1
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
2
|
Brelstaff J, Ossola B, Neher JJ, Klingstedt T, Nilsson KPR, Goedert M, Spillantini MG, Tolkovsky AM. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front Neurosci 2015; 9:184. [PMID: 26074756 PMCID: PMC4448042 DOI: 10.3389/fnins.2015.00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 11/15/2022] Open
Abstract
Identification of fluorescent dyes that label the filamentous protein aggregates characteristic of neurodegenerative disease, such as β-amyloid and tau in Alzheimer's disease, in a live cell culture system has previously been a major hurdle. Here we show that pentameric formyl thiophene acetic acid (pFTAA) fulfills this function in living neurons cultured from adult P301S tau transgenic mice. Injection of pFTAA into 5-month-old P301S tau mice detected cortical and DRG neurons immunoreactive for AT100, an antibody that identifies solely filamentous tau, or MC1, an antibody that identifies a conformational change in tau that is commensurate with neurofibrillary tangle formation in Alzheimer's disease brains. In fixed cultures of dorsal root ganglion (DRG) neurons, pFTAA binding, which also identified AT100 or MC1+ve neurons, followed a single, saturable binding curve with a half saturation constant of 0.14 μM, the first reported measurement of a binding affinity of a beta-sheet reactive dye to primary neurons harboring filamentous tau. Treatment with formic acid, which solubilizes filamentous tau, extracted pFTAA, and prevented the re-binding of pFTAA and MC1 without perturbing expression of soluble tau, detected using an anti-human tau (HT7) antibody. In live cultures, pFTAA only identified DRG neurons that, after fixation, were AT100/MC1+ve, confirming that these forms of tau pre-exist in live neurons. The utility of pFTAA to discriminate between living neurons containing filamentous tau from other neurons is demonstrated by showing that more pFTAA+ve neurons die than pFTAA-ve neurons over 25 days. Since pFTAA identifies fibrillar tau and other misfolded proteins in living neurons in culture and in animal models of several neurodegenerative diseases, as well as in human brains, it will have considerable application in sorting out disease mechanisms and in identifying disease-modifying drugs that will ultimately help establish the mechanisms of neurodegeneration in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Jack Brelstaff
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Bernardino Ossola
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | | | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology Cambridge, UK
| | | | - Aviva M Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| |
Collapse
|