PMCID: PMC4147157 DOI: 10.1186/s40478-014-0083-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which white matter degeneration may occur in AD. Given that white matter degeneration may be an early marker of disease, preceding grey matter atrophy, understanding the mechanisms and risk factors that may lead to white matter loss could help to identify those at high risk and to intervene earlier in the pathogenic process.
Collapse
|
17
|
Fieremans E, Benitez A, Jensen JH, Falangola MF, Tabesh A, Deardorff RL, Spampinato MVS, Babb JS, Novikov DS, Ferris SH, Helpern JA. Novel white matter tract integrity metrics sensitive to Alzheimer disease progression. AJNR Am J Neuroradiol 2013; 34:2105-12. [PMID: 23764722 DOI: 10.3174/ajnr.a3553] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. MATERIALS AND METHODS This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. RESULTS With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). CONCLUSIONS These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
Collapse
Affiliation(s)
- E Fieremans
- Department of Radiology, Center for Biomedical Imaging
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lockau H, Jessen F, Fellgiebel A, Drzezga A. Structural and Functional Magnetic Resonance Imaging: Mild Cognitive Impairment and Alzheimer Disease. PET Clin 2013; 8:407-30. [PMID: 27156470 DOI: 10.1016/j.cpet.2013.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic resonance (MR) imaging is playing an increasingly pivotal role in the clinical management of dementia, including Alzheimer disease (AD). In addition to established MR imaging procedures, the introduction of advanced instrumentation such as 7-T MR imaging, as well as novel MR imaging sequences such as arterial spin labeling, MR spectroscopy, diffusion tensor imaging, and resting-state functional MR imaging, may open new pathways toward improved diagnosis of AD even in early stages of disease such as mild cognitive impairment (MCI). This article describes the typical findings of established and new MR imaging procedures in healthy aging, MCI, and AD.
Collapse
Affiliation(s)
- Hannah Lockau
- Department of Radiology, University Hospital Cologne, Kerpener Street 62, Cologne 50937, Germany
| | - Frank Jessen
- Department of Psychiatry, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Sigmund-Freud-Straße 25, Bonn 53105, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Street 8, Mainz 55131, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Kerpener Street 62, Cologne 50937, Germany.
| |
Collapse
|
19
|
Coello C, Willoch F, Selnes P, Gjerstad L, Fladby T, Skretting A. Correction of partial volume effect in 18F-FDG PET brain studies using coregistered MR volumes: Voxel based analysis of tracer uptake in the white matter. Neuroimage 2013; 72:183-92. [DOI: 10.1016/j.neuroimage.2013.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/29/2012] [Accepted: 01/13/2013] [Indexed: 10/27/2022] Open
|
20
|
Canu E, Agosta F, Spinelli EG, Magnani G, Marcone A, Scola E, Falautano M, Comi G, Falini A, Filippi M. White matter microstructural damage in Alzheimer's disease at different ages of onset. Neurobiol Aging 2013; 34:2331-40. [PMID: 23623599 DOI: 10.1016/j.neurobiolaging.2013.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/13/2013] [Accepted: 03/24/2013] [Indexed: 11/25/2022]
Abstract
White matter (WM) microstructural damage and its relationship with cortical abnormalities were explored in early-onset Alzheimer's disease (EOAD) compared with late-onset AD (LOAD) patients. Structural and diffusion tensor magnetic resonance images were obtained from 22 EOAD patients, 35 LOAD patients, and 40 healthy controls. Patterns of WM microstructural damage and cortical atrophy, as well as their relationships, were assessed using tract-based spatial statistics, tractography and voxel-based morphometry. Compared with LOAD, EOAD patients had a more severe and distributed pattern of WM microstructural damage, in particular in the posterior fibers of cingulum and corpus callosum. In both groups with Alzheimer's disease, but especially in LOAD patients, correlations between cingulum and corpus callosum fractional anisotropy and parietal, temporal, and frontal cortical volumes were found. In conclusion, WM microstructural damage is more severe in EOAD compared with LOAD patients. Such damage follows different patterns of topographical distribution in the 2 patient groups.
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Selnes P, Fjell AM, Gjerstad L, Bjørnerud A, Wallin A, Due-Tønnessen P, Grambaite R, Stenset V, Fladby T. White matter imaging changes in subjective and mild cognitive impairment. Alzheimers Dement 2013; 8:S112-21. [PMID: 23021621 DOI: 10.1016/j.jalz.2011.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 06/21/2011] [Accepted: 07/25/2011] [Indexed: 10/27/2022]
Abstract
BACKGROUND To determine whether white matter (WM) memory network changes accompany early cognitive impairment and whether these changes represent early, pathologically independent axonal affection, we combined WM diffusion tensor imaging and cortical morphometric measurements of normal control subjects, patients with only subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). METHODS We included 66 patients with SCI or MCI and 21 control subjects from a university-hospital-based memory clinic in a cross-sectional study. Morphometric analysis was performed in FreeSurfer, and Tract-Based Spatial Statistics was used for analysis of diffusion tensor imaging-derived WM fractional anisotropy, radial diffusivity (DR), and mean diffusivity (MD). Relationships between WM measures and stage were assessed with whole-brain voxelwise statistics and on a region-of-interest basis, with subsequent correction for cortical atrophy. RESULTS In SCI patients, as compared with control subjects, there were widespread changes in DR and MD. No significant differences in thickness could be demonstrated. In MCI patients, as compared with control subjects, there were widespread changes in DR, MD, and fractional anisotropy; the precuneal and inferior parietal cortices were thinner; and the hippocampus was smaller. Multiple logistic regression analysis eliminated morphometry as an explanatory variable in favor of DR/MD for all regions of interest, except in the precuneus, where both thickness and DR/MD were significant explanatory variables. CONCLUSIONS WM tract degeneration is prominent in SCI and MCI patients, and is at least in part independent of overlying gray matter atrophy.
Collapse
Affiliation(s)
- Per Selnes
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Castaño EM, Maarouf CL, Wu T, Leal MC, Whiteside CM, Lue LF, Kokjohn TA, Sabbagh MN, Beach TG, Roher AE. Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem Int 2012; 62:145-56. [PMID: 23231993 DOI: 10.1016/j.neuint.2012.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/26/2012] [Accepted: 12/01/2012] [Indexed: 12/13/2022]
Abstract
The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer's disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes. In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n=4) and NDC (n=5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases. Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α- and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools. Our experiments suggest that WM activities become globally impaired during the course of AD with significant morphological, biochemical and functional consequential implications for gray matter function and cognitive deficits. These observations may endorse the hypothesis that WM dysfunction is not only a consequence of AD pathology, but that it may precipitate and/or potentiate AD dementia.
Collapse
Affiliation(s)
- Eduardo M Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meng JZ, Guo LW, Cheng H, Chen YJ, Fang L, Qi M, Jia ZY, Mohammed W, Hong XN. Correlation between cognitive function and the association fibers in patients with Alzheimer's disease using diffusion tensor imaging. J Clin Neurosci 2012; 19:1659-63. [PMID: 23062795 DOI: 10.1016/j.jocn.2011.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
White matter (WM) changes, along with well-characterized cortical abnormalities, occur in patients with Alzheimer's disease (AD). We investigated the integrity of WM tracts within association fibers by the use of fractional anisotropy (FA), and the relationship between FA values and cognitive function in patients with AD. Neuropsychological examination and conventional MRI, as well as diffusion tensor imaging, (DTI) were conducted on 12 patients with mild to moderate AD and 18 cognitively healthy volunteers. DTI was performed to measure FA in the bilateral inferior fronto-occipital fasciculus (IFOF) and the superior longitudinal fasciculus (SLF). Mini-Mental State Examination (MMSE) scores and Montreal Cognitive Assessment (MoCA) values were used to evaluate cognitive function and the Clinical Dementia Rating (CDR) scale was used as a staging tool for dementia severity. FA measures were analyzed and correlated with neuropsychological data. No patient showed any WM tract abnormality on either T1-weighted or T2-weighted MRI. However, the FA values in the bilateral IFOF and SLF and the MoCA scores in patients with AD were significantly decreased (p<0.05) compared to the controls. Furthermore, the decreased FA values in the SLF were positively correlated with cognitive function (MMSE scores - right: r=0.672, p=0.033, left: r=0.919, p<0.01; MoCA values - right: r=0.747, p=0.013, left: r=0.679, p=0.031). Our findings confirmed that the loss of integrity of microstructural WM connectivity has a role in the cognitive decline of patients with AD. The data also suggest that the FA values of the SLF may be used as a clinical marker of cognitive function.
Collapse
Affiliation(s)
- Jing-Zhi Meng
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fischer FU, Scheurich A, Wegrzyn M, Schermuly I, Bokde AL, Klöppel S, Pouwels PJ, Teipel S, Yakushev I, Fellgiebel A. Automated tractography of the cingulate bundle in Alzheimer's disease: A multicenter DTI study. J Magn Reson Imaging 2012; 36:84-91. [DOI: 10.1002/jmri.23621] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/23/2012] [Indexed: 01/17/2023] Open
|
25
|
White matter integrity in mild cognitive impairment: a tract-based spatial statistics study. Neuroimage 2010; 53:16-25. [PMID: 20595067 DOI: 10.1016/j.neuroimage.2010.05.068] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/23/2010] [Accepted: 05/26/2010] [Indexed: 11/23/2022] Open
Abstract
Mild cognitive impairment (MCI) as a clinical diagnosis has limited specificity, and identifying imaging biomarkers may improve its predictive validity as a pre-dementia syndrome. This study used diffusion tensor imaging (DTI) to detect white matter (WM) structural alterations in MCI and its subtypes, and aimed to examine if DTI can serve as a potential imaging marker of MCI. We studied 96 amnestic MCI (aMCI), 69 non-amnestic MCI (naMCI), and 252 cognitively normal (CN) controls. DTI was performed to measure fractional anisotropy (FA), and tract-based spatial statistics (TBSS) were applied to investigate the characteristics of WM changes in aMCI and naMCI. The diagnostic utility of DTI in distinguishing MCI from CN was further evaluated by using a binary logistic regression model. We found that FA was significantly reduced in aMCI and naMCI when compared with CN. For aMCI subjects, decreased FA was seen in the frontal, temporal, parietal, and occipital WM, together with several commissural, association, and projection fibres. The best discrimination between aMCI and controls was achieved by combining FA measures of the splenium of corpus callosum and crus of fornix, with accuracy of 74.8% (sensitivity 71.0%, specificity 76.2%). For naMCI subjects, WM abnormality was more anatomically widespread, but the temporal lobe WM was relatively spared. These results suggest that aMCI is best characterized by pathology consistent with early Alzheimer's disease, whereas underlying pathology in naMCI is more heterogeneous, and DTI analysis of white matter structural integrity can serve as a potential biomarker of MCI and its subtypes.
Collapse
|
26
|
Focal demyelination in Alzheimer's disease and transgenic mouse models. Acta Neuropathol 2010; 119:567-77. [PMID: 20198482 DOI: 10.1007/s00401-010-0657-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 02/13/2010] [Accepted: 02/13/2010] [Indexed: 12/26/2022]
Abstract
We have investigated alterations in myelin associated with Abeta plaques, a major pathological hallmark of Alzheimer's disease (AD), in human tissue and relevant transgenic mice models. Using quantitative morphological techniques, we determined that fibrillar Abeta pathology in the grey matter of the neocortex was associated with focal demyelination in human presenilin-1 familial, sporadic and preclinical AD cases, as well as in two mouse transgenic models of AD, compared with age-matched control tissue. This demyelination was most pronounced at the core of Abeta plaques. Furthermore, we found a focal loss of oligodendrocytes in sporadic and preclinical AD cases associated with Abeta plaque cores. In human and transgenic mice alike, plaque-free neocortical regions showed no significant demyelination or oligodendrocyte loss compared with controls. Dystrophic neurites associated with the plaques were also demyelinated. We suggest that such plaque-associated focal demyelination of the cortical grey matter might impair cortical processing, and may also be associated with aberrant axonal sprouting that underlies dystrophic neurite formation.
Collapse
|
27
|
White matter pathology isolates the hippocampal formation in Alzheimer's disease. Neurobiol Aging 2010; 31:244-56. [PMID: 18455835 DOI: 10.1016/j.neurobiolaging.2008.03.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 03/17/2008] [Accepted: 03/22/2008] [Indexed: 11/21/2022]
Abstract
Prior work has demonstrated that the memory dysfunction of Alzheimer's disease (AD) is accompanied by marked cortical pathology in medial temporal lobe (MTL) gray matter. In contrast, changes in white matter (WM) of pathways associated with the MTL have rarely been studied. We used diffusion tensor imaging (DTI) to examine regional patterns of WM tissue changes in individuals with AD. Alterations of diffusion properties with AD were found in several regions including parahippocampal WM, and in regions with direct and secondary connections to the MTL. A portion of the changes measured, including effects in the parahippocampal WM, were independent of gray matter degeneration as measured by hippocampal volume. Examination of regional changes in unique diffusion parameters including anisotropy and axial and radial diffusivity demonstrated distinct zones of alterations, potentially stemming from differences in underlying pathology, with a potential myelin specific pathology in the parahippocampal WM. These results demonstrate that deterioration of neocortical connections to the hippocampal formation results in part from the degeneration of critical MTL and associated fiber pathways.
Collapse
|
28
|
Stebbins GT, Murphy CM. Diffusion tensor imaging in Alzheimer's disease and mild cognitive impairment. Behav Neurol 2009; 21:39-49. [PMID: 19847044 PMCID: PMC3010401 DOI: 10.3233/ben-2009-0234] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Structural magnetic resonance imaging (MRI) studies of Alzheimer’s disease and mild cognitive impairment (MCI) have focused on the hippocampus and entorhinal cortex; gray matter structures in the medial temporal lobe. Few studies have investigated the integrity of white matter in patients with AD or MCI. Diffusion tensor imaging (DTI) is a MRI technique that allows for the interrogation of the microstructural integrity of white matter. Based on increases in translational diffusion (mean diffusivity: MD) and decreases directional diffusion (fractional anisotropy: FA) damage to white matter can be assessed. Studies have identified regions of increased MD and decreased FA in patients with AD and MCI in all lobes of the brain, as well as medial temporal lobe structures including the hippocampus, entorhinal cortex and parahippocampal white matter. The pattern of white matter integrity disruption tends to follow an anterior to posterior gradient with greater damage noted in posterior regions in AD and MCI. Recent studies have exploited inter-voxel directional similarities to develop models of white matter pathways, and have used these models to assess the integrity of inter-cerebral connections. Particular focus has been applied to the parahippocampal white matter (including the perforant path) and the posterior cingulum. Although many studies have found DTI indicators of impaired white matter in AD and MCI, other studies have failed to detect any differences in MD or FA between the groups, demonstrating the need for large replicative studies. DTI is an evolving technique and advances in its application ought to provide new insights into AD and MCI.
Collapse
Affiliation(s)
- G T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
29
|
Price CC, Garrett KD, Jefferson AL, Cosentino S, Tanner JJ, Penney DL, Swenson R, Giovannetti T, Bettcher BM, Libon DJ. Leukoaraiosis severity and list-learning in dementia. Clin Neuropsychol 2009; 23:944-61. [PMID: 19370451 DOI: 10.1080/13854040802681664] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In patients with dementia, leukoaraiosis (LA) was hypothesized to result in differential patterns of impairment on a verbal serial list-learning test. Using a visual rating scale, 144 dementia patients with ischemic scores <4 were re-categorized as having mild (n = 73), moderate (n = 44), or severe LA (n = 27). Mild LA was predicted to be associated with an amnestic list-learning profile, while severe LA was predicted to be associated with a dysexecutive profile. List-learning performances were standardized to a group of healthy older adults (n = 24). Analyses were conducted on a set of four factors derived from the list-learning paradigm, as well as error scores. Data indicate that LA severity is an important marker for understanding list learning in dementia.
Collapse
Affiliation(s)
- Catherine C Price
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, Florida, 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen TF, Lin CC, Chen YF, Liu HM, Hua MS, Huang YC, Chiu MJ. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res 2009; 173:15-21. [PMID: 19442496 DOI: 10.1016/j.pscychresns.2008.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 06/21/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
White matter damage and its contribution to clinical manifestations in patients with dementia have been increasingly recognized. To explore white matter changes in different types of dementia, we examined brain water diffusivity with diffusion tensor imaging (DTI). We measured fractional anisotropy and mean diffusivity of multiple white matter regions in patients with amnesic mild cognitive impairment (MCI, n=10), Alzheimer's disease (AD, n=30), subcortical ischemic vascular dementia (SIVD, n=18), frontotemporal dementia (FTD, n=7), and control subjects (n=20). We performed pairwise comparisons in each region of interest between patients and controls. MCI patients showed diffusion tensor change (DTC) in the left anterior periventricular (PV) area, possibly in the right posterior PV area, and the genu of the corpus callosum. AD patients showed DTC in the corpus callosum, and in frontal and parieto-occipital subcortical and anterior PV areas. In SIVD patients, DTC occurred in the genu of the corpus callosum, and in bilateral frontal subcortical and PV areas. FTD patients differed from controls in showing DTC in the temporal and frontal subcortical areas, the genu of the corpus callosum and PV areas. The degree of DTC correlated with the clinical severity of dementia as assessed by the clinical dementia rating (CDR). Mean diffusivity was diffusely and positively associated with the CDR scores. Fractional anisotropy of the PV areas was negatively associated with the CDR scores, suggesting a critical role of the lateral cholinergic pathways.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abnormal white matter independent of hippocampal atrophy in amnestic type mild cognitive impairment. Neurosci Lett 2009; 462:147-51. [PMID: 19596405 DOI: 10.1016/j.neulet.2009.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/01/2009] [Accepted: 07/05/2009] [Indexed: 11/23/2022]
Abstract
Hippocampal atrophy is the key marker in the pathogenesis of Alzheimer's disease (AD), which is associated with white matter (WM) disruption. This type of WM disruption could partly explain AD-related pathology. However, relatively little attention has been directed toward WM disruption which may be independent of these fundamental gray matter (GM) changes in amnestic mild cognitive impairment (aMCI) which is associated with high risk of AD. To evaluate the differences of WM integrity between aMCI patients (N=32) and healthy controls (N=31), whole-brain voxel-based methods were applied to diffusion tensor imaging. To explore the possible independence of WM changes from GM loss, an index of hippocampal atrophy was used to partial out GM effects. aMCI patients showed WM disruption in frontal lobe, temporal lobe, internal capsule, cingulate gyrus and precuneus. The findings supported the evidence of independent patterns of degeneration in WM tracts which may co-act in the WM pathological process of aMCI patients. As aMCI is a putatively prodromal syndrome to AD, these data may assist with a better understanding of WM pathological change associated with the development of AD.
Collapse
|
32
|
Sjöbeck M, Elfgren C, Larsson EM, Brockstedt S, Lätt J, Englund E, Passant U. Alzheimer's disease (AD) and executive dysfunction. A case-control study on the significance of frontal white matter changes detected by diffusion tensor imaging (DTI). Arch Gerontol Geriatr 2009; 50:260-6. [PMID: 19419776 DOI: 10.1016/j.archger.2009.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 11/28/2022]
Abstract
White matter (WM) changes are frequently seen on structural imaging in AD but the clinical relevance of these changes is uncertain. Frontal WM pathology is often observed upon neuropathological examination in AD. Since frontal cortical/sub-cortical pathology is known to relate to executive dysfunction, the aim was to elucidate if frontal WM changes in AD correlated with executive dysfunction. In all, 15 AD patients and 15 age-matched control cases were investigated in the study, which covered conventional magnetic resonance imaging (MRI), DTI, neuropsychiatric and neuropsychological examinations. Reduced performance on neuropsychological testing of executive function correlated significantly with an increasing degree of frontal WM changes detected by DTI in the AD group, while no such correlation was observed for the controls. Conventional semi-quantitative MRI assessment did not correlate with results on neuropsychological testing of executive function in any of the groups. The structural correlate to certain dimensions of executive dysfunction in AD patients could be related to changes in the deep frontal WM. DTI appears to be more sensitive in the detection of clinically significant WM alterations than conventional semi-quantitative MRI.
Collapse
Affiliation(s)
- Martin Sjöbeck
- Department of Psychogeriatrics, University Hospital, and Department of Medical Radiation Physics, Lund University, Klinikgatan 22, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y, Qian Y, Jia J. Abnormal integrity of association fiber tracts in amnestic mild cognitive impairment. J Neurol Sci 2009; 278:102-6. [DOI: 10.1016/j.jns.2008.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/07/2008] [Accepted: 12/09/2008] [Indexed: 11/28/2022]
|
34
|
Sydykova D, Stahl R, Dietrich O, Ewers M, Reiser MF, Schoenberg SO, Möller HJ, Hampel H, Teipel SJ. Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer's disease: a diffusion tensor imaging and voxel-based morphometry study. Cereb Cortex 2006; 17:2276-82. [PMID: 17164468 DOI: 10.1093/cercor/bhl136] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Regional cortical atrophy in Alzheimer's disease (AD) most likely reflects the loss of cortical neurons. Several diffusion tensor imaging studies reported reduced fractional anisotropy (FA) in the corpus callosum in AD. The aim of this study was to investigate the association between reduced FA in the corpus callosum and gray matter atrophy in AD. Thirteen patients with AD with a mean (+/-standard deviation) age of 68.3 years (+/-11.5) and mean Mini Mental State Examination (MMSE) score of 21.8 (+/-4.8) were recruited. There were 13 control subjects with a mean age of 66.7 years (+/-6.4) and MMSE of 29.1 (+/-0.7). We used voxel-based morphometry of gray matter maps and region of interest-based analysis of FA in the corpus callosum. FA values of the anterior corpus callosum in AD patients were significantly correlated with gray matter volume in the prefrontal cortex and left parietal lobes. FA values of the posterior corpus callosum were significantly correlated with gray matter volume in the bilateral frontal, temporal, right parietal, and occipital lobes. In control subjects, no correlations were detected. Our findings suggest that decline of FA in the corpus callosum may be related to neuronal degeneration in corresponding cortical areas.
Collapse
Affiliation(s)
- Djyldyz Sydykova
- Alzheimer Memorial Center, Dementia and Neuroimaging Section, Department of Psychiatry, Ludwig-Maximilian University, Nussbaumstrasse 7, D-80366 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|