1
|
Zampieri G, Cabrol L, Urra C, Castro-Nallar E, Schwob G, Cleary D, Angione C, Deacon RMJ, Hurley MJ, Cogram P. Microbiome alterations are associated with apolipoprotein E mutation in Octodon degus and humans with Alzheimer's disease. iScience 2024; 27:110348. [PMID: 39148714 PMCID: PMC11324989 DOI: 10.1016/j.isci.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.
Collapse
Affiliation(s)
- Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Léa Cabrol
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Aix Marseille University, University Toulon, CNRS, IRD, Méditerranéen Institute of Océanographie (MIO) UM 110, Avenue de Luminy, 13009 Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - Claudio Urra
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Avenida República 239, Santiago 7591538, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - David Cleary
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Robert M J Deacon
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Michael J Hurley
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Anatomy and Neurobiology, School of Medicine, B240 Med Sci, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Ferrer I. Alzheimer's Disease Neuropathological Change in Aged Non-Primate Mammals. Int J Mol Sci 2024; 25:8118. [PMID: 39125687 PMCID: PMC11311584 DOI: 10.3390/ijms25158118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human brain aging is characterized by the production and deposition of β-amyloid (Aβ) in the form of senile plaques and cerebral amyloid angiopathy and the intracellular accumulation of hyper-phosphorylated tau (Hp-tau) to form neurofibrillary tangles (NFTs) and dystrophic neurites of senile plaques. The process progresses for years and eventually manifests as cognitive impairment and dementia in a subgroup of aged individuals. Aβ is produced and deposited first in the neocortex in most aged mammals, including humans; it is usually not accompanied by altered behavior and cognitive impairment. Hp-tau is less frequent than Aβ pathology, and NFTs are rare in most mammals. In contrast, NFTs are familiar from middle age onward in humans; NFTs first appear in the paleocortex and selected brain stem nuclei. NFTs precede for decades or years Aβ deposition and correlate with dementia in about 5% of individuals at the age of 65 and 25% at the age of 85. Based on these comparative data, (a) Aβ deposition is the most common Alzheimer's disease neuropathological change (ADNC) in the brain of aged mammals; (b) Hp-tau is less common, and NFTs are rare in most aged mammals; however, NFTs are the principal cytoskeletal pathology in aged humans; (c) NFT in aged humans starts in selected nuclei of the brain stem and paleocortical brain regions progressing to the most parts of the neocortex and other regions of the telencephalon; (d) human brain aging is unique among mammalian species due to the early appearance and dramatic progression of NFTs from middle age onward, matching with cognitive impairment and dementia in advanced cases; (e) neither mammalian nor human brain aging supports the concept of the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain;
- Reial Acadèmia de Medicina de Catalunya, carrer del Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
3
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
4
|
Tan Z, Garduño BM, Aburto PF, Chen L, Ha N, Cogram P, Holmes TC, Xu X. Cognitively impaired aged Octodon degus recapitulate major neuropathological features of sporadic Alzheimer's disease. Acta Neuropathol Commun 2022; 10:182. [PMID: 36529803 PMCID: PMC9761982 DOI: 10.1186/s40478-022-01481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The long-lived Chilean rodent (Octodon degus) has been reported to show spontaneous age-dependent neuropathology and cognitive impairments similar to those observed in human AD. However, the handful of published papers on degus of differing genetic backgrounds yield inconsistent findings about sporadic AD-like pathological features, with notably differing results between lab in-bred degus versus outbred degus. This motivates more extensive characterization of spontaneously occurring AD-like pathology and behavior in degus. In the present study, we show AD-like neuropathological markers in the form of amyloid deposits and tau abnormalities in a cognitively impaired subset of aged outbred degus. Compared to the aged degus that show normal burrowing behavior, the age-matched degus with burrowing behavior deficits correlatively exhibit detectable human AD-like Aβ deposits and tau neuropathology, along with neuroinflammatory markers that include enhanced microglial activation and higher numbers of reactive astrocytes in the brain. This subset of cognitively impaired aged degus also exhibits cerebral amyloid angiopathy and tauopathy. We find robust neurodegenerative features in behaviorally deficient aged degus, including hippocampal neuronal loss, altered parvalbumin and perineuronal net staining in the cortex, and increased c-Fos neuronal activation in the cortex that is consistent with the neural circuit hyperactivity reported in human AD patients. By focusing on the subset of aged degus that show AD-like behavioral deficits and correlative neuropathology, our findings establish outbred degus as a natural model of sporadic AD and demonstrate the potential importance of wild-type outbred genetic backgrounds for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - B Maximiliano Garduño
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Pedro Fernández Aburto
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lujia Chen
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Nicole Ha
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Mugnaini M, Polania D, Diaz Y, Ezquer M, Ezquer F, Deacon RMJ, Cogram P, Kropff E. Spatial maps and oscillations in the healthy hippocampus of Octodon degus, a natural model of sporadic Alzheimer's disease. Sci Rep 2022; 12:7350. [PMID: 35513473 PMCID: PMC9072334 DOI: 10.1038/s41598-022-11153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The Octodon degus is a South American rodent that is receiving increased attention as a potential model of aging and sporadic late-onset Alzheimer’s disease (AD). Impairments in spatial memory tasks in Octodon degus have been reported in relation to either advanced AD-like disease or hippocampal lesion, opening the way to investigate how the function of hippocampal networks affects behavior across AD stages. However, no characterization of hippocampal electrophysiology exists in this species. Here we describe in young, healthy specimens the activity of neurons and local field potential rhythms during spatial navigation tasks with and without objects. Our findings show similarities between the Octodon degus and laboratory rodents. First, place cells with characteristics similar to those found in rats and mice exist in the CA1 subfield of the Octodon degus. Second, the introduction of objects elicits novelty-related exploration and an increase in activity of CA1 cells, with location specific and unspecific components. Third, oscillations of the local field potential are organized according to their spectral content into bands similar to those found in laboratory rodents. These results suggest a common framework of underlying mechanisms, opening the way to future studies of hippocampal dysfunction in this species associated to aging and disease.
Collapse
Affiliation(s)
| | - Diana Polania
- Department of Ecological Sciences, Institute of Ecology and Biodiversity, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Yannina Diaz
- Leloir Institute-IIBBA, CONICET, Buenos Aires, Argentina
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Robert M J Deacon
- Department of Ecological Sciences, Institute of Ecology and Biodiversity, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Patricia Cogram
- Department of Ecological Sciences, Institute of Ecology and Biodiversity, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA
| | - Emilio Kropff
- Leloir Institute-IIBBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Hurley MJ, Urra C, Garduno BM, Bruno A, Kimbell A, Wilkinson B, Marino-Buslje C, Ezquer M, Ezquer F, Aburto PF, Poulin E, Vasquez RA, Deacon R, Avila A, Altimiras F, Whitney Vanderklish P, Zampieri G, Angione C, Constantino G, Holmes TC, Coba MP, Xu X, Cogram P. Genome Sequencing Variations in the Octodon degus, an Unconventional Natural Model of Aging and Alzheimer's Disease. Front Aging Neurosci 2022; 14:894994. [PMID: 35860672 PMCID: PMC9291219 DOI: 10.3389/fnagi.2022.894994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
The degu (Octodon degus) is a diurnal long-lived rodent that can spontaneously develop molecular and behavioral changes that mirror those seen in human aging. With age some degu, but not all individuals, develop cognitive decline and brain pathology like that observed in Alzheimer's disease including neuroinflammation, hyperphosphorylated tau and amyloid plaques, together with other co-morbidities associated with aging such as macular degeneration, cataracts, alterations in circadian rhythm, diabetes and atherosclerosis. Here we report the whole-genome sequencing and analysis of the degu genome, which revealed unique features and molecular adaptations consistent with aging and Alzheimer's disease. We identified single nucleotide polymorphisms in genes associated with Alzheimer's disease including a novel apolipoprotein E (Apoe) gene variant that correlated with an increase in amyloid plaques in brain and modified the in silico predicted degu APOE protein structure and functionality. The reported genome of an unconventional long-lived animal model of aging and Alzheimer's disease offers the opportunity for understanding molecular pathways involved in aging and should help advance biomedical research into treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Michael J. Hurley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Claudio Urra
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - B. Maximiliano Garduno
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Agostino Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Allison Kimbell
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | | | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pedro F. Aburto
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Rodrigo A. Vasquez
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Robert Deacon
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Ariel Avila
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisco Altimiras
- Faculty of Engineering and Business, Universidad de las Americas, Santiago, Chile
| | | | - Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
| | | | - Todd C. Holmes
- Department Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Marcelo P. Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Patricia Cogram
| |
Collapse
|
7
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
8
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
9
|
van Groen T, Kadish I, Popović N, Caballero Bleda M, Baño-Otalora B, Rol MA, Madrid JA, Popović M. Widespread Doublecortin Expression in the Cerebral Cortex of the Octodon degus. Front Neuroanat 2021; 15:656882. [PMID: 33994960 PMCID: PMC8116662 DOI: 10.3389/fnana.2021.656882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that in adulthood rodents show newly born neurons in the subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ). The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX). The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ, and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX neurons present in piriform cortex, the degu also shows significant numbers of DCX expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are immature neurons.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - María Caballero Bleda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - Beatriz Baño-Otalora
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - María Angeles Rol
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan Antonio Madrid
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Chang LYL, Palanca-Castan N, Neira D, Palacios AG, Acosta ML. Ocular Health of Octodon degus as a Clinical Marker for Age-Related and Age-Independent Neurodegeneration. Front Integr Neurosci 2021; 15:665467. [PMID: 33927598 PMCID: PMC8076605 DOI: 10.3389/fnint.2021.665467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023] Open
Abstract
The aging process and age-related diseases such as Alzheimer’s disease (AD), are very heterogeneous and multifactorial, making it challenging to diagnose the disease based solely on genetic, behavioral tests, or clinical history. It is yet to be explained what ophthalmological tests relate specifically to aging and AD. To this end, we have selected the common degu (Octodon degus) as a model for aging which develops AD-like signs to conduct ophthalmological screening methods that could be clinical markers of aging and AD. We investigated ocular health using ophthalmoscopy, fundus photography, intraocular pressure (IOP), and pupillary light reflex (PLR). The results showed significant presence of cataracts in adult degus and IOP was also found to increase significantly with advancing age. Age had a significant effect on the maximum pupil constriction but other pupil parameters changed in an age-independent manner (PIPR retention index, resting pupil size, constriction velocity, redilation plateau). We concluded that degus have underlying factors at play that regulate PLR and may be connected to sympathetic, parasympathetic, and melanopsin retinal ganglion cell (ipRGC) deterioration. This study provides the basis for the use of ocular tests as screening methods for the aging process and monitoring of neurodegeneration in non-invasive ways.
Collapse
Affiliation(s)
- Lily Y-L Chang
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Nicolas Palanca-Castan
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - David Neira
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Santiago, Chile
| | - Monica L Acosta
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
11
|
Octodon degus: a natural model of multimorbidity for ageing research. Ageing Res Rev 2020; 64:101204. [PMID: 33152453 DOI: 10.1016/j.arr.2020.101204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, β-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.
Collapse
|
12
|
Rodríguez Martín B, Fernández Rodríguez EJ, Rihuete Galve MI, Cruz Hernández JJ. Study of Chemotherapy-Induced Cognitive Impairment in Women with Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238896. [PMID: 33265966 PMCID: PMC7730121 DOI: 10.3390/ijerph17238896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Background: Oncology patients experience a large number of symptoms and, those referring to cognitive performance has an ever-increasing importance in clinical practice, due to the increase in survival rates and interest in the patient’s quality of life. The studies reviewed showed that chemotherapy-related cognitive impairment might occur in 15 and 50% of oncology patients. The main objective of this research was to study the impact of chemotherapy on the cognitive function of patients with locoregional breast cancer. Method: Analytical, prospective, longitudinal study using three measures, unifactorial intrasubject design, non-probability, and random selection sampling. The sample comprised women newly diagnosed with locoregional breast cancer in stages I, II, IIIA who received chemotherapy at the University Hospital of Salamanca (Complejo Asistencial Universitario de Salamanca), randomly selected for three years. Semi-structured interviews were conducted, and anxiety and depression (Hospital Anxiety and Depression scale, HAD); quality of life (QLQ-BR23 scale) and the following cognitive variables were assessed—processing speed, attention, memory, and executive functions (subtests of the Wechsler Intelligence Scale and the Trail Making Test). Results: The final sample size included 151 participants; 23 were excluded. A decline in cognitive performance was observed in patients, which did not completely recover two months after chemotherapy was completed. Additionally, worse cognitive performance was observed in patients with anxious or depressive symptoms. There was a negative impact on the quality of life. Conclusion: Chemotherapy had an impact on the cognitive performance of oncology patients in most cognitive domains studied.
Collapse
Affiliation(s)
- Blanca Rodríguez Martín
- Medical Oncology Service, Salamanca University Hospital, 37007 Salamanca, Spain; (E.J.F.R.); (M.I.R.G.); (J.J.C.H.)
- Correspondence:
| | - Eduardo José Fernández Rodríguez
- Medical Oncology Service, Salamanca University Hospital, 37007 Salamanca, Spain; (E.J.F.R.); (M.I.R.G.); (J.J.C.H.)
- Nursing and Physiotherapy Department, University of Salamanca, 37007 Salamanca, Spain
| | - María Isabel Rihuete Galve
- Medical Oncology Service, Salamanca University Hospital, 37007 Salamanca, Spain; (E.J.F.R.); (M.I.R.G.); (J.J.C.H.)
- Nursing and Physiotherapy Department, University of Salamanca, 37007 Salamanca, Spain
| | - Juan Jesús Cruz Hernández
- Medical Oncology Service, Salamanca University Hospital, 37007 Salamanca, Spain; (E.J.F.R.); (M.I.R.G.); (J.J.C.H.)
- Medicine Department, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Inestrosa NC, Tapia-Rojas C, Lindsay CB, Zolezzi JM. Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons From the Octodon degus. Front Cell Dev Biol 2020; 8:734. [PMID: 32850846 PMCID: PMC7419590 DOI: 10.3389/fcell.2020.00734] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling constitutes a fundamental cellular and molecular pathway, necessary from proper embryogenesis to function-maintenance of fully developed complex organisms. In this regard, Wnt pathway plays a crucial role in both the development of the central nervous system and in maintaining the structure and function of the neuronal circuits, and it has been suggested that its dysregulation is critical in the onset of several pathologies including cancer and neurodegenerative disorders, such as Alzheimer's disease (AD). Due to its relevance in the maintenance of the neuronal activity and its involvement in the outbreak of devastating diseases, we explored the age-related changes in the expression of Wnt key components in the cortex and hippocampus of 7 to 72-months-old Octodon degus (O. degus), a Chilean long-living endemic rodent that has been proposed and used as a natural model for AD. We found a down-regulation in the expression of different Wnt ligands (Wnt3a, Wnt7a, and Wnt5a), as well as in the Wnt co-receptor LRP6. We also observed an increase in the activity of GSK-3β related to the down-regulation of Wnt activity, a fact that was confirmed by a decreased expression of Wnt target genes. Relevantly, an important increase was found in secreted endogenous Wnt inhibitors, including the secreted-frizzled-related protein 1 and 2 (SFRP-1 and SFRP-2) and Dickkopf-1 (Dkk-1), all them antagonists at the cell surface. Furthermore, treatment with Andrographolide, a labdane diterpene obtained from Andrographis paniculata, prevents Wnt signaling loss in aging degus. Taken together, these results suggest that during the aging process Wnt signaling activity decreases in the brain of O. degus.
Collapse
Affiliation(s)
- Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Carolina B. Lindsay
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan Manuel Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
In situ structural characterization of early amyloid aggregates in Alzheimer's disease transgenic mice and Octodon degus. Sci Rep 2020; 10:5888. [PMID: 32246090 PMCID: PMC7125182 DOI: 10.1038/s41598-020-62708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer’s disease. In situ identification of early-stage amyloid aggregates in Alzheimer’s disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice and Octodon degus for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months whereas very little formation of fibrils is found in aged Octodon degus. Finally, significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with G4-His-Mal dendrimers (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating putative therapeutic properties of G4-His-Mal dendrimers in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.
Collapse
|
15
|
Chang LYL, Ardiles AO, Tapia-Rojas C, Araya J, Inestrosa NC, Palacios AG, Acosta ML. Evidence of Synaptic and Neurochemical Remodeling in the Retina of Aging Degus. Front Neurosci 2020; 14:161. [PMID: 32256305 PMCID: PMC7095275 DOI: 10.3389/fnins.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) peptides is regarded as the hallmark of neurodegenerative alterations in the brain of Alzheimer’s disease (AD) patients. In the eye, accumulation of Aβ peptides has also been suggested to be a trigger of retinal neurodegenerative mechanisms. Some pathological aspects associated with Aβ levels in the brain are synaptic dysfunction, neurochemical remodeling and glial activation, but these changes have not been established in the retina of animals with Aβ accumulation. We have employed the Octodon degus in which Aβ peptides accumulated in the brain and retina as a function of age. This current study investigated microglial morphology, expression of PSD95, synaptophysin, Iba-1 and choline acetyltransferase (ChAT) in the retina of juvenile, young and adult degus using immunolabeling methods. Neurotransmitters glutamate and gamma-aminobutyric acid (GABA) were detected using immunogold labeling and glutamate receptor subunits were quantified using Western blotting. There was an age-related increase in presynaptic and a decrease in post-synaptic retinal proteins in the retinal plexiform layers. Immunolabeling showed changes in microglial morphology characteristic of intermediate stages of activation around the optic nerve head (ONH) and decreasing activation toward the peripheral retina. Neurotransmitter expression pattern changed at juvenile ages but was similar in adults. Collectively, the results suggest that microglial activation, synaptic remodeling and neurotransmitter changes may be consequent to, or parallel to Aβ peptide and phosphorylated tau accumulation in the retina.
Collapse
Affiliation(s)
- Lily Y-L Chang
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Cheril Tapia-Rojas
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquin Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nibaldo C Inestrosa
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Monica L Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
16
|
Lindsay CB, Zolezzi JM, Rivera DS, Cisternas P, Bozinovic F, Inestrosa NC. Andrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus. Mol Neurobiol 2019; 57:1131-1145. [DOI: 10.1007/s12035-019-01784-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
|
17
|
Palanca-Castan N, Harcha PA, Neira D, Palacios AG. Chromatic pupillometry for the characterization of the pupillary light reflex in Octodon degus. Exp Eye Res 2019; 190:107866. [PMID: 31682845 DOI: 10.1016/j.exer.2019.107866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022]
Abstract
The common degu (Octodon degus) is an emerging model in biomedical science research due to its longevity and propensity to develop human-like conditions. However, there is a lack of standardized techniques for this non-traditional laboratory animal. In an effort to characterize the model, we developed a chromatic pupillometry setup and analysis protocol to characterize the pupillary light reflex (PLR) in our animals. The PLR is a biomarker to detect early signs for central nervous system deterioration. Chromatic pupillometry is a non-invasive and anesthesia-free method that can evaluate different aspects of the PLR, including the response of intrinsically photosensitive retinal ganglion cells (ipRGCs), the disfunction of which has been linked to various disorders. We studied the PLR of 12 degus between 6 and 48 months of age to characterize responses to LEDs of 390, 450, 500, 525 and 605 nm, and used 5 with overall better responses to establish a benchmark for healthy PLR (PLR+) and deteriorated PLR (PLR-). Degu pupils contracted up to 65% of their horizontal resting size before reaching saturation. The highest sensitivity was found at 500 nm, with similar sensitivities at lower tested intensities for 390 nm, coinciding with the medium wavelength and short wavelength cones of the degu. We also tested the post-illumination pupillary response (PIPR), which is driven exclusively by ipRGCs. PIPR was largest in response to 450 nm light, with the pupil preserving 48% of its maximum constriction 9 s after the stimulus, in contrast with 24% preserved in response to 525 nm, response driven mainly by cones. PLR- animals showed maximum constriction between 40% and 50% smaller than PLR+, and their PIPR almost disappeared, pointing to a disfunction of the iPRGCs rather than the retinal photoreceptors. Our method thus allows us to non-invasively estimate the condition of experimental animals before attempting other procedures.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile.
| | - Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| | - David Neira
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
18
|
Poncelet L, Ando K, Vergara C, Mansour S, Suain V, Yilmaz Z, Reygel A, Gilissen E, Brion JP, Leroy K. A 4R tauopathy develops without amyloid deposits in aged cat brains. Neurobiol Aging 2019; 81:200-212. [PMID: 31306814 DOI: 10.1016/j.neurobiolaging.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
Abstract
Human tauopathies are neurodegenerative diseases with accumulation of abnormally phosphorylated and aggregated tau proteins forming neurofibrillary tangles. We investigated the development of tau pathology in aged cat brains as a model of neurofibrillary tangle formation occurring spontaneously during aging. In 4 of 6 cats aged between 18 and 21 years, we found a somatodendritic accumulation of phosphorylated and aggregated tau in neurons and oligodendrocytes. Two of these 4 cats had no amyloid immunoreactivity. These tau inclusions were mainly composed of 4R tau isoforms and straight filaments and colocalized with the active form of the glycogen synthase kinase-3 (GSK3). Cat brains with a tau pathology showed a significant cortical atrophy and neuronal loss. We demonstrate in this study the presence of a tau pathology in aged cat brains that develop independently of amyloid deposits. The colocalization of the active form of the GSK3 with tau inclusions as observed in human tauopathies suggests that this kinase could be responsible for the abnormal tau phosphorylation observed in aged cat brains, representing a mechanism of tau pathology development shared between a naturally occurring tauopathy in aged cats and human tauopathies.
Collapse
Affiliation(s)
- Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, ULB neuroscience institute, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Cristina Vergara
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Alain Reygel
- Royal Museum for Central Africa, Vertebrate Unit, Tervuren, Belgium
| | - Emmanuel Gilissen
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium; Royal Museum for Central Africa, BIOCOL Unit, Tervuren, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium.
| |
Collapse
|
19
|
The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases. Pharmacol Ther 2018. [PMID: 29514054 DOI: 10.1016/j.pharmthera.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disease. Despite decades of research, no disease modifying therapy is available and a change of research objectives and/or development of novel research tools may be required. Much AD research has been based on experimental models using animals with a short lifespan that have been extensively genetically manipulated and do not represent the full spectrum of late-onset AD, which make up the majority of cases. The aetiology of AD is heterogeneous and involves multiple factors associated with the late-onset of the disease like disturbances in brain insulin, oxidative stress, neuroinflammation, metabolic syndrome, retinal degeneration and sleep disturbances which are all progressive abnormalities that could account for many molecular, biochemical and histopathological lesions found in brain from patients dying from AD. This review is based on the long-lived rodent Octodon degus (degu) which is a small diurnal rodent native to South America that can spontaneously develop cognitive decline with concomitant phospho-tau, β-amyloid pathology and neuroinflammation in brain. In addition, the degu can also develop several other conditions like type 2 diabetes, macular and retinal degeneration and atherosclerosis, conditions that are often associated with aging and are often comorbid with AD. Long-lived animals like the degu may provide a more realistic model to study late onset AD.
Collapse
|
20
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Bourdenx M, Dovero S, Thiolat ML, Bezard E, Dehay B. Lack of spontaneous age-related brain pathology in Octodon degus: a reappraisal of the model. Sci Rep 2017; 7:45831. [PMID: 28374864 PMCID: PMC5379186 DOI: 10.1038/srep45831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/03/2017] [Indexed: 01/15/2023] Open
Abstract
Neurodegenerative diseases are characterized by the degeneration of specific brain areas associated with accumulation of disease-related protein in extra- or intra-cellular deposits. Their preclinical investigations are mostly based on genetically-engineered animals. Despite their interest, these models are often based on high level of disease-related protein expression, thus questioning their relevance to human pathology and calling for the alternate use of ecological models. In the past few years, Octodon degus has emerged as a promising animal model displaying age-dependent Alzheimer’s disease-related pathology. As neurodegenerative-related proteins often co-deposit in the brain of patients, we assessed the occurrence of α-synuclein-related pathology in this model using state-of-the-art immunohistochemistry and biochemistry. Despite our efforts and in contrast with previously published results, our study argues against the use of Octodon degus as a suitable natural model of neurodegenerative disorder as we failed to identify either Parkinson’s disease- or Alzheimer’s disease-related brain pathologies.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Sandra Dovero
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Thiolat
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
22
|
Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jugder BE, Jayasena T, Inestrosa NC, Sachdev PS. Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Front Aging Neurosci 2017; 9:66. [PMID: 28405187 PMCID: PMC5370394 DOI: 10.3389/fnagi.2017.00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/03/2017] [Indexed: 01/18/2023] Open
Abstract
The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Mark Wainwright Analytical Centre, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Chris Marjo
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Helen Rutlidge
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Anne Rich
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Nibaldo C Inestrosa
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Centre for Ageing and Regeneration, Faculty of Biological Sciences, Pontifical Catholic University of ChileSantiago, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydney, NSW, Australia
| |
Collapse
|
23
|
Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, Müller-Schiffmann A, Korth C, Braun K, Pahnke J. Revisiting rodent models: Octodon degus as Alzheimer's disease model? Acta Neuropathol Commun 2016; 4:91. [PMID: 27566602 PMCID: PMC5002178 DOI: 10.1186/s40478-016-0363-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease primarily occurs as sporadic disease and is accompanied with vast socio-economic problems. The mandatory basic research relies on robust and reliable disease models to overcome increasing incidence and emerging social challenges. Rodent models are most efficient, versatile, and predominantly used in research. However, only highly artificial and mostly genetically modified models are available. As these 'engineered' models reproduce only isolated features, researchers demand more suitable models of sporadic neurodegenerative diseases. One very promising animal model was the South American rodent Octodon degus, which was repeatedly described as natural 'sporadic Alzheimer's disease model' with 'Alzheimer's disease-like neuropathology'. To unveil advantages over the 'artificial' mouse models, we re-evaluated the age-dependent, neurohistological changes in young and aged Octodon degus (1 to 5-years-old) bred in a wild-type colony in Germany. In our hands, extensive neuropathological analyses of young and aged animals revealed normal age-related cortical changes without obvious signs for extensive degeneration as seen in patients with dementia. Neither significant neuronal loss nor enhanced microglial activation were observed in aged animals. Silver impregnation methods, conventional, and immunohistological stains as well as biochemical fractionations revealed neither amyloid accumulation nor tangle formation. Phosphoepitope-specific antibodies against tau species displayed similar intraneuronal reactivity in both, young and aged Octodon degus.In contrast to previous results, our study suggests that Octodon degus born and bred in captivity do not inevitably develop cortical amyloidosis, tangle formation or neuronal loss as seen in Alzheimer's disease patients or transgenic disease models.
Collapse
|
24
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
25
|
Salazar C, Valdivia G, Ardiles ÁO, Ewer J, Palacios AG. Genetic variants associated with neurodegenerative Alzheimer disease in natural models. Biol Res 2016; 49:14. [PMID: 26919851 PMCID: PMC4769573 DOI: 10.1186/s40659-016-0072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/12/2016] [Indexed: 01/05/2023] Open
Abstract
The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.
Collapse
Affiliation(s)
- Claudia Salazar
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Gonzalo Valdivia
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Álvaro O Ardiles
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - John Ewer
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Adrián G Palacios
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile. .,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360102, Valparaíso, Chile.
| |
Collapse
|
26
|
On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 2016; 49:10. [PMID: 26897365 PMCID: PMC4761148 DOI: 10.1186/s40659-016-0074-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 12/15/2022] Open
Abstract
Cognitive ecologist posits that the more efficiently an animal uses information from the biotic and abiotic environment, the more adaptive are its cognitive abilities. Nevertheless, this approach does not test for natural neurodegenerative processes under field or experimental conditions, which may recover animals information processing and decision making and may explain, mechanistically, maladaptive behaviors. Here, we call for integrative approaches to explain the relationship between ultimate and proximate mechanisms behind social behavior. We highlight the importance of using the endemic caviomorph rodent Octodon degus as a valuable natural model for mechanistic studies of social behavior and to explain how physical environments can shape social experiences that might influence impaired cognitive abilities and the onset and progression of neurodegenerative disorders such as Alzheimer disease. We consequently suggest neuroecological approaches to examine how key elements of the environment may affect neural and cognitive mechanisms associated with learning, memory processes and brain structures involved in social behavior. We propose the following three core objectives of a program comprising interdisciplinary research in O. degus, namely: (1) to determine whether diet types provided after weaning can lead to cognitive impairment associated with spatial memory, learning and predisposing to develop Alzheimer disease in younger ages; (2) to examine if early life social experience has long term effects on behavior and cognitive responses and risk for development Alzheimer disease in later life and (3) To determine if an increase of social interactions in adult degu reared in different degree of social stressful conditions alter their behavior and cognitive responses.
Collapse
|
27
|
Roychaudhuri R, Zheng X, Lomakin A, Maiti P, Condron MM, Benedek GB, Bitan G, Bowers MT, Teplow DB. Role of Species-Specific Primary Structure Differences in Aβ42 Assembly and Neurotoxicity. ACS Chem Neurosci 2015; 6:1941-55. [PMID: 26421877 PMCID: PMC4844016 DOI: 10.1021/acschemneuro.5b00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A variety of species express the amyloid β-protein (Aβ (the term "Aβ" refers both to Aβ40 and Aβ42, whereas "Aβ40" and "Aβ42" refer to each isoform specifically). Those species expressing Aβ with primary structure identical to that expressed in humans have been found to develop amyloid deposits and Alzheimer's disease-like neuropathology. In contrast, the Aβ sequence in mice and rats contains three amino acid substitutions, Arg5Gly, His13Arg, and Tyr10Phe, which apparently prevent the development of AD-like neuropathology. Interestingly, the brush-tailed rat, Octodon degus, expresses Aβ containing only one of these substitutions, His13Arg, and does develop AD-like pathology. We investigate here the biophysical and biological properties of Aβ peptides from humans, mice (Mus musculus), and rats (Octodon degus). We find that each peptide displays statistical coil → β-sheet secondary structure transitions, transitory formation of hydrophobic surfaces, oligomerization, formation of annuli, protofibrils, and fibrils, and an inverse correlation between rate of aggregation and aggregate size (faster aggregation produced smaller aggregates). The rank order of assembly rate was mouse > rat > Aβ42. The rank order of neurotoxicity of assemblies formed by each peptide immediately after preparation was Aβ42 > mouse ≈ rat. These data do not support long-standing hypotheses that the primary factor controlling development of AD-like neuropathology in rodents is Aβ sequence. Instead, the data support a hypothesis that assembly quaternary structure and organismal responses to toxic peptide assemblies mediate neuropathogenetic effects. The implication of this hypothesis is that a valid understanding of disease causation within a given system (organism, tissue, etc.) requires the coevaluation of both biophysical and cell biological properties of that system.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xueyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Aleksey Lomakin
- Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Panchanan Maiti
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Margaret M. Condron
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - George B. Benedek
- Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, California 90095
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
28
|
Transcranial magnetic stimulation and aging: Effects on spatial learning and memory after sleep deprivation in Octodon degus. Neurobiol Learn Mem 2015; 125:274-81. [DOI: 10.1016/j.nlm.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
|
29
|
Du LY, Chang LYL, Ardiles AO, Tapia-Rojas C, Araya J, Inestrosa NC, Palacios AG, Acosta ML. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS One 2015; 10:e0135499. [PMID: 26267479 PMCID: PMC4534194 DOI: 10.1371/journal.pone.0135499] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/22/2015] [Indexed: 01/06/2023] Open
Abstract
New studies show that the retina also undergoes pathological changes during the development of Alzheimer's disease (AD). While transgenic mouse models used in these previous studies have offered insight into this phenomenon, they do not model human sporadic AD, which is the most common form. Recently, the Octodon degus has been established as a sporadic model of AD. Degus display age-related cognitive impairment associated with Aβ aggregates and phosphorylated tau in the brain. Our aim for this study was to examine the expression of AD-related proteins in young, adult and old degus retina using enzyme-linked or fluorescence immunohistochemistry and to quantify the expression using slot blot and western blot assays. Aβ4G8 and Aβ6E10 detected Aβ peptides in some of the young animals but the expression was higher in the adults. Aβ peptides were observed in the inner and outer segment of the photoreceptors, the nerve fiber layer (NFL) and ganglion cell layer (GCL). Expression was higher in the central retinal region than in the retinal periphery. Using an anti-oligomer antibody we detected Aβ oligomer expression in the young, adult and old retina. Immunohistochemical labeling showed small discrete labeling of oligomers in the GCL that did not resemble plaques. Congo red staining did not result in green birefringence in any of the animals analyzed except for one old (84 months) animal. We also investigated expression of tau and phosphorylated tau. Expression was seen at all ages studied and in adults it was more consistently observed in the NFL-GCL. Hyperphosphorylated tau detected with AT8 antibody was significantly higher in the adult retina and it was localized to the GCL. We confirm for the first time that Aβ peptides and phosphorylated tau are expressed in the retina of degus. This is consistent with the proposal that AD biomarkers are present in the eye.
Collapse
Affiliation(s)
- Lucia Y. Du
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Lily Y-L. Chang
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Alvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Cheril Tapia-Rojas
- Center for Aging and Regeneration (CARE), Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquin Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nibaldo C. Inestrosa
- Center for Aging and Regeneration (CARE), Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Monica L. Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
30
|
Szabadfi K, Estrada C, Fernandez-Villalba E, Tarragon E, Setalo G, Izura V, Reglodi D, Tamas A, Gabriel R, Herrero MT. Retinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway. Front Cell Neurosci 2015; 9:126. [PMID: 25954153 PMCID: PMC4405622 DOI: 10.3389/fncel.2015.00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/17/2015] [Indexed: 12/25/2022] Open
Abstract
The retina is sensitive to age-dependent degeneration. To find suitable animal models to understand and map this process has particular importance. The degu (Octodon degus) is a diurnal rodent with dichromatic color vision. Its retinal structure is similar to that in humans in many respects, therefore, it is well suited to study retinal aging. Histological, cell type-specific and ultrastructural alterations were examined in 6-, 12- and 36-months old degus. The characteristic layers of the retina were present at all ages, but slightly loosened tissue structure could be observed in 36-month-old animals both at light and electron microscopic levels. Elevated Glial fibrillary acidic protein (GFAP) expression was observed in Müller glial cells in aging retinas. The number of rod bipolar cells and the ganglion cells was reduced in the aging specimens, while that of cone bipolar cells remained unchanged. Other age-related differences were detected at ultrastructural level: alteration of the retinal pigment epithelium and degenerated photoreceptor cells were evident. Ribbon synapses were sparse and often differed in morphology from those in the young animals. These results support our hypothesis that (i) the rod pathway seems to be more sensitive than the cone pathway to age-related cell loss; (ii) structural changes in the basement membrane of pigment epithelial cells can be one of the early signs of degenerative processes; (iii) the loss of synaptic proteins especially from those of the ribbon synapses are characteristic; and (iv) the degu retina may be a suitable model for studying retinal aging.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs Pecs, Hungary ; Janos Szentagothai Research Center Pecs, Hungary
| | - Cristina Estrada
- Clinical and Experimental Neuroscience (NiCE), CIBERNED and Institute of Bio-Health Research of Murcia (IMIB), School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Emiliano Fernandez-Villalba
- Clinical and Experimental Neuroscience (NiCE), CIBERNED and Institute of Bio-Health Research of Murcia (IMIB), School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Ernesto Tarragon
- Clinical and Experimental Neuroscience (NiCE), CIBERNED and Institute of Bio-Health Research of Murcia (IMIB), School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Gyorgy Setalo
- Department of Medical Biology, University of Pecs Pecs, Hungary
| | - Virginia Izura
- Clinical and Experimental Neuroscience (NiCE), CIBERNED and Institute of Bio-Health Research of Murcia (IMIB), School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE "Lendulet" PACAP Research Team, University of Pecs Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE "Lendulet" PACAP Research Team, University of Pecs Pecs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs Pecs, Hungary ; Janos Szentagothai Research Center Pecs, Hungary
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), CIBERNED and Institute of Bio-Health Research of Murcia (IMIB), School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Alzheimer's disease is a complex multifactorial age-related neurodegenerative disorder. Current transgenic animal models do not fully recapitulate human Alzheimer's disease at the molecular, cellular and behavioural levels. This review aims to address the clinical relevance of using 'physiologically' aged rats, dogs and Octodon degus, as more representative 'natural' ecologically valid models to elucidate mechanistic aspects of Alzheimer's disease, and for the development of therapeutic agents to attenuate age-related cognitive decline. RECENT FINDINGS Aged rats, dogs and O. degus decline cognitively and ultimately develop Alzheimer's disease-like symptoms in response to the natural ageing process. Aged rats provide a tractable and popular model to examine the neurobiological basis underlying cognitive decline with age, but they do not develop Alzheimer's disease pathology. Progressive accumulation of abnormal amyloid-beta in extracellular plaques and surrounding cerebral vasculature is a common feature in human Alzheimer's disease, aged canine model and most nonhuman primates. Interestingly, the O. degus develops amyloid-beta deposits, neurofibrillary tangles containing hyperphosphorylated tau protein, altered cholinergic transmission and cognitive deficits analogous to those observed in Alzheimer's disease. Natural animal models better represent the full pathophysiology of Alzheimer's disease and are not only a viable alternative to transgenic models, but also are arguably the preferable model. SUMMARY 'Natural' models are useful to elucidate the neurobiological basis of Alzheimer's disease and develop effective therapeutic strategies that can be translated into human clinical trials.
Collapse
|
32
|
Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA, Carvajal FJ, Ardiles AO, Bozinovic F, Palacios AG, Sachdev PS. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease. Brain Pathol 2015; 25:679-91. [PMID: 25351914 DOI: 10.1111/bpa.12226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of age-related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild-type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age-related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative-activated receptor γ coactivator-1α (PGC-1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juvenal A Ríos
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S Rivera
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juan M Zolezzi
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Carvajal
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Bozinovic
- Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Neurosychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
33
|
Nisbet RM, Polanco JC, Ittner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 2015; 129:207-20. [PMID: 25492702 PMCID: PMC4305093 DOI: 10.1007/s00401-014-1371-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023]
Abstract
Neurofibrillary tangles and amyloid plaques constitute the hallmark brain lesions of Alzheimer's disease (AD) patients. Tangles are composed of fibrillar aggregates of the microtubule-associated protein tau, and plaques comprise fibrillar forms of a proteolytic cleavage product, amyloid-β (Aβ). Although plaques and tangles are the end-stage lesions in AD, small oligomers of Aβ and tau are now receiving increased attention as they are shown to correlate best with neurotoxicity. One key question of debate, however, is which of these pathologies appears first and hence is upstream in the pathocascade. Studies suggest that there is an intense crosstalk between the two molecules and, based on work in animal models, there is increasing evidence that Aβ, at least in part, exerts its toxicity via tau, with the Src kinase Fyn playing a crucial role in this process. In other experimental paradigms, Aβ and tau have been found to exert both separate and synergistic modes of toxicity. The challenge, however, is to integrate these different scenarios into a coherent picture. Furthermore, the ability of therapeutic interventions targeting just one of these molecules, to successfully neutralize the toxicity of the other, needs to be ascertained to improve current therapeutic strategies, such as immunotherapy, for the treatment of AD. Although this article is not intended to provide a comprehensive review of the currently pursued therapeutic strategies, we will discuss what has been achieved by immunotherapy and, in particular, how the inherent limitations of this approach can possibly be overcome by novel strategies that involve single-chain antibodies.
Collapse
Affiliation(s)
- Rebecca M. Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Juan-Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Lars M. Ittner
- Dementia Research Unit, Wallace Wurth Building, The University of New South Wales, Sydney, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
35
|
Kumazawa-Manita N, Katayama M, Hashikawa T, Iriki A. Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images. Exp Brain Res 2013; 231:65-74. [PMID: 23995563 PMCID: PMC3824219 DOI: 10.1007/s00221-013-3667-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Degus (Octodon degus) are rodents that are becoming more widely used in the neuroscience field. Degus display several more complex behaviors than rats and mice, including complicated social behaviors, vocal communications, and tool usage with superb manual dexterity. However, relatively little information is known about the anatomy of degu brains. Therefore, for these complex behaviors to be correlated with specific brain regions, a contemporary atlas of the degu brain is required. This manuscript describes the construction of a three-dimensional (3D) volume rendered model of the degu brain that combines histological and magnetic resonance images. This atlas provides several advantages, including the ability to visualize the surface of the brain from any angle. The atlas also permits virtual cutting of brain sections in any plane and provides stereotaxic coordinates for all sections, to be beneficial for both experimental surgeries and radiological studies. The reconstructed 3D atlas is freely available online at: http://brainatlas.brain.riken.jp/degu/modules/xoonips/listitem.php?index_id=24 .
Collapse
Affiliation(s)
- Noriko Kumazawa-Manita
- Laboratory for Symbolic Cognitive Development, RIKEN, Brain Science Institute, Wako, Saitama, 351-0198, Japan,
| | | | | | | |
Collapse
|
36
|
Pereda-Pérez I, Popović N, Otalora BB, Popović M, Madrid JA, Rol MA, Venero C. Long-term social isolation in the adulthood results in CA1 shrinkage and cognitive impairment. Neurobiol Learn Mem 2013; 106:31-9. [PMID: 23867635 DOI: 10.1016/j.nlm.2013.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
Abstract
Social isolation in adulthood is a psychosocial stressor that can result in endocrinological and behavioral alterations in different species. In rodents, controversial results have been obtained in fear conditioning after social isolation at adulthood, while neural substrates underlying these differences are largely unknown. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) are prominent modulators of synaptic plasticity underlying memory processes in many tasks, including fear conditioning. In this study, we used adult female Octodon degus to investigate the effects of long-term social isolation on contextual and cued fear conditioning, and the possible modulation of the synaptic levels of NCAM and PSA-NCAM in the hippocampus. After 6½ months of social isolation, adult female degus showed a normal auditory-cued fear memory, but a deficit in contextual fear memory, a hippocampal dependent task. Subsequently, we observed reduced hippocampal synaptic levels of PSA-NCAM in isolated compared to grouped-housed female degus. No significant differences were found between experimental groups in hippocampal levels of the three main isoforms of NCAM (NCAM180, NCAM140 and NCAM120). Interestingly, social isolation reduced the volume of the hippocampal CA1 subfield, without affecting the volume of the CA3 subregion or the total hippocampus. Moreover, attenuated body weight gain and reduced number of granulocytes were detected in isolated animals. Our findings indicate for the first time, that long-term social isolation of adult female animals induces a specific shrinkage of CA1 and a decrease in synaptic levels of PSA-NCAM in the hippocampus. These effects may be related to the deficit in contextual fear memory observed in isolated female degus.
Collapse
Affiliation(s)
- Inmaculada Pereda-Pérez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Juan del Rosal 10, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Tarragon E, Lopez D, Estrada C, Ana GC, Schenker E, Pifferi F, Bordet R, Richardson JC, Herrero MT. Octodon degus: a model for the cognitive impairment associated with Alzheimer's disease. CNS Neurosci Ther 2013; 19:643-8. [PMID: 23710760 DOI: 10.1111/cns.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022] Open
Abstract
Octodon degus (O. degus) is a diurnal rodent that spontaneously develops several physiopathological conditions, analogous in many cases to those experienced by humans. In light of this, O. degus has recently been identified as a very valuable animal model for research in several medical fields, especially those concerned with neurodegenerative diseases in which risk is associated with aging. Octodon degus spontaneously develops β-amyloid deposits analogous to those observed in some cases of Alzheimer's disease (AD). Moreover, these deposits are thought to be the key feature for AD diagnosis, and one of the suggested causes of cell loss and cognitive deficit. This review aims to bring together information to support O. degus as a valuable model for the study of AD.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Clinical & Experimental Neuroscience (NiCE) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Health Sciences (Medicine), University Jaume I of Castellon, Castellon de la Plana, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Edrey YH, Medina DX, Gaczynska M, Osmulski PA, Oddo S, Caccamo A, Buffenstein R. Amyloid beta and the longest-lived rodent: the naked mole-rat as a model for natural protection from Alzheimer's disease. Neurobiol Aging 2013; 34:2352-60. [PMID: 23618870 DOI: 10.1016/j.neurobiolaging.2013.03.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 01/09/2023]
Abstract
Amyloid beta (Aβ) is implicated in Alzheimer's disease (AD) as an integral component of both neural toxicity and plaque formation. Brains of the longest-lived rodents, naked mole-rats (NMRs) approximately 32 years of age, had levels of Aβ similar to those of the 3xTg-AD mouse model of AD. Interestingly, there was no evidence of extracellular plaques, nor was there an age-related increase in Aβ levels in the individuals examined (2-20+ years). The NMR Aβ peptide showed greater homology to the human sequence than to the mouse sequence, differing by only 1 amino acid from the former. This subtle difference led to interspecies differences in aggregation propensity but not neurotoxicity; NMR Aβ was less prone to aggregation than human Aβ. Nevertheless, both NMR and human Aβ were equally toxic to mouse hippocampal neurons, suggesting that Aβ neurotoxicity and aggregation properties were not coupled. Understanding how NMRs acquire and tolerate high levels of Aβ with no plaque formation could provide useful insights into AD, and may elucidate protective mechanisms that delay AD progression.
Collapse
Affiliation(s)
- Yael H Edrey
- Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ardiles AO, Ewer J, Acosta ML, Kirkwood A, Martinez AD, Ebensperger LA, Bozinovic F, Lee TM, Palacios AG. Octodon degus (Molina 1782): a model in comparative biology and biomedicine. Cold Spring Harb Protoc 2013; 2013:312-8. [PMID: 23547147 DOI: 10.1101/pdb.emo071357] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
One major goal of integrative and comparative biology is to understand and explain the interaction between the performance and behavior of animals in their natural environment. The Caviomorph, Octodon degu, is a native rodent species from Chile, and represents a unique model to study physiological and behavioral traits, including cognitive and sensory abilities. Degus live in colonies and have a well-structured social organization, with a mostly diurnal-crepuscular circadian activity pattern. More notable is the fact that in captivity, they reproduce and live between 5 and 7 yr and show hallmarks of neurodegenerative diseases (including Alzheimer's disease), diabetes, and cancer.
Collapse
Affiliation(s)
- Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102 Valparaíso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. Proc Natl Acad Sci U S A 2012; 109:13835-40. [PMID: 22869717 DOI: 10.1073/pnas.1201209109] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aβ oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aβ oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aβ oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated.
Collapse
|
41
|
Deacon RMJ, Dulu TD, Patel NB. Naked mole-rats: behavioural phenotyping and comparison with C57BL/6 mice. Behav Brain Res 2012; 231:193-200. [PMID: 22440234 DOI: 10.1016/j.bbr.2012.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 02/03/2023]
Abstract
Naked mole-rats (NMR) live underground in large eusocial colonies in East Africa. They are extremely long-lived, some individuals having a lifespan of over 30 years. This has attracted research into longevity and possibly neurodegenerative disorders. However, very little is known about their basic behaviour, particularly in tests commonly used to characterise the behaviour of the laboratory rat and mouse, for which there is an enormous database. Recently the authors carried out comprehensive behavioural phenotyping on NMRs, comparing them on most tasks directly with C57BL/6 mice, the strain for which there is the largest behavioural database. The NMR colony had been obtained from the wild originally, but housed in an animal facility for about two years. Large inter-species differences in behaviour were seen between the mice and the NMRs. The latter had generally poor sensorimotor function, including cutaneous sensation, strength and even grasp reflexes. They were often reluctant to enter or head-dip into small holes that mice readily entered. Their vision (generally considered to be very poor) was sufficient to distinguish the two zones of a light-dark box. Although, as expected, the NMRs were capable of burrowing and digging, when individually housed they did not shred cotton material to make nests. Shredding was seen in a colony cage containing a queen, but no nests were made there even when a nesting box was provided. In cognitive testing, although, unlike mice and rats, they did not spontaneously alternate in a T-maze, they learnt rewarded alternation and a cued position task well. This study demonstrates how behaviour uniquely reflects the natural environment in which these unusual animals have evolved and live, and provides baseline data for future work.
Collapse
Affiliation(s)
- R M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| | | | | |
Collapse
|
42
|
[Aging of the circadian system]. Rev Esp Geriatr Gerontol 2011; 47:76-80. [PMID: 22172572 DOI: 10.1016/j.regg.2011.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022]
Abstract
Ageing affects all organic structures and processes, including the circadian system and its principal sign, the biological rhythms. The circadian system temporarily organizes the living organisms. It is made up of structures receiving information from the external environment (that synchronize the circadian clock), the central circadian pacemaker and the peripheral clocks that depends on it, and several outputs that are the overt rhythms. Ageing produces losses in function of all these three components: receptors (the eye in its capacity to transmit the more active light information to the circadian system), the central pacemaker (due to alterations in neuronal function) and the outputs. This leads to the alteration of overt rhythms, with losses in the phase relationship between them, a reduction in amplitude, an increase in fragmentation and an advancement of its phase.
Collapse
|
43
|
Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna) 2011; 119:173-95. [PMID: 22086139 DOI: 10.1007/s00702-011-0731-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/24/2011] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common origin of dementia in the elderly. Although the cause of AD remains unknown, several factors have been identified that appear to play a critical role in the development of this debilitating disorder. In particular, amyloid precursor protein (APP), tau hyperphosphorylation, and the secretase enzymes, have become the focal point of recent research. Over the last two decades, several transgenic and non-transgenic animal models have been developed to elucidate the mechanistic aspects of AD and to validate potential therapeutic targets. Transgenic rodent models over-expressing human β-amyloid precursor protein (β-APP) and mutant forms of tau have become precious tools to study and understand the pathogenesis of AD at the molecular, cellular and behavioural levels, and to test new therapeutic agents. Nevertheless, none of the transgenic models of AD recapitulate fully all of the pathological features of the disease. Octodon degu, a South American rodent has been recently found to spontaneously develop neuropathological signs of AD in old age. This review aims to address the limitations and clinical relevance of transgenic rodent models in AD, and to highlight the potential for O. degu as a natural model for the study of AD neuropathology.
Collapse
|
44
|
Seidel K, Poeggel G, Holetschka R, Helmeke C, Braun K. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus. J Neuroendocrinol 2011; 23:1166-76. [PMID: 21848809 DOI: 10.1111/j.1365-2826.2011.02208.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.
Collapse
Affiliation(s)
- K Seidel
- Institute of Biology, Department of Zoology/Developmental Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Wang Y, Liu J, Zhang Z, Wang X, Zhang C. Structure and permeability changes of the blood-brain barrier in APP/PS1 mice: an Alzheimer’s disease animal model. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411030135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Jekl V, Hauptman K, Knotek Z. Diseases in pet degus: a retrospective study in 300 animals. J Small Anim Pract 2011; 52:107-12. [DOI: 10.1111/j.1748-5827.2010.01028.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Barnes maze performance of Octodon degus is gender dependent. Behav Brain Res 2010; 212:159-67. [PMID: 20385170 DOI: 10.1016/j.bbr.2010.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Gender differences in spatial navigation have been widely reported in nocturnal rodent species. Here, for the first time we report gender differences in spatial learning and memory of Octodon degus, a long-lived diurnal hystricomorph rodent. In the present study, 16 months old male and female O. degus were tested in the 18-holes Barnes circular maze. The acquisition session consisted of four daily 4 min trials, during 10 days. Seven days later, the retention test was performed. To avoid the effect of hormonal fluctuation on spatial navigation, both the acquisition and the retention tests, were performed in 21-day regular cycling females in a period that corresponds to the diestrus phase of the estrus cycle. At the beginning of the acquisition, female degus were significantly slower than males to find the escape hole, but the situation reversed afterwards. Moreover, during the course of acquisition, females made significantly less reference memory errors, working memory errors as well as omission errors, than males. In both sexes, motivation and learning ceiling effects were reached at days 5-6 of the training. During the acquisition, females used more frequently a spatial strategy, while males preferably applied either serial, random or opposite strategies. The observed cognitive differences between male and female O. degus existed only during the acquisition period but not during the retention, indicating that acquisition and consolidation are differently influenced by gender.
Collapse
|