1
|
Elsamad G, Mecawi AS, Pauža AG, Gillard B, Paterson A, Duque VJ, Šarenac O, Žigon NJ, Greenwood M, Greenwood MP, Murphy D. Ageing restructures the transcriptome of the hypothalamic supraoptic nucleus and alters the response to dehydration. NPJ AGING 2023; 9:12. [PMID: 37264028 PMCID: PMC10234251 DOI: 10.1038/s41514-023-00108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Ageing is associated with altered neuroendocrine function. In the context of the hypothalamic supraoptic nucleus, which makes the antidiuretic hormone vasopressin, ageing alters acute responses to hyperosmotic cues, rendering the elderly more susceptible to dehydration. Chronically, vasopressin has been associated with numerous diseases of old age, including type 2 diabetes and metabolic syndrome. Bulk RNAseq transcriptome analysis has been used to catalogue the polyadenylated supraoptic nucleus transcriptomes of adult (3 months) and aged (18 months) rats in basal euhydrated and stimulated dehydrated conditions. Gene ontology and Weighted Correlation Network Analysis revealed that ageing is associated with alterations in the expression of extracellular matrix genes. Interestingly, whilst the transcriptomic response to dehydration is overall blunted in aged animals compared to adults, there is a specific enrichment of differentially expressed genes related to neurodegenerative processes in the aged cohort, suggesting that dehydration itself may provoke degenerative consequences in aged rats.
Collapse
Affiliation(s)
- Ghadir Elsamad
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
- Translational Cardio-Respiratory Research Group, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Benjamin Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
- Insilico Consulting Ltd., Wapping Wharf, Bristol, England
| | - Victor J Duque
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Olivera Šarenac
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Safety Pharmacology, Abbvie, North Chicago, Illinois, USA
| | - Nina Japundžić Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England.
| |
Collapse
|
2
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Tantisattamo E, Reddy UG, Duong DK, Ferrey AJ, Ichii H, Dafoe DC, Kalantar-Zadeh K. Hyponatremia: A possible immuno-neuroendocrine interface with COVID-19 in a kidney transplant recipient. Transpl Infect Dis 2020; 22:e13355. [PMID: 32510756 DOI: 10.1111/tid.13355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
There is fast-emerging, cumulative clinical data on coronavirus disease 2019 (COVID-19) in kidney transplant recipients. Although respiratory tract symptoms are often the initial presentation among kidney transplant recipients who contract COVID-19, other clinical features which may indicate underlying SARS-CoV-2-related inflammation, such as gastrointestinal symptoms, are not uncommon. Hyponatremia can develop and may reflect underlying inflammation. Interferon-6 is an important pro-inflammatory cytokine involved in the pathogenesis of severe COVID-19 complications and may play a role in the inappropriately higher secretion of antidiuretic hormone leading to hyponatremia. This pathway is the so-called immuno-neuroendocrine interface. Hyponatremia in COVID-19 has been reported in a few case series of non-kidney transplant patients and only one reported kidney transplant recipient. However, the clinical course and prognostic value of hyponatremia in this population are not described in detail. We report a kidney transplant recipient who was infected with COVID-19 and exhibited severe hyponatremia secondary to the syndrome of inappropriate antidiuretic hormone secretion. Hyponatremia is one of the clinical presentations of COVID-19, although less common, and may occur more frequently in kidney transplant recipients. Thus, the possible underlying immuno-neuroendocrine relationship related to the inflammatory process of COVID-19 leading to hyponatremia and its prognostic value are reviewed.
Collapse
Affiliation(s)
- Ekamol Tantisattamo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA.,Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA.,Multi-Organ Transplant Center, Section of Nephrology, Department of Internal Medicine, William Beaumont Hospital, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Uttam G Reddy
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA.,Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Dang K Duong
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Antoney J Ferrey
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA.,Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Hirohito Ichii
- Division of Kidney and Pancreas Transplantation, Department of Surgery, University of California Irvine School of Medicine, Orange, CA, USA
| | - Donald C Dafoe
- Division of Kidney and Pancreas Transplantation, Department of Surgery, University of California Irvine School of Medicine, Orange, CA, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA.,Nephrology Section, Department of Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
4
|
Greenwood MP, Greenwood M, Romanova EV, Mecawi AS, Paterson A, Sarenac O, Japundžić-Žigon N, Antunes-Rodrigues J, Paton JFR, Sweedler JV, Murphy D. The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiol Aging 2018; 65:178-191. [PMID: 29494864 PMCID: PMC5878011 DOI: 10.1016/j.neurobiolaging.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 07/11/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022]
Abstract
Elderly people exhibit a diminished capacity to cope with osmotic challenges such as dehydration. We have undertaken a detailed molecular analysis of arginine vasopressin (AVP) biosynthetic processes in the supraoptic nucleus (SON) of the hypothalamus and secretory activity in the posterior pituitary of adult (3 months) and aged (18 months) rats, to provide a comprehensive analysis of age-associated changes to the AVP system. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, we identified differences in pituitary peptides, including AVP, in adult and aged rats under both basal and dehydrated states. In the SON, increased Avp gene transcription, coincided with reduced Avp promoter methylation in aged rats. Based on transcriptome data, we have previously characterized a number of novel dehydration-induced regulatory factors involved in the response of the SON to osmotic cues. We found that some of these increase in expression with age, while dehydration-induced expression of these genes in the SON was attenuated in aged rats. In summary, we show that aging alters the rat AVP system at the genome, transcriptome, and peptidome levels. These alterations however did not affect circulating levels of AVP in basal or dehydrated states.
Collapse
Affiliation(s)
| | | | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andre S Mecawi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia; Department of Physiological Sciences, Institute of Biological and Health Sciênces, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Alex Paterson
- School of Clinical Sciences, University of Bristol, Bristol, England
| | - Olivera Sarenac
- School of Clinical Sciences, University of Bristol, Bristol, England; Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, England
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, England; Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Begg DP. Disturbances of thirst and fluid balance associated with aging. Physiol Behav 2017; 178:28-34. [DOI: 10.1016/j.physbeh.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 01/25/2023]
|
6
|
Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A. IL-6 Signaling Regulates Small Intestinal Crypt Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:304-311. [PMID: 28550196 DOI: 10.4049/jimmunol.1600960] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/01/2017] [Indexed: 12/24/2022]
Abstract
Gut homeostasis is a tightly regulated process requiring finely tuned complex interactions between different cell types, growth factors, or cytokines and their receptors. Previous work has implicated a role for IL-6 and mucosal immune cells in intestinal regeneration following injury and in promoting inflammation and cancer. We hypothesized that IL-6 signaling could also modulate crypt homeostasis. Using mouse in vitro crypt organoid and in vivo models, this study first demonstrated that exogenous IL-6 promoted crypt organoid proliferation and increased stem cell numbers through pSTAT3 activation in Paneth cells. Immunolabeling studies showed that the IL-6 receptor was restricted to the basal membrane of Paneth cells both in vitro and in vivo and that the crypt epithelium also expressed IL-6. Either a blocking Ab to the IL-6 receptor or a neutralizing Ab to IL-6 significantly reduced in vitro basal crypt organoid proliferation and budding, and in vivo significantly reduced the number of nuclei and the number of Lgr5EGFP-positive stem cells per crypt compared with IgG-treated mice, with the number of Paneth cells per crypt also significantly reduced. Functional studies demonstrated that IL-6-induced in vitro crypt organoid proliferation and crypt budding was abrogated by the Wnt inhibitor IWP2. This work demonstrates that autocrine IL-6 signaling in the gut epithelium regulates crypt homeostasis through the Paneth cells and the Wnt signaling pathway.
Collapse
Affiliation(s)
- Victoria Jeffery
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.,School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew J Goldson
- Gut Health and Food Safety Institute Strategic Program, Quadram Institute Bioscience, Norwich NR4 7UA, United Kingdom
| | - Jack R Dainty
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom; and
| | - Marcello Chieppa
- National Institute of Gastroenterology "Saverio de Bellis," Institute of Research, Castellana Grotte 70013, Italy
| | - Anastasia Sobolewski
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; .,School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom.,Gut Health and Food Safety Institute Strategic Program, Quadram Institute Bioscience, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
7
|
Flahault A, Couvineau P, Alvear-Perez R, Iturrioz X, Llorens-Cortes C. Role of the Vasopressin/Apelin Balance and Potential Use of Metabolically Stable Apelin Analogs in Water Metabolism Disorders. Front Endocrinol (Lausanne) 2017; 8:120. [PMID: 28620355 PMCID: PMC5450005 DOI: 10.3389/fendo.2017.00120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. In animal models, experimental data demonstrate that intracerebroventricular injection of apelin into lactating rats inhibits the phasic electrical activity of arginine vasopressin (AVP) neurons, reduces plasma AVP levels, and increases aqueous diuresis. In the kidney, apelin increases diuresis by increasing the renal microcirculation and by counteracting the antidiuretic effect of AVP at the tubular level. Moreover, after water deprivation or salt loading, in humans and in rodents, AVP and apelin are conversely regulated to facilitate systemic AVP release and to avoid additional water loss from the kidney. Furthermore, apelin and vasopressin secretion are significantly altered in various water metabolism disorders including hyponatremia and polyuria-polydipsia syndrome. Since the in vivo half-life of apelin is in the minute range, metabolically stable apelin analogs were developed. The efficacy of these lead compounds for decreasing AVP release and increasing both renal blood flow and diuresis, make them promising candidates for the treatment of water retention and/or hyponatremic disorders.
Collapse
Affiliation(s)
- Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Pierre Couvineau
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Rodrigo Alvear-Perez
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
- *Correspondence: Catherine Llorens-Cortes,
| |
Collapse
|
8
|
Kim J, Park J, Eisenhut M, Yu J, Shin J. Inflammasome activation by cell volume regulation and inflammation-associated hyponatremia: A vicious cycle. Med Hypotheses 2016; 93:117-21. [DOI: 10.1016/j.mehy.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022]
|
9
|
Hyponatremia: incidence, risk factors, and consequences in the elderly in a home-based primary care program. Clin Nephrol 2016; 84:75-85. [PMID: 26042411 PMCID: PMC6350235 DOI: 10.5414/cn108453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
Aims: To determine the incidence, risk factors, etiology, and associations of hyponatremia in community-dwelling elderly with geriatric morbidity and mortality. Materials: Elderly participants of a single center home-based primary care program were included. Method: Retrospective chart review was conducted on demographic and clinical variables, comorbid diseases, frailty by Fried criteria and biochemical tests over a 1-year period. Primary outcome measure was a composite of falls, fractures due to falls, and hospitalization witnessed within the first year of enrollment into the program. Secondary outcome was all-cause mortality. Results: The study population (n = 608) had a mean age of 84.3 ± 9.3 years and was largely female (77.1%) and African-American (89.5%). Mean follow-up was 41.5 months. Frailty was seen in 44.4%. Incidence of all-cause mortality was 26.9%. Initial hyponatremia occurred in 8.71% (n = 53), and persistent hyponatremia (> 6 months of low serum sodium) in 4.1% (n = 25) of the study population. The major causes of hyponatremia included multiple potential causes, idiopathic syndrome of inappropriate anti-diuretic hormone (SIADH) and medications (thiazides and selective serotonin reuptake inhibitor (SSRI)). Primary outcome was independently associated with frailty (Odds ratio (OR) of 2.33) and persistent but not initial hyponatremia (OR 3.52). Secondary outcome was independently associated with age > 75 years (OR 2.88) and Afro-American race (OR 2.09) only but not to frailty or hyponatremia. Conclusions: Hyponatremia is common in home-bound elderly patients and its persistence independently contributes to falls, fractures, and hospitalization but not mortality. Our study highlights a new association of hyponatremia with frailty and underscores the need to study time-dependent association of hyponatremia with epidemiological outcomes.
Collapse
|
10
|
Tamma G, Goswami N, Reichmuth J, De Santo NG, Valenti G. Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 2015; 156:777-88. [PMID: 25514088 DOI: 10.1210/en.2014-1812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Functioning of the hypothalamic-neurohypophyseal-vasopressin axis is altered in aging, and the pathway may represent a plausible target to slow the process of aging. Arginine vasopressin, a nine-amino acid peptide that is secreted from the posterior pituitary in response to high plasma osmolality and hypotension, is central in this pathway. Vasopressin has important roles in circulatory and water homoeostasis mediated by vasopressin receptor subtypes V1a (vascular), V1b (pituitary), and V2 (vascular, renal). A dysfunction in this pathway as a result of aging can result in multiple abnormalities in several physiological systems. In addition, vasopressin plasma concentration is significantly higher in males than in females and vasopressin-mediated effects on renal and vascular targets are more pronounced in males than in females. These findings may be caused by sex differences in vasopressin secretion and action, making men more susceptible than females to diseases like hypertension, cardiovascular and chronic kidney diseases, and urolithiasis. Recently the availability of new, potent, orally active vasopressin receptor antagonists, the vaptans, has strongly increased the interest on vasopressin and its receptors as a new target for prevention of age-related diseases associated with its receptor-altered signaling. This review summarizes the recent literature in the field of vasopressin signaling in age-dependent abnormalities in kidney, cardiovascular function, and bone function.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics (G.T., G.V.), University of Bari, 70125 Bari, Italy; Istituto Nazionale di Biostrutture e Biosistemi (G.T., G.V.), 00136 Roma, Italy; Gravitational Physiology and Medicine Research Unit (N.G., J.R.), Institute of Physiology, Medical University of Graz, 8036 Graz, Austria; Department of Medicine (N.G.D.S.), Second University of Naples, 80138 Naples, Italy; and Centro di Eccellenza di Genomica (G.V.) Campo Biomedico Ed Agrario, University of Bari, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
11
|
Sauvant J, Delpech JC, Palin K, De Mota N, Dudit J, Aubert A, Orcel H, Roux P, Layé S, Moos F, Llorens-Cortes C, Nadjar A. Mechanisms involved in dual vasopressin/apelin neuron dysfunction during aging. PLoS One 2014; 9:e87421. [PMID: 24505289 PMCID: PMC3914823 DOI: 10.1371/journal.pone.0087421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/21/2013] [Indexed: 12/28/2022] Open
Abstract
Normal aging is associated with vasopressin neuron adaptation, but little is known about its effects on the release of apelin, an aquaretic peptide colocalized with vasopressin. We found that plasma vasopressin concentrations were higher and plasma apelin concentrations lower in aged rats than in younger adults. The response of AVP/apelin neurons to osmotic challenge was impaired in aged rats. The overactivity of vasopressin neurons was sustained partly by the increased expression of Transient receptor potential vanilloid2 (Trpv2), because central Trpv blocker injection reversed the age-induced increase in plasma vasopressin concentration without modifying plasma apelin concentration. The morphofunctional plasticity of the supraoptic nucleus neuron-astrocyte network normally observed during chronic dehydration in adults appeared to be impaired in aged rats as well. IL-6 overproduction by astrocytes and low-grade microglial neuroinflammation may contribute to the modification of neuronal functioning during aging. Indeed, central treatment with antibodies against IL-6 decreased plasma vasopressin levels and increased plasma apelin concentration toward the values observed in younger adults. Conversely, minocycline treatment (inhibiting microglial metabolism) did not affect plasma vasopressin concentration, but increased plasma apelin concentration toward control values for younger adults. This study is the first to demonstrate dual vasopressin/apelin adaptation mediated by inflammatory molecules and neuronal Trpv2, during aging.
Collapse
Affiliation(s)
- Julie Sauvant
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Jean-Christophe Delpech
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Karine Palin
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Nadia De Mota
- Center for Interdisciplinary Research in Biology (CIRB), U1050, INSERM, Collège de France, Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Jennifer Dudit
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Agnès Aubert
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Hélène Orcel
- Institut de GénomiqueFonctionnelle, PharmacologieMoléculaire, UMR 5203, CNRS, Montpellier, France
| | - Pascale Roux
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Françoise Moos
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology (CIRB), U1050, INSERM, Collège de France, Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
12
|
Bellmunt J, Leow JJ. Hyponatremia associated with worse outcomes in metastatic renal cell cancer: a potential target for intervention? Eur Urol 2013; 65:731-2. [PMID: 24262101 DOI: 10.1016/j.eururo.2013.10.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Joaquim Bellmunt
- Bladder Cancer Center, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA.
| | - Jeffrey J Leow
- Bladder Cancer Center, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Thirst deficits in aged rats are reversed by dietary omega-3 fatty acid supplementation. Neurobiol Aging 2012; 33:2422-30. [DOI: 10.1016/j.neurobiolaging.2011.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/11/2011] [Accepted: 12/01/2011] [Indexed: 02/05/2023]
|
14
|
Kawashima A, Tsujimura A, Takayama H, Arai Y, Nin M, Tanigawa G, Uemura M, Nakai Y, Nishimura K, Nonomura N. Impact of hyponatremia on survival of patients with metastatic renal cell carcinoma treated with molecular targeted therapy. Int J Urol 2012; 19:1050-7. [DOI: 10.1111/j.1442-2042.2012.03115.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Mandalà M, Pedatella AL, Morales Palomares S, Cipolla MJ, Osol G. Maturation is associated with changes in rat cerebral artery structure, biomechanical properties and tone. Acta Physiol (Oxf) 2012; 205:363-71. [PMID: 22212496 DOI: 10.1111/j.1748-1716.2011.02406.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/04/2011] [Accepted: 12/20/2011] [Indexed: 01/17/2023]
Abstract
AIM This study evaluated the hypothesis that physiological maturation affects cerebral artery smooth muscle-endothelial interactions involved in pressure-induced tone and alters the dimensional and biomechanical properties of small posterior cerebral arteries (PCA). METHODS Secondary branches of PCA from young (4-5 weeks old, n=11), adult (14-16 weeks old, n=11) and mature (44-47 weeks old, n=11) male Sprague-Dawley rats were isolated, cannulated, pressurized and subjected to a range of intraluminal pressures (10-110 mmHg) to determine tone with and without pharmacologic nitric oxide synthase (NOS) inhibition. Measurements of passive lumen diameter and wall thickness as a function of pressure were used to determine changes in structure, distensibility and wall stress; histological analysis was performed on vessel cross-sections to assess collagen and elastin contents. RESULTS Although pressure-dependent tone decreased significantly during ageing, differences between groups were abolished by NOS inhibition. Vessel diameters increased in adult vs. young rats (at 90 mmHg, 233 ± 6.0 μm vs. 192 ± 4.5 μm; P<0.05), possibly secondary to somatic growth. Further ageing was associated with reductions in lumen diameter (207 ± 6.5 μm; P<0.05), increased wall and media thickness (and wall/lumen ratio) and cross-sectional area. Distensibility and wall collagen were unchanged, although elastin content was significantly reduced. CONCLUSIONS Maturation is associated with differences in PCA dimensional properties that indicate a pattern of initial outward eutrophic, followed by inward hypertrophic remodelling. Functionally, the contribution of basal NO increases with age in a way that reduces pressure-dependent tone and diminishes vasodilator reserve.
Collapse
Affiliation(s)
| | - A. L. Pedatella
- Department of Cell Biology; University of Calabria; Arcavacata di Rende; Italy
| | | | - M. J. Cipolla
- Department of Neurology; University of Vermont; Burlington; VT; USA
| | - G. Osol
- Department of Obstretrics and Gynecology; University of Vermont; Burlington; VT; USA
| |
Collapse
|
16
|
Swart RM, Hoorn EJ, Betjes MG, Zietse R. Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Clin Pract 2010; 118:45-51. [PMID: 21196778 DOI: 10.1159/000322238] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although hyponatremia is a recognized complication of several inflammatory diseases, its pathophysiology in this setting has remained elusive until recently. A growing body of evidence now points to an important role for interleukin-6 in the non-osmotic release of vasopressin. Here, we review this evidence by exploring the immuno-neuroendocrine pathways connecting interleukin-6 with vasopressin. The importance of these connections extends to several clinical scenarios of hyponatremia and inflammation, including hospital-acquired hyponatremia, postoperative hyponatremia, exercise-associated hyponatremia, and hyponatremia in the elderly. Besides insights in pathophysiology, the recognition of the propensity for antidiuresis during inflammation is also important with regard to monitoring patients and selecting the appropriate intravenous fluid regimen, for which recommendations are provided.
Collapse
Affiliation(s)
- Reinout M Swart
- Department of Internal Medicine - Nephrology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|