1
|
Yang L, Liu Q, Zhao Y, Lin N, Huang Y, Wang Q, Yang K, Wei R, Li X, Zhang M, Hao L, Wang H, Pan Z. DExH-box helicase 9 modulates hippocampal synapses and regulates neuropathic pain. iScience 2024; 27:109016. [PMID: 38327775 PMCID: PMC10847742 DOI: 10.1016/j.isci.2024.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Experimental studies have shown that neuropathic pain impairs hippocampal synaptic plasticity. Here, we sought to determine the underlying mechanisms responsible for synaptic changes in neuropathic painful mouse hippocampal neurons. Beyond demonstrating proof-of-concept for the location of DExH-box helicase 9 (DHX9) in the nucleus, we found that it did exist in the cytoplasm and DHX9 depletion resulted in structural and functional changes at synapses in the hippocampus. A decrease of DHX9 was observed in the hippocampus after peripheral nerve injury; overexpression of DHX9 in the hippocampus significantly alleviated the nociceptive responses and improved anxiety behaviors. Mimicking DHX9 decrease evoked spontaneous pain behavioral symptoms and anxiety emotion in naïve mice. Mechanistically, we found that DHX9 bound to dendrin (Ddn) mRNA, which may have altered the level of synaptic- and dendritic-associated proteins. The data suggest that DHX9 contributes to synapses in hippocampal neurons and may modulate neuropathic pain and its comorbidity aversive emotion.
Collapse
Affiliation(s)
- Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Yaxuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Ninghua Lin
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Qihui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Xiaotong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Lingyun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
2
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
3
|
Barbato C, Frisone P, Braccini L, D’Aguanno S, Pieroni L, Ciotti MT, Catalanotto C, Cogoni C, Ruberti F. Silencing of Ago-2 Interacting Protein SERBP1 Relieves KCC2 Repression by miR-92 in Neurons. Cells 2022; 11:1052. [PMID: 35326503 PMCID: PMC8947033 DOI: 10.3390/cells11061052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play important roles in modulating miRNA-mediated mRNA target repression. Argonaute2 (Ago2) is an essential component of the RNA-induced silencing complex (RISC) that plays a central role in silencing mechanisms via small non-coding RNA molecules known as siRNAs and miRNAs. Small RNAs loaded into Argonaute proteins catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and mRNA target destabilization. In previous studies we have shown that KCC2, a neuronal Cl (-) extruding K (+) Cl (-) co-transporter 2, is regulated by miR-92 in neuronal cells. Searching for Ago2 partners by immunoprecipitation and LC-MS/MS analysis, we isolated among other proteins the Serpine mRNA binding protein 1 (SERBP1) from SH-SY5Y neuroblastoma cells. Exploring the role of SERBP1 in miRNA-mediated gene silencing in SH-SY5Y cells and primary hippocampal neurons, we demonstrated that SERBP1 silencing regulates KCC2 expression through the 3' untranslated region (UTR). In addition, we found that SERBP1 as well as Ago2/miR-92 complex bind to KCC2 3'UTR. Finally, we demonstrated the attenuation of miR-92-mediated repression of KCC2 3'UTR by SERBP1 silencing. These findings advance our knowledge regarding the miR-92-mediated modulation of KCC2 translation in neuronal cells and highlight SERBP1 as a key component of this gene regulation.
Collapse
Affiliation(s)
- Christian Barbato
- Institute of Biochemistry and Cell Biology, National Research Council CNR, Department of Sense Organs, University of Rome Sapienza, 00161 Roma, Italy
| | - Paola Frisone
- Institute of Biochemistry and Cell Biology CNR, Campus A. Buzzati-Traverso, 00015 Monterotondo (RM), Italy; (P.F.); (M.T.C.)
- Department of Molecular Medicine, University of Rome Sapienza, 00161 Roma, Italy; (L.B.); (C.C.)
| | - Laura Braccini
- Department of Molecular Medicine, University of Rome Sapienza, 00161 Roma, Italy; (L.B.); (C.C.)
| | - Simona D’Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Luisa Pieroni
- Department of Experimental Neuroscience, Proteomics and Metabolomics Unit, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology CNR, Campus A. Buzzati-Traverso, 00015 Monterotondo (RM), Italy; (P.F.); (M.T.C.)
| | - Caterina Catalanotto
- Department of Molecular Medicine, University of Rome Sapienza, 00161 Roma, Italy; (L.B.); (C.C.)
| | - Carlo Cogoni
- Department of Molecular Medicine, University of Rome Sapienza, 00161 Roma, Italy; (L.B.); (C.C.)
| | - Francesca Ruberti
- Institute of Biochemistry and Cell Biology CNR, Campus A. Buzzati-Traverso, 00015 Monterotondo (RM), Italy; (P.F.); (M.T.C.)
| |
Collapse
|
4
|
Westmark CJ. Fragile X and APP: a Decade in Review, a Vision for the Future. Mol Neurobiol 2019; 56:3904-3921. [PMID: 30225775 PMCID: PMC6421119 DOI: 10.1007/s12035-018-1344-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Fragile X syndrome (FXS) is a devastating developmental disability that has profound effects on cognition, behavior, and seizure susceptibility. There are currently no treatments that target the underlying cause of the disorder, and recent clinical trials have been unsuccessful. In 2007, seminal work demonstrated that amyloid-beta protein precursor (APP) is dysregulated in Fmr1KO mice through a metabotropic glutamate receptor 5 (mGluR5)-dependent pathway. These findings raise the hypotheses that: (1) APP and/or APP metabolites are potential therapeutic targets as well as biomarkers for FXS and (2) mGluR5 inhibitors may be beneficial in the treatment of Alzheimer's disease. Herein, advances in the field over the past decade that have reproduced and greatly expanded upon these original findings are reviewed, and required experimentation to validate APP metabolites as potential disease biomarkers as well as therapeutic targets for FXS are discussed.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, USA.
| |
Collapse
|
5
|
Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nat Commun 2018; 9:1800. [PMID: 29728560 PMCID: PMC5935712 DOI: 10.1038/s41467-018-04238-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
Although, a number of pathogenic mutations have been found for Alzheimer’s disease (AD), only one protective mutation has been identified so far in humans. Here we identify possible protective deletion mutations in the 3′-UTR of the amyloid precursor protein (App) gene in mice. We use an App knock-in mouse model carrying a humanized Aβ sequence and three AD mutations in the endogenous App gene. Genome editing of the model zygotes using multiple combinations of CRISPR/Cas9 tools produces genetically mosaic animals with various App 3′-UTR deletions. Depending on the editing efficiency, the 3′-UTR disruption mitigates the Aβ pathology development through transcriptional and translational regulation of APP expression. Notably, an App knock-in mouse with a 34-bp deletion in a 52-bp regulatory element adjacent to the stop codon shows a substantial reduction in Aβ pathology. Further functional characterization of the identified element should provide deeper understanding of the pathogenic mechanisms of AD. To date, only one mutation in the gene for amyloid-beta precursor protein APP has been suggested to be protective against Alzheimer’s disease. Here, authors found using gene editing of a mutant App knock-in mouse line that deletion of the 3’UTR region is protective against amyloid-β accumulation in vivo, and subsequently identify a 52-bp element in the 3’UTR region that is responsible for this effect.
Collapse
|
6
|
Zhao J, Yue D, Zhou Y, Jia L, Wang H, Guo M, Xu H, Chen C, Zhang J, Xu L. The Role of MicroRNAs in Aβ Deposition and Tau Phosphorylation in Alzheimer's Disease. Front Neurol 2017; 8:342. [PMID: 28769871 PMCID: PMC5513952 DOI: 10.3389/fneur.2017.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD), with main clinical features of progressive impairment in cognitive and behavioral functions, is the most common degenerative disease of the central nervous system. Recent evidence showed that microRNAs (miRNAs) played important roles in the pathological progression of AD. In this article, we reviewed the promising role of miRNAs in both Aβ deposition and Tau phosphorylation, two key pathological characters in the pathological progression of AD, which might be helpful for the understanding of pathogenesis and the development of new strategies of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Dongxu Yue
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, China
| | - Li Jia
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hairong Wang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
7
|
Rivera D, Fedele E, Marinari UM, Pronzato MA, Ricciarelli R. Evaluating the role of hnRNP-C and FMRP in the cAMP-induced APP metabolism. Biofactors 2015; 41:121-6. [PMID: 25809670 DOI: 10.1002/biof.1207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/27/2015] [Indexed: 11/09/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) modulates synaptic plasticity and memory and manipulation of the cAMP/protein kinase A/cAMP responsive element binding protein pathway significantly affects cognitive functions. Notably, cAMP can increase the expression of the amyloid precursor protein (APP), whose proteolytic processing gives rise to amyloid beta (Aβ) peptides. Despite playing a pathogenic role in Alzheimer's disease, physiological concentrations of Aβ are necessary for the cAMP-mediated regulation of long-term potentiation, supporting the existence of a novel cAMP/APP/Aβ cascade with a crucial role in memory formation. However, the molecular mechanisms by which cAMP stimulates APP expression and Aβ production remain unclear. Here, we investigated whether hnRNP-C and FMRP, two RNA-binding proteins largely involved in the expression of APP, are the cAMP effectors inducing the protein synthesis of APP. Using RNA immunoprecipitation and RNA-silencing approaches, we found that neither hnRNP-C nor FMRP is required for cAMP to stimulate APP and Aβ production.
Collapse
Affiliation(s)
- D Rivera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
8
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Schonrock N, Götz J. Decoding the non-coding RNAs in Alzheimer's disease. Cell Mol Life Sci 2012; 69:3543-59. [PMID: 22955374 PMCID: PMC11114718 DOI: 10.1007/s00018-012-1125-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 01/28/2023]
Abstract
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Nicole Schonrock
- Victor Chang Cardiac Research Institute (VCCRI), Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
10
|
Westmark CJ, Malter JS. The regulation of AβPP expression by RNA-binding proteins. Ageing Res Rev 2012; 11:450-9. [PMID: 22504584 DOI: 10.1016/j.arr.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimer's disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.
Collapse
Affiliation(s)
- Cara J Westmark
- University of Wisconsin, Waisman Center for Developmental Disabilities, 1500 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
11
|
Ruberti F, Barbato C, Cogoni C. Post-transcriptional regulation of amyloid precursor protein by microRNAs and RNA binding proteins. Commun Integr Biol 2010; 3:499-503. [PMID: 21331224 DOI: 10.4161/cib.3.6.13172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Amyloid Precursor Protein (APP) and its proteolytic product amyloid beta (Aβ) are critical in the pathogenesis of Alzheimer's Disease (AD). APP gene duplication and transcriptional upregulation are linked to AD. In addition, normal levels of APP appear to be required for some physiological functions in the developing brain. Several studies in mammalian cell lines and primary neuron cultures indicate that RNA binding proteins and microRNAs interacting with regulatory regions of the APP mRNA modulate expression of APP post-transcriptionally. However, when the various mechanisms of APP post-transcriptional regulation are recruited and which of them are acting in a synergistic fashion to balance APP protein levels, is unclear. Recent studies suggest that further investigation of the molecules and pathways involved in APP post-transcriptional regulation are warranted.
Collapse
Affiliation(s)
- Francesca Ruberti
- INMM-CNR Istituto di Neurobiologia e Medicina Molecolare; IRCSS; Fondazione Santa Lucia
| | | | | |
Collapse
|
12
|
Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 2010; 285:18344-51. [PMID: 20395292 PMCID: PMC2881760 DOI: 10.1074/jbc.m110.112664] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/24/2010] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Abeta) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels. Using site-directed mutagenesis, a microRNA responsive element (RE) for miR-101 was identified in the 3'-untranslated region (UTR) of APP. The inhibition of endogenous miR-101 increased APP levels, whereas lentiviral-mediated miR-101 overexpression significantly reduced APP and Abeta load in hippocampal neurons. In addition, miR-101 contributed to the regulation of APP in response to the proinflammatory cytokine interleukin-1beta (IL-lbeta). Thus, miR-101 is a negative regulator of APP expression and affects the accumulation of Abeta, suggesting a possible role for miR-101 in neuropathological conditions.
Collapse
Affiliation(s)
- Elisa Vilardo
- From the INMM-Istituto di Neurobiologia e Medicina Molecolare, CNR, and
| | - Christian Barbato
- From the INMM-Istituto di Neurobiologia e Medicina Molecolare, CNR, and
- EBRI-European Brain Research Institute-Fondazione EBRI-Rita Levi-Montalcini, Via del Fosso di Fiorano, 64/65, 00143 Roma, Italy and
| | | | - Carlo Cogoni
- EBRI-European Brain Research Institute-Fondazione EBRI-Rita Levi-Montalcini, Via del Fosso di Fiorano, 64/65, 00143 Roma, Italy and
- the Dipartimento di Biotecnologie Cellulari ed Ematologia, Università di Roma “La Sapienza”, Viale Regina Elena, 324, 00161 Roma, Italy
| | - Francesca Ruberti
- From the INMM-Istituto di Neurobiologia e Medicina Molecolare, CNR, and
| |
Collapse
|