1
|
Lucas M, Chaves F, Teixeira S, Carvalho D, Peressutti C, Bittencourt J, Velasques B, Menéndez-González M, Cagy M, Piedade R, Nardi AE, Machado S, Ribeiro P, Arias-Carrión O. Time perception impairs sensory-motor integration in Parkinson's disease. Int Arch Med 2013; 6:39. [PMID: 24131660 PMCID: PMC3856585 DOI: 10.1186/1755-7682-6-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/12/2013] [Indexed: 11/10/2022] Open
Abstract
It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson' disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called "Scalar Expectancy Theory". Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD.
Collapse
Affiliation(s)
- Marina Lucas
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Fernanda Chaves
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Diana Carvalho
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Caroline Peressutti
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | | | - Mauricio Cagy
- Division of Epidemiology and Biostatistic, Institute of Health Community, Federal Fluminense University (UFF), Rio de Janeiro, Brazil
| | - Roberto Piedade
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
| | - Sergio Machado
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
- Faculty of Medical Sciences, Quiropraxia Program, Central University, Santiago, Chile
- Physical Activity Neuroscience, Physical Activity Postgraduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- School of Physical Education, Bioscience Department (EEFD/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Oscar Arias-Carrión
- Sleep and Movement Disorders Clinic and Transcranial Magnetic Stimulation Unit, Hospital General Dr. Manuel Gea González, México D.F., Mexico
- Sleep and Movement Disorders Clinic and Transcranial Magnetic Stimulation Unit, Hospital General Ajusco Medio, México D.F., Mexico
| |
Collapse
|
2
|
Arroyo-Anlló EM, Beauchamps M, Ingrand P, Neau JP, Gil R. Lexical Priming in Alzheimer's Disease and Aphasia. Eur Neurol 2013; 69:360-5. [DOI: 10.1159/000347223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
Lexical priming was examined in patients with Alzheimer's disease and in aphasic patients. Control participants were divided into young and elderly [cf. Arroyo-Anlló et al.: Eur J Cogn Psychol 2004;16:535-553]. For lexical priming, a word-stem completion task was used. Normal elderly participants had lexical priming scores that were significantly lower than those of young individuals. Analysis of covariance with age and educational level as covariates showed that the control participants, aphasic and Alzheimer patients did not differ significantly on the lexical priming task. Our results suggest that performance in the lexical priming task diminishes with physiological aging, but is not significantly affected by mild or moderate Alzheimer's disease or by fluent or non-fluent aphasia.
Collapse
|
3
|
Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the rush Memory and Aging Project. Curr Alzheimer Res 2012; 9:646-63. [PMID: 22471867 DOI: 10.2174/156720512801322663] [Citation(s) in RCA: 633] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/28/2011] [Accepted: 01/31/2012] [Indexed: 12/29/2022]
Abstract
The Memory and Aging Project is a longitudinal, epidemiologic clinical-pathologic cohort study of common chronic conditions of aging with an emphasis on decline in cognitive and motor function and risk of Alzheimer's disease (AD). In this manuscript, we first summarize the study design and methods. Then, we present data on: (1) the relation of motor function to cognition, disability, and death; (2) the relation of risk factors to cognitive and motor outcomes, disability and death; (3) the relation of neuropathologic indices to cognitive outcomes; (4) the relation of risk factors to neuropathologic indices; and (5) additional study findings. The findings are discussed and contextualized.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina, Suite 1028, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Soldan A, Clarke B, Colleran C, Kuras Y. Priming and stimulus-response learning in perceptual classification tasks. Memory 2012; 20:400-13. [PMID: 22436079 DOI: 10.1080/09658211.2012.669482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Participants often respond more quickly and more accurately to a repeated stimulus compared to a non-repeated one, a phenomenon known as repetition priming. In semantic classification tasks priming appears to be largely attributable to the learning of stimulus-decision and stimulus-response associations, which allow participants to bypass many of the processes engaged during initial stimulus analysis. The current study tested whether stimulus-response learning plays a similarly dominant role in priming that occurs in perceptual classification tasks. Unfamiliar objects were used as stimuli to reduce the influence of semantic processes on priming and the task switched for all test trials to eliminate stimulus-decision learning. The results showed across-task priming as measured by reaction time facilitation and improved accuracy when the response remained the same during the encoding and test phases. When the response switched, similar levels of reaction time facilitation were observed, but priming as measured by accuracy was significantly reduced and no longer significant. These findings indicate that stimulus-response learning contributes to priming in perceptual classification tasks, but does not play a dominant role. Significant stimulus-level learning that is independent of the task and response also occurs and likely indexes facilitated perceptual processing of the objects.
Collapse
Affiliation(s)
- Anja Soldan
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|