1
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
2
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
4
|
Tan KL, Lee HC, Cheah PS, Ling KH. Mitochondrial Dysfunction in Down Syndrome: From Pathology to Therapy. Neuroscience 2023; 511:1-12. [PMID: 36496187 DOI: 10.1016/j.neuroscience.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus. Many genes on HSA21 are involved in oxidative phosphorylation (OXPHOS) and regulation of mitochondrial functions. This review highlights the HSA21 dosage-sensitive nuclear-encoded mitochondrial genes associated with overexpression-related phenotypes seen in DS. This includes impaired mitochondrial dynamics, structural defects and dysregulated bioenergetic profiles such as OXPHOS deficiency and reduced ATP production. Various therapeutic approaches for modulating energy deficits in DS, effects and molecular mechanism of gene therapy and drugs that exert protective effects through modulation of mitochondrial function and attenuation of oxidative stress in DS cells were discussed. It is prudent that improving DS pathophysiological conditions or quality of life may be feasible by targeting something as simple as cellular mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Kai-Leng Tan
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Ishihara K, Kawashita E, Akiba S. Bio-Metal Dyshomeostasis-Associated Acceleration of Aging and Cognitive Decline in Down Syndrome. Biol Pharm Bull 2023; 46:1169-1175. [PMID: 37661395 DOI: 10.1248/bpb.b23-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| |
Collapse
|
6
|
Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel) 2022; 11:antiox11122438. [PMID: 36552646 PMCID: PMC9774833 DOI: 10.3390/antiox11122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.
Collapse
|
7
|
Zhang X, Lin L, Li H, Xia W, Liu Q, Zhou X, Dong L, Fu X. Update on new trend and progress of the mechanism of polysaccharides in the intervention of Alzheimer's disease, based on the new understanding of relevant theories: A review. Int J Biol Macromol 2022; 218:720-738. [PMID: 35902016 DOI: 10.1016/j.ijbiomac.2022.07.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease with insidious onset and progressive progression, is the main type of dementia. Currently, there is no specific cure for the disease. At the same time, a series of drug developments based on the classic theory, the Aβ cascade hypothesis, have not completed phase III clinical trials, challenging the hypothesis. Polysaccharides obtained from natural products can be used in the treatment of AD, which has attracted academic attention due to its advantages of multi-target, multi-channel, no or modest side effects. The TCM syndrome type of AD is mainly "qi and blood deficiency, kidney essence deficiency", and the medicine is mainly used to replenish qi and blood, kidney and bone marrow. Thus, there has been extensive and in-depth research on polysaccharides obtained from tonic Chinese herbal medicine in China. Based on this background, this paper evaluated the effects and mechanisms of natural polysaccharides on AD by combing and screening English and related literature in recent 5 years and summarized the extraction process and structure-activity relationship of polysaccharides.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Ningxia Medical University, Yinchuan, 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lizhen Lin
- Ningxia Medical University, Yinchuan, 750004, China
| | - Hang Li
- Ningxia Medical University, Yinchuan, 750004, China
| | - Wenxin Xia
- Ningxia Medical University, Yinchuan, 750004, China
| | - Qiansong Liu
- Ningxia Medical University, Yinchuan, 750004, China
| | - Xirong Zhou
- Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Dong
- Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- Ningxia Medical University, Yinchuan, 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| |
Collapse
|
8
|
Pagnotta S, Tramutola A, Barone E, Di Domenico F, Pittalà V, Salerno L, Folgiero V, Caforio M, Locatelli F, Petrini S, Butterfield DA, Perluigi M. CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down Syndrome. Free Radic Biol Med 2022; 183:1-13. [PMID: 35283228 DOI: 10.1016/j.freeradbiomed.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.
Collapse
Affiliation(s)
- Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Laboratory affiliiated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
9
|
Gazmeh S, Azhir M, Elyasi L, Jahanshahi M, Nikmahzar E, Jameie SB. Apelin-13 protects against memory impairment and neuronal loss, Induced by Scopolamine in male rats. Metab Brain Dis 2022; 37:701-709. [PMID: 34982353 DOI: 10.1007/s11011-021-00882-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
The present study aimed to evaluate the effects of Apelin-13 on scopolamine-induced memory impairment in rats. Forty male rats were divided into five groups of eight. The control group received no intervention; the scopolamine group underwent stereotaxic surgery and received 3 mg/kg intraperitoneal scopolamine. The treatment groups additionally received 1.25, 2.5 and 5 µg apelin-13 in right lateral ventricles for 7 days. All rats (except the control group) were tested for the passive avoidance reaction, 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with cresyl violet; synaptogenesis biochemical markers were determined by immunoblotting. Apelin-13 alleviated scopolamine-induced passive avoidance memory impairment and neuronal loss in the rats' hippocampus (P<0.001). The reduction observed in mean concentrations of hippocampal synaptic proteins (including neurexin1, neuroligin, and postsynaptic density protein 95) in scopolamine-treated animals was attenuated by apelin-13 treatment. The results demonstrated that apelin-13 can protect against passive avoidance memory deficiency, and neuronal loss, induced by scopolamine in male rats. Further experimental and clinical studies are required to confirm its therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Gazmeh
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Azhir
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
11
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
12
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
13
|
Ferrari M, Stagi S. Oxidative Stress in Down and Williams-Beuren Syndromes: An Overview. Molecules 2021; 26:molecules26113139. [PMID: 34073948 PMCID: PMC8197362 DOI: 10.3390/molecules26113139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.
Collapse
|
14
|
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules 2021; 11:biom11020266. [PMID: 33670211 PMCID: PMC7916967 DOI: 10.3390/biom11020266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer’s disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.
Collapse
|
15
|
The BACH1/Nrf2 Axis in Brain in Down Syndrome and Transition to Alzheimer Disease-Like Neuropathology and Dementia. Antioxidants (Basel) 2020; 9:antiox9090779. [PMID: 32839417 PMCID: PMC7554729 DOI: 10.3390/antiox9090779] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability that is associated with an increased risk to develop early-onset Alzheimer-like dementia (AD). The brain neuropathological features include alteration of redox homeostasis, mitochondrial deficits, inflammation, accumulation of both amyloid beta-peptide oligomers and senile plaques, as well as aggregated hyperphosphorylated tau protein-containing neurofibrillary tangles, among others. It is worth mentioning that some of the triplicated genes encoded are likely to cause increased oxidative stress (OS) conditions that are also associated with reduced cellular responses. Published studies from our laboratories propose that increased oxidative damage occurs early in life in DS population and contributes to age-dependent neurodegeneration. This is the result of damaged, oxidized proteins that belong to degradative systems, antioxidant defense system, neuronal trafficking. and energy metabolism. This review focuses on a key element that regulates redox homeostasis, the transcription factor Nrf2, which is negatively regulated by BACH1, encoded on chromosome 21. The role of the Nrf2/BACH1 axis in DS is under investigation, and the effects of triplicated BACH1 on the transcriptional regulation of Nrf2 are still unknown. In this review, we discuss the physiological relevance of BACH1/Nrf2 signaling in the brain and how the dysfunction of this system affects the redox homeostasis in DS neurons and how this axis may contribute to the transition of DS into DS with AD neuropathology and dementia. Further, some of the evidence collected in AD regarding the potential contribution of BACH1 to neurodegeneration in DS are also discussed.
Collapse
|
16
|
In-vivo anterior segment OCT imaging provides unique insight into cerulean blue-dot opacities and cataracts in Down syndrome. Sci Rep 2020; 10:10031. [PMID: 32572106 PMCID: PMC7308272 DOI: 10.1038/s41598-020-66642-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS) is frequently associated with cataract, but there remains scant information about DS cataract morphology. Supra-nuclear cataracts in DS have been proposed as indicative of beta-amyloid (Aβ) aggregation and thus potential biomarkers for Alzheimer’s (AD). This study employed anterior segment OCT (AS-OCT) and slit-lamp (SL) photography to image the crystalline lens in DS, compared with adult controls. Lens images were obtained post-dilation. Using MATLAB, AS-OCT images were analysed and lens opacities calculated as pixel intensity and area ratios. SL images were classified using LOCS III. Subjects were n = 28 DS (mean ± SD 24.1 ± 14.3years), and n = 36 controls (54.0 ± 3.4years). For the DS group, AS-OCT imaging revealed the frequent presence of small dot opacities (27 eyes, 50%) in the cortex and nucleus of the lens, covering an area ranging from 0.2–14%. There was no relation with age or visual acuity and these dot opacities (p > 0.5) and they were not present in any control lenses. However, their location and morphology does not coincide with previous reports linking these opacities with Aβ accumulation and AD. Four participants (14%) in the DS group had clinically significant age-related cataracts, but there was no evidence of early onset of age-related cataracts in DS.
Collapse
|
17
|
Gomez W, Morales R, Maracaja-Coutinho V, Parra V, Nassif M. Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging (Albany NY) 2020; 12:1011-1033. [PMID: 31918411 PMCID: PMC6977673 DOI: 10.18632/aging.102677] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we highlight some recent data regarding the origin of the shared features between DS and AD and explore the mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into the search for new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism, and Cancer Studies (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
18
|
Petersen ME, O’Bryant S. Blood-based biomarkers for Down syndrome and Alzheimer's disease: A systematic review. Dev Neurobiol 2019; 79:699-710. [PMID: 31389185 PMCID: PMC8284928 DOI: 10.1002/dneu.22714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Down syndrome (DS) occurs due to triplication of chromosome 21. Individuals with DS face an elevated risk for development of Alzheimer's disease (AD) due to increased amyloid beta (Aβ) resulting from the over-expression of the amyloid precursor protein found on chromosome 21. Diagnosis of AD among individuals with DS poses particular challenges resulting in an increased focus on alternative diagnostic methods such as blood-based biomarkers. The aim of this review was to evaluate the current state of the literature of blood-based biomarkers found in individuals with DS and particularly among those also diagnosed with AD or in prodromal stages (mild cognitive impairment [MCI]). A systematic review was conducted utilizing a comprehensive search strategy. Twenty-four references were identified, of those, 22 fulfilled inclusion criteria were selected for further analysis with restriction to only plasma-based biomarkers. Studies found Aβ to be consistently higher among individuals with DS; however, the link between Aβ peptides (Aβ1-42 and Aβ1-40) and AD among DS was inconsistent. Inflammatory-based proteins were more reliably found to be elevated leading to preliminary work focused on an algorithmic approach with predominantly inflammatory-based proteins to detect AD and MCI as well as predict risk of incidence among DS. Separate work has also shown remarkable diagnostic accuracy with the use of a single protein (NfL) as compared to combined proteomic profiles. This review serves to outline the current state of the literature and highlights the potential plasma-based biomarkers for use in detecting AD and MCI among this at-risk population.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, USA,Address correspondence to: Sid E. O’Bryant, Ph.D., University of North Texas Health Science Center, Institute for Translational Research3500 Camp Bowie Blvd, Fort Worth, TX 76107. Phone: (817) 735-2963; Fax: (817) 735-0611;
| |
Collapse
|
19
|
Day SM, Yang W, Wang X, Stern JE, Zhou X, Macauley SL, Ma T. Glucagon-Like Peptide-1 Cleavage Product Improves Cognitive Function in a Mouse Model of Down Syndrome. eNeuro 2019; 6:ENEURO.0031-19.2019. [PMID: 31040160 PMCID: PMC6520642 DOI: 10.1523/eneuro.0031-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Currently there is no effective therapy available for cognitive impairments in Down syndrome (DS), one of the most prevalent forms of intellectual disability in humans associated with the chromosomes 21 trisomy. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that maintains glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36) lacks insulinotropic effects and has a low binding affinity for GLP-1 receptors; thus, GLP-1 (9-36) has historically been identified as an inactive metabolite. Conversely, recent work has demonstrated interesting physiological properties of GLP-1 (9-36) such as cardioprotection and neuroprotection. We have previously shown that GLP-1 (9-36) administration enhances neuronal plasticity in young WT mice and ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Here, we report that systemic administration of GLP-1 (9-36) in Ts65Dn DS model mice of either sex resulted in decreased mitochondrial oxidative stress in hippocampus and improved dendritic spine morphology, increase of mature spines and reduction of immature spines. Importantly, these molecular alterations translated into functional changes in that long-term potentiation failure and cognitive impairments in TsDn65 DS model mice were rescued with GLP-1 (9-36) treatment. We also show that chronic GLP-1 (9-36) treatment did not alter glucose tolerance in either WT or DS model mice. Our findings suggest that GLP-1 (9-36) treatment may have therapeutic potential for DS and other neurodegenerative diseases associated with increased neuronal oxidative stress.
Collapse
Affiliation(s)
- Stephen M Day
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Wenzhong Yang
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Xin Wang
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Jennifer E Stern
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Xueyan Zhou
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Shannon L Macauley
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Tao Ma
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
20
|
Zamponi E, Helguera PR. The Shape of Mitochondrial Dysfunction in Down Syndrome. Dev Neurobiol 2019; 79:613-621. [PMID: 30830726 DOI: 10.1002/dneu.22673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 02/19/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress (OS) and mitochondrial dysfunction (MD) have been extensively studied and defined as therapeutic targets in Down syndrome (DS). Though originally associated to individual genes located in supernumerary chromosome 21, OS and MD metabolic compromises appear to be linked to whole genome functionally defined transcriptional fingerprints that further exacerbate the contribution of critical genes in DS-AD pathology. As the main ROS generator, mitochondrial complex double-membrane organization, tightly regulated fission/fusion dynamics, and involvement in critical pathways, makes it particularly vulnerable to functional alterations. Consequently, mitochondrial network morphology depends on its metabolic state and has been used as an indicator of cellular homeostasis. Initial qualitative categorization, suitable for sparse arranged fragments analysis, were proven to be ineffective to measure network connectivity and replaced by innovative tools that involve the transformation of raw images to linear skeletons. These manipulations allowed the development of a new generation of structural parameters, such as mean degree value (MDV). Alterations in DS mitochondrial networks include increased frequency of aberrant morphologies, shorter mitochondrial fragments, and significantly lower mitochondrial network connectivity. Similar structural and functional mitochondrial defects are common to other neurodegenerative diseases, such as Parkinson disease and Prion disease, and to a progeroid syndrome like HGPS. Therapeutic interventions aimed to either increase mitochondrial biogenesis or diminish OS using mitochondrial-targeted antioxidants, successfully restored mitochondrial activity and structural organization, confirming the strong correlation between network form and function.
Collapse
Affiliation(s)
- E Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - P R Helguera
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
21
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
22
|
Superoxide dismutase activity and risk of cognitive decline in older adults: Findings from the Chinese Longitudinal Healthy Longevity Survey. Exp Gerontol 2019; 118:72-77. [PMID: 30654151 DOI: 10.1016/j.exger.2019.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND The association between superoxide dismutase (SOD) activity and cognitive decline in older adults remains controversial. OBJECTIVES This study was designed to examine the association between plasma superoxide dismutase (SOD) activity and cognitive decline in older population. METHOD We analyzed the follow-up data from 2012 to 2014 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a community-based longitudinal survey in Chinese longevity areas. A total of 1004 Chinese adults aged 60 years and older were included in this study. Plasma SOD activity was assessed. Cognitive function was evaluated by Mini-Mental State Examination (MMSE) in Chinese version. Modified Poisson regression was performed to investigate the association between plasma SOD activities with cognitive decline. Restricted cubic spline was performed to determine the dose-response relationship. RESULTS Participants in the highest quartile of SOD activity had an increased risk of cognitive decline compared with those in the lowest quartile (relative risk [RR] = 1.32, 95% confidence interval [CI]: 1.00-1.74, P = 0.051).Using cut-off points determined by Chi-square automatic interaction detector analysis (CHAID), the multivariable relative risks (RRs; 95% CI) for the lowest category, second highest, and the highest versus the third highest category of SOD activity were 0.56 (0.34-0.92), 1.26 (1.03-1.54), and 0.96 (0.70-1.31), respectively. CONCLUSIONS Higher SOD activity was associated with elevated risk of cognitive decline among Chinese older adults.
Collapse
|
23
|
Janas T, Sapoń K, Stowell MHB, Janas T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies. Int J Mol Sci 2019; 20:ijms20020299. [PMID: 30642129 PMCID: PMC6359565 DOI: 10.3390/ijms20020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isolated and its binding to Aβ42-containing membranes was demonstrated using the gel filtration method. Since membranes can act as a catalytic surface for Aβ42 aggregation, these RNA aptamers may inhibit the formation of toxic amyloid aggregates that can permeabilize cellular membranes or disrupt membrane receptors. Strategies are proposed for using functional exosomes, loaded with RNA aptamers specific to membrane Aβ42, to reduce the oxidative stress in Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Karolina Sapoń
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
- Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Tadeusz Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
24
|
Ishihara K, Kawashita E, Akiba S. [Copper accumulation in the brain of Down syndrome model mice and its pathophysiological significance]. Nihon Yakurigaku Zasshi 2019; 154:335-339. [PMID: 31787686 DOI: 10.1254/fpj.154.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Down syndrome caused by triplication of human chromosome 21 (HSA21) is the most frequent aneuploidy, resulting in mental retardation, intellectual disability and accelerated aging. Individuals with DS are at an increased risk of developing Alzheimer's disease (AD)-like dementia, with up to 75% of DS people in their 60s developing dementia. Oxidative stress is widely accepted as a mechanism underlying a number of DS symptoms, such as accelerated aging and cognitive decline. Superoxide disumutase 1 (Sod1) and amiloyd precursor protein (App) genes are suggested as the candidate genes in HSA21 underlying the enhanced oxidative stress in individuals with DS. However, we previously demonstrated that the Ts1Cje mouse model, which has a normal copy number of both candidate genes, also shows enhanced oxidative stress, suggesting that triplicated genes other than Sod1 and App likely enhance oxidative stress in the brain of DS people. To identify the molecules with enhanced oxidative stress in Ts1Cje mice, we performed several -omics analyses. Recently, we showed that copper was accumulated in the brain of adult Ts1Cje mice in an analysis using inductively coupled plasma mass spectrometry (ICP-MS), and a low-copper diet was able to improve the elevated levels of copper. The low-copper diet also resolved some anomalies, such as the enhanced oxidative stress, accumulation of phosphorylated tau and low anxiety. These findings suggest that the accumulation of copper in the DS brain may be a therapeutic target for ameliorating a number of abnormal phenotypes in individuals with DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
25
|
Laforgia N, Di Mauro A, Favia Guarnieri G, Varvara D, De Cosmo L, Panza R, Capozza M, Baldassarre ME, Resta N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7404082. [PMID: 30693064 PMCID: PMC6332879 DOI: 10.1155/2018/7404082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Congenital anomalies are significant causes of mortality and morbidity in infancy and childhood. Embryogenesis requires specific signaling pathways to regulate cell proliferation and differentiation. These signaling pathways are sensitive to endogenous and exogenous agents able to produce several structural changes of the developing fetus. Oxidative stress, due to an imbalance between the production of reactive oxygen species and antioxidant defenses, disrupts signaling pathways with a causative role in birth defects. This review provides a basis for understanding the role of oxidative stress in the pathomechanism of congenital malformations, discussing the mechanisms related to some congenital malformations. New insights in the knowledge of pathomechanism of oxidative stress-related congenital malformations, according to experimental and human studies, represent the basis of possible clinical applications in screening, prevention, and therapies.
Collapse
Affiliation(s)
- Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Giovanna Favia Guarnieri
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Dora Varvara
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Lucrezia De Cosmo
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
26
|
The effect of long-term treatment with coenzyme Q10 on nucleic acid modifications by oxidation in children with Down syndrome. Neurobiol Aging 2018; 67:159-161. [PMID: 29665577 DOI: 10.1016/j.neurobiolaging.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
Elevated levels of oxidative nucleic acid modifications have been proposed to be associated with some of the clinical characteristics of Down syndrome. Oral intake of coenzyme Q10 improves oxidative status and shows a tendency toward protective effect on DNA oxidation in certain age groups of children with Down syndrome. Here, we demonstrate that long-term (i.e., 4 years) treatment with coenzyme Q10 (ubiquinone) at the dosage of 4 mg/kg/d does not affect whole body DNA and RNA oxidation.
Collapse
|
27
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
28
|
Mao X, Gu C, Chen D, Yu B, He J. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 2017; 8:81649-81661. [PMID: 29113421 PMCID: PMC5655316 DOI: 10.18632/oncotarget.20887] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/26/2017] [Indexed: 12/24/2022] Open
Abstract
Reactive oxide species are the middle products of normal metabolism, and play a crucial role in cell signaling transduction. On the contrary, accumulation of excess reactive oxide species results in oxidative stress that often brings multifarious impairment to cells, including decrease of ATP level in cells, elevation of cytosolic Ca2+, DNA damage, dysfunction of biological function in lipid bilayer and so on. These effects will finally lead to all kinds of diseases. Tea polyphenols are widely considered as a kind of excellent antioxidant agents. It can be antioxidants by directly scavenging reactive oxide species or chelating transition metals, and indirectly upregulating the activity of antioxidant enzymes. In addition, tea polyphenols have also been observed a potent pro-oxidant capacity, which directly leads to the generation of reactive oxide species, and indirectly induces apoptosis and death of cancer cells. The underlying characters of its pro-oxidant activity in some diseases is not well understood. The present review we will discuss the dual character of tea polyphenols, both antioxidant and pro-oxidant properties, in some human diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| |
Collapse
|
29
|
Barone E, Head E, Butterfield DA, Perluigi M. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology. Free Radic Biol Med 2017; 111:262-269. [PMID: 27838436 PMCID: PMC5639937 DOI: 10.1016/j.freeradbiomed.2016.10.508] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| |
Collapse
|
30
|
Abstract
Down syndrome (Trisomy 21; DS) is a unique disease known to be associated with early-onset Alzheimer's disease (AD). The initial presentation of AD in DS is usually difficult to recognize, owing to the underlying intellectual disabilities. Using biomarkers as a prediction tool for detecting AD in at-risk people with DS may benefit patient care. The objective of this review is to discuss the utility of biomarkers in DS on the basis of the pathophysiology of the disease and to provide an update on recent studies in this field. Only through the comprehensive assessment of clinical symptoms, imaging studies, and biomarker analyses can people with DS who are at risk for AD be diagnosed early. Studies for biomarkers of AD in DS have focused on the common pathophysiology of AD in people with DS and in the general population. The most extensively studied biomarkers are amyloid and tau. Owing to the nature of amyloid precursor protein overproduction in DS, the baseline β-amyloid (Aβ) plasma levels are higher than those in controls. Hence, the changes in Aβ are considered to be a predictive marker for AD in DS. In addition, other markers related to telomere length, neuroinflammation, and methylation have been investigated for their correlation with AD progression. Future studies including different ethnic groups may be helpful to collect sufficient data to monitor drug safety and efficacy, stratify patients at risk for AD, and quantify the benefit of treatment.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
31
|
Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice. Redox Biol 2017; 13:421-425. [PMID: 28697486 PMCID: PMC5828767 DOI: 10.1016/j.redox.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1); a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p < 0.05) that was associated with an approximate 3-fold increase in SOD1 (p < 0.05). DCF emissions were not affected by stimulating contraction of Ts65Dn or wild-type myofibers (p > 0.05). Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05). In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress. Decreased basal oxidant levels corresponded with greater SOD1 in Ts65Dn myofibers. Myofiber oxidant levels were similar between Ts65Dn and controls after contraction. Myonuclear domain was smaller in Ts65Dn myofibers.
Collapse
|
32
|
Tramutola A, Di Domenico F, Barone E, Arena A, Giorgi A, di Francesco L, Schininà ME, Coccia R, Head E, Butterfield DA, Perluigi M. Polyubiquitinylation Profile in Down Syndrome Brain Before and After the Development of Alzheimer Neuropathology. Antioxid Redox Signal 2017; 26:280-298. [PMID: 27627691 PMCID: PMC5327052 DOI: 10.1089/ars.2016.6686] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Among the putative mechanisms proposed to be common factors in Down syndrome (DS) and Alzheimer's disease (AD) neuropathology, deficits in protein quality control (PQC) have emerged as a unifying mechanism of neurodegeneration. Considering that disturbance of protein degradation systems is present in DS and that oxidized/misfolded proteins require polyubiquitinylation for degradation via the ubiquitin proteasome system, this study investigated if dysregulation of protein polyubiquitinylation is associated with AD neurodegeneration in DS. RESULTS Postmortem brains from DS cases before and after development of AD neuropathology and age-matched controls were analyzed. By selectively isolating polyubiquitinated proteins, we were able to identify specific proteins with an altered pattern of polyubiquitinylation as a function of age. Interestingly, we found that oxidation is coupled with polyubiquitinylation for most proteins mainly involved in PQC and energy metabolism. INNOVATION This is the first study showing alteration of the polyubiquitinylation profile as a function of aging in DS brain compared with healthy controls. Understanding the onset of the altered ubiquitome profile in DS brain may contribute to identification of key molecular regulators of age-associated cognitive decline. CONCLUSIONS Disturbance of the polyubiquitinylation machinery may be a key feature of aging and neurodegeneration. In DS, age-associated deficits of the proteolytic system may further exacerbate the accumulation of oxidized/misfolded/polyubiquitinated proteins, which is not efficiently degraded and may become harmful to neurons and contribute to AD neuropathology. Antioxid. Redox Signal. 26, 280-298.
Collapse
Affiliation(s)
- Antonella Tramutola
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Andrea Arena
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Alessandra Giorgi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Laura di Francesco
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | | | - Raffaella Coccia
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| | - Elizabeth Head
- 2 Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,3 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - D Allan Butterfield
- 2 Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,4 Department of Chemistry, University of Kentucky , Lexington, Kentucky
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Italy, Rome
| |
Collapse
|
33
|
Lee NC, Yang SY, Chieh JJ, Huang PT, Chang LM, Chiu YN, Huang AC, Chien YH, Hwu WL, Chiu MJ. Blood Beta-Amyloid and Tau in Down Syndrome: A Comparison with Alzheimer's Disease. Front Aging Neurosci 2017; 8:316. [PMID: 28144219 PMCID: PMC5239773 DOI: 10.3389/fnagi.2016.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/08/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Changes in β-amyloids (Aβ) and tau proteins have been noted in patients with Alzheimer's disease (AD) and patients with both Down syndrome (DS) and AD. However, reports of changes in the early stage of regression, such as behavioral and psychological symptoms of dementia (BPSD), in DS are sparse. Methods: Seventy-eight controls, 62 patients with AD, 35 with DS and 16 with DS with degeneration (DS_D), including 9 with BPSD and 7 with dementia, were enrolled. The levels of β-amyloids 40 and 42 (Aβ-40, Aβ-42) and tau protein in the blood were analyzed using immunomagnetic reduction (IMR). The Adaptive Behavior Dementia Questionnaire (ABDQ) was used to evaluate the clinical status of the degeneration. Results: The Aβ-40 and tau levels were higher and the Aβ-42 level and Aβ-42/Aβ-40 ratio were lower in DS than in the controls (all p < 0.001). Decreased Aβ-40 and increased Aβ-42 levels and Aβ-42/40 ratios were observed in DS_D compared with DS without degeneration (all p < 0.001). The ABDQ score was negatively correlated with the Aβ-40 level (ρ = -0.556) and the tau protein level (ρ = -0.410) and positively associated with the Aβ-42 level (ρ = 0.621) and the Aβ-42/40 ratio (ρ = 0.544; all p < 0.05). Conclusions: The Aβ-40 and Aβ-42 levels and the Aβ-42/Aβ-40 ratio are considered possible biomarkers for the early detection of degeneration in DS. The elevated Aβ-40 and tau levels in DS may indicate early neurodegeneration. The increased Aβ-42 in DS_D may reflect the neurotoxicity of Aβ-42. The paradox of the tau decreases in DS_D could be explained by a burnout phenomenon during long-term neurodegeneration. The different patterns of the plasma beta amyloids and tau protein may imply a different pathogenesis between DS with degeneration and AD in the general population, in spite of their common key pathological features.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | | | - Jen-Jie Chieh
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University Taipei, Taiwan
| | - Po-Tsang Huang
- Department of Clinical Psychology Center, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Lih-Maan Chang
- Department of Clinical Psychology Center, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Yen-Nan Chiu
- Department of Psychiatry, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Ai-Chiu Huang
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Department of Psychology, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
34
|
Manna C, Officioso A, Trojsi F, Tedeschi G, Leoncini S, Signorini C, Ciccoli L, De Felice C. Increased non-protein bound iron in Down syndrome: contribution to lipid peroxidation and cognitive decline. Free Radic Res 2016; 50:1422-1431. [DOI: 10.1080/10715762.2016.1253833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy
| | - Arbace Officioso
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy
| | - Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico “S.M. alle Scotte”, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Policlinico “S. M. alle Scotte”, Siena, Italy
| |
Collapse
|
35
|
|
36
|
Martel-Billard C, Cordier C, Tomasetto C, Jégu J, Mathelin C. Cancer du sein et trisomie 21 : une anomalie génétique qui protège contre le cancer du sein ? ACTA ACUST UNITED AC 2016; 44:211-7. [DOI: 10.1016/j.gyobfe.2016.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 01/22/2023]
|
37
|
Gene Expression Studies on Human Trisomy 21 iPSCs and Neurons: Towards Mechanisms Underlying Down's Syndrome and Early Alzheimer's Disease-Like Pathologies. Methods Mol Biol 2016; 1303:247-65. [PMID: 26235072 DOI: 10.1007/978-1-4939-2627-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cause of Alzheimer disease (AD) is not well understood and there is no cure. Our ability to understand the early events in the course of AD is severely limited by the difficulty of identifying individuals who are in the early, preclinical stage of this disease. Most individuals with Down's syndrome (DS, trisomy 21) will predictably develop AD and that they will do so at a young age makes them an ideal population in which to study the early stages of AD. Several recent studies have exploited induced pluripotent stem cells (iPSCs) generated from individuals with familial AD, spontaneous AD and DS to attempt to identify early events and discover novel biomarkers of disease progression in AD. Here, we summarize the progress and limitations of these iPSC studies with a focus on iPSC-derived neurons. Further, we outline the methodology and results for comparing gene expression between AD and DS iPSC-derived neurons. We highlight differences and commonalities in these data that may implicate underlying genes and pathways that are causative for AD.
Collapse
|
38
|
Brault V, Duchon A, Romestaing C, Sahun I, Pothion S, Karout M, Borel C, Dembele D, Bizot JC, Messaddeq N, Sharp AJ, Roussel D, Antonarakis SE, Dierssen M, Hérault Y. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet 2015; 11:e1005062. [PMID: 25803843 PMCID: PMC4372517 DOI: 10.1371/journal.pgen.1005062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Ignasi Sahun
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Stéphanie Pothion
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
| | - Mona Karout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Damien Roussel
- LEHNA, CNRS UMR502, Université de Lyon, Villeurbanne, France
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch, France
| |
Collapse
|
39
|
Affiliation(s)
- Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| | - Silvana Andreescu
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| |
Collapse
|
40
|
Yao Y, Jiang Y, Han M, Xia Y, He Y, Wang Y, Luo Y, Zhang B. Screening and identification of potential predictive biomarkers for Down's syndrome from second trimester maternal serum. Expert Rev Proteomics 2014; 12:97-107. [PMID: 25434962 DOI: 10.1586/14789450.2015.979796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In this study, we aimed to search for noninvasive predictive biomarkers for prenatal diagnosis of Down's syndrome (DS). METHODS Maternal serum samples from five DS-affected pregnant women and five DS-unaffected women were analyzed by 2D gel electrophoresis and MALDI-TOF mass spectrometry to screen for potential predictive biomarkers of DS. Then, differential levels of dGTPase, β2-glycoprotein I (β2-GPI), complement factor H-related protein 1 precursor (CFHR1) and kininogen 1 isoform 2 were further verified by western blotting tests in another independent group. RESULTS Statistical analysis results revealed 29 protein spots whose levels differed significantly in the DS-affected pregnancies group. Of these, the eight most differentially expressed in DP were identified successfully. Among these, levels of dGTPase, CFHR1 and kininogen 1 were elevated significantly, whereas β2-GPI was reduced in DP. DISCUSSION These preliminarily verified proteins might serve as potential predictive biomarkers for DS-affected pregnancies.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cenini G, Fiorini A, Sultana R, Perluigi M, Cai J, Klein JB, Head E, Butterfield DA. An investigation of the molecular mechanisms engaged before and after the development of Alzheimer disease neuropathology in Down syndrome: a proteomics approach. Free Radic Biol Med 2014; 76:89-95. [PMID: 25151119 PMCID: PMC4252833 DOI: 10.1016/j.freeradbiomed.2014.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 02/08/2023]
Abstract
Down syndrome (DS) is one of the most common causes of intellectual disability, owing to trisomy of all or part of chromosome 21. DS is also associated with the development of Alzheimer disease (AD) neuropathology after the age of 40 years. To better clarify the cellular and metabolic pathways that could contribute to the differences in DS brain, in particular those involved in the onset of neurodegeneration, we analyzed the frontal cortex of DS subjects with or without significant AD pathology in comparison with age-matched controls, using a proteomics approach. Proteomics represents an advantageous tool to investigate the molecular mechanisms underlying the disease. From these analyses, we investigated the effects that age, DS, and AD neuropathology could have on protein expression levels. Our results show overlapping and independent molecular pathways (including energy metabolism, oxidative damage, protein synthesis, and autophagy) contributing to DS, to aging, and to the presence of AD pathology in DS. Investigation of pathomechanisms involved in DS with AD may provide putative targets for therapeutic approaches to slow the development of AD.
Collapse
Affiliation(s)
- Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, and
| | - Ada Fiorini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, and; Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, and
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Jian Cai
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Elizabeth Head
- Department of Molecular and Biomedical Pharmacology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, and.
| |
Collapse
|
42
|
Ringman JM, Goate A, Masters CL, Cairns NJ, Danek A, Graff-Radford N, Ghetti B, Morris JC. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr Neurol Neurosci Rep 2014; 14:499. [PMID: 25217249 PMCID: PMC4162987 DOI: 10.1007/s11910-014-0499-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer's disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
Collapse
Affiliation(s)
- John M Ringman
- Mary S. Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine at University of California, Los Angeles, 10911 Weyburn Ave., #200, Los Angeles, 90095-7226, CA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:202-17. [DOI: 10.1016/j.neubiorev.2014.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
44
|
Perluigi M, Di Domenico F, Buttterfield DA. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics. Proteomics Clin Appl 2014; 8:73-85. [PMID: 24259517 DOI: 10.1002/prca.201300066] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 01/17/2023]
Abstract
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.
Collapse
|
45
|
Di Domenico F, Pupo G, Tramutola A, Giorgi A, Schininà ME, Coccia R, Head E, Butterfield DA, Perluigi M. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic Biol Med 2014; 71:270-280. [PMID: 24675226 PMCID: PMC4686229 DOI: 10.1016/j.freeradbiomed.2014.03.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Raffaella Coccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA; Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
46
|
Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress. PLoS Genet 2014; 10:e1004100. [PMID: 24453991 PMCID: PMC3894169 DOI: 10.1371/journal.pgen.1004100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
The Nrf family of transcription factors mediates adaptive responses to stress and longevity, but the identities of the crucial Nrf targets, and the tissues in which they function in multicellular organisms to promote survival, are not known. Here, we use whole transcriptome RNA sequencing to identify 810 genes whose expression is controlled by the SKN-1/Nrf2 negative regulator WDR-23 in the nervous system of Caenorhabditis elegans. Among the genes identified is the synaptic cell adhesion molecule nlg-1/neuroligin. We find that the synaptic abundance of NLG-1 protein increases following pharmacological treatments that generate oxidative stress or by the genetic activation of skn-1. Increasing nlg-1 dosage correlates with increased survival in response to oxidative stress, whereas genetic inactivation of nlg-1 reduces survival and impairs skn-1-mediated stress resistance. We identify a canonical SKN-1 binding site in the nlg-1 promoter that binds to SKN-1 in vitro and is necessary for SKN-1 and toxin-mediated increases in nlg-1 expression in vivo. Together, our results suggest that SKN-1 activation in the nervous system can confer protection to organisms in response to stress by directly regulating nlg-1/neuroligin expression.
Collapse
|
47
|
Role of copper and cholesterol association in the neurodegenerative process. Int J Alzheimers Dis 2013; 2013:414817. [PMID: 24288650 PMCID: PMC3830777 DOI: 10.1155/2013/414817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023] Open
Abstract
Age is one of the main factors involved in the development of neurological illnesses, in particular, Alzheimer, and it is widely held that the rapid aging of the world population is accompanied by a rise in the prevalence and incidence of Alzheimer disease. However, evidence from recent decades indicates that Cu and Cho overload are emerging causative factors in neurodegeneration, a hypothesis that has been partially investigated in experimental models. The link between these two variables and the onset of Alzheimer disease has opened up interesting new possibilities requiring more in-depth analysis. The aim of the present study was therefore to investigate the effect of the association of Cu + Cho (CuCho) as a possible synergistic factor in the development of an Alzheimer-like pathology in Wistar rats. We measured total- and nonceruloplasmin-bound Cu and Cho (free and sterified) contents in plasma and brain zones (cortex and hippocampus), markers of oxidative stress damage, inflammation, and programmed cell death (caspase-3 and calpain isoforms). The ratio beta-amyloid (1-42)/(1-40) was determined in plasma and brain as neurodegenerative biomarker. An evaluation of visuospatial memory (Barnes maze test) was also performed. The results demonstrate the establishment of a prooxidative and proinflammatory environment after CuCho treatment, hallmarked by increased TBARS, protein carbonyls, and nitrite plus nitrate levels in plasma and brain zones (cortex and hippocampus) with a consequent increase in the activity of calpains and no significant changes in caspase-3. A simultaneous increase in the plasma Aβ1-42/Aβ1-40 ratio was found. Furthermore, a slight but noticeable change in visuospatial memory was observed in rats treated with CuCho. We conclude that our model could reflect an initial stage of neurodegeneration in which Cu and Cho interact with one another to exacerbate neurological damage.
Collapse
|
48
|
Jeong HR, Jo YN, Jeong JH, Kim HJ, Kim MJ, Heo HJ. Blueberry (Vaccinium virgatum) leaf extracts protect against Aβ-induced cytotoxicity and cognitive impairment. J Med Food 2013; 16:968-76. [PMID: 24117094 DOI: 10.1089/jmf.2013.2881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ethylacetate (EtOAc) fraction of blueberry leaf extract was investigated to examine the in vivo antiamnesic effects against amyloid β protein (Aβ)-induced learning and memory deficit. The fraction showed the highest antioxidant activities, and the generation of intracellular reactive oxygen species was significantly decreased. Cell viability assays revealed the in vitro cytoprotective effects of the fraction, and the cytoplasmic lactate dehydrogenase release into the medium was dose-dependently inhibited. In addition, a chlorogenic acid was identified as a predominant phenolic compound by high-performance liquid chromatography analysis. Antiamnesic effects were evaluated by using in vivo the Y-maze and passive avoidance tests, and preadministration of the fraction attenuated Aβ-induced memory impairment in both in vivo experiments. Acetylcholinesterase prepared from mice brain was inhibited by the fraction, and malondialdehyde generation in the brain homogenate was also decreased. These findings suggest that the EtOAc fraction of blueberry leaf extract could possess a wide range of physiological effects against neurodegenerative diseases.
Collapse
Affiliation(s)
- Hee Rok Jeong
- 1 Department of Analytical Research, Pacificpharma Corporation , Anseong, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Garlet TR, Parisotto EB, de Medeiros GDS, Pereira LCR, Moreira EADM, Dalmarco EM, Dalmarco JB, Wilhelm Filho D. Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci 2013; 93:558-63. [PMID: 24004546 DOI: 10.1016/j.lfs.2013.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022]
Abstract
AIMS The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome. MAIN METHODS The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n=20) compared to healthy controls (n=18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically. KEY FINDINGS Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls. SIGNIFICANCE The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.
Collapse
Affiliation(s)
- Thais Regina Garlet
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Granese B, Scala I, Spatuzza C, Valentino A, Coletta M, Vacca RA, De Luca P, Andria G. Validation of microarray data in human lymphoblasts shows a role of the ubiquitin-proteasome system and NF-kB in the pathogenesis of Down syndrome. BMC Med Genomics 2013; 6:24. [PMID: 23830204 PMCID: PMC3717290 DOI: 10.1186/1755-8794-6-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is a complex disorder caused by the trisomy of either the entire, or a critical region of chromosome 21 (21q22.1-22.3). Despite representing the most common cause of mental retardation, the molecular bases of the syndrome are still largely unknown. METHODS To better understand the pathogenesis of DS, we analyzed the genome-wide transcription profiles of lymphoblastoid cell lines (LCLs) from six DS and six euploid individuals and investigated differential gene expression and pathway deregulation associated with trisomy 21. Connectivity map and PASS-assisted exploration were used to identify compounds whose molecular signatures counteracted those of DS lymphoblasts and to predict their therapeutic potential. An experimental validation in DS LCLs and fetal fibroblasts was performed for the most deregulated GO categories, i.e. the ubiquitin mediated proteolysis and the NF-kB cascade. RESULTS We show, for the first time, that the level of protein ubiquitination is reduced in human DS cell lines and that proteasome activity is increased in both basal conditions and oxidative microenvironment. We also provide the first evidence that NF-kB transcription levels, a paradigm of gene expression control by ubiquitin-mediated degradation, is impaired in DS due to reduced IkB-alfa ubiquitination, increased NF-kB inhibitor (IkB-alfa) and reduced p65 nuclear fraction. Finally, the DSCR1/DYRK1A/NFAT genes were analysed. In human DS LCLs, we confirmed the presence of increased protein levels of DSCR1 and DYRK1A, and showed that the levels of the transcription factor NFATc2 were decreased in DS along with a reduction of its nuclear translocation upon induction of calcium fluxes. CONCLUSIONS The present work offers new perspectives to better understand the pathogenesis of DS and suggests a rationale for innovative approaches to treat some pathological conditions associated to DS.
Collapse
Affiliation(s)
- Barbara Granese
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Iris Scala
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Carmen Spatuzza
- Department of Biotechnological Sciences, Federico II University, Naples 80131, Italy
| | - Anna Valentino
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Marcella Coletta
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari 70126, Italy
| | - Pasquale De Luca
- Stazione Zoologica “A. Dohrn”, c/o BioGeM, Via Camporeale, Ariano Irpino 83031, Italy
| | - Generoso Andria
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| |
Collapse
|