1
|
Silva IAL, Varela D, Cancela ML, Conceição N. Zebrafish optineurin: genomic organization and transcription regulation. Genome 2022; 65:513-523. [PMID: 36037528 DOI: 10.1139/gen-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optineurin (OPTN) is involved in a variety of mechanisms such as autophagy, vesicle trafficking, and NF-κB signaling. Mutations in the OPTN gene have been associated with different pathologies including glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and 3D structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.
Collapse
Affiliation(s)
- Iris A L Silva
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Débora Varela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - M Leonor Cancela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Natércia Conceição
- University of Algarve Department of Biomedical Sciences and Medicine, Faro, Portugal;
| |
Collapse
|
2
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
3
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
4
|
Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response. Exp Mol Med 2021; 53:667-680. [PMID: 33864025 PMCID: PMC8102640 DOI: 10.1038/s12276-021-00596-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Abnormally increased resorption contributes to bone degenerative diseases such as Paget's disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn-/-) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn-/- and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn-/- monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.
Collapse
|
5
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q, Weng Q. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy 2021; 18:73-85. [PMID: 33783320 DOI: 10.1080/15548627.2021.1908722] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved process in eukaryotic cells. It plays a critical role in cellular homeostasis by delivering cytoplasmic cargos to lysosomes for selective degradation. OPTN (optineurin), a well-recognized autophagy receptor, has received considerable attention due to its multiple roles in the autophagic process. OPTN is associated with many human disorders that are closely related to autophagy, such as rheumatoid arthritis, osteoporosis, and nephropathy. Here, we review the function of OPTN as an autophagy receptor at different stages of autophagy, focusing on cargo recognition, autophagosome formation, autophagosome maturation, and lysosomal quality control. OPTN tends to be protective in most autophagy associated diseases, though the molecular mechanism of OPTN regulation in these diseases is not well understood. A comprehensive review of the function of OPTN in autophagy provides valuable insight into the pathogenesis of human diseases related to OPTN and facilitates the discovery of potential key regulators and novel therapeutic targets for disease intervention in patients with autophagic diseases.Abbreviations: ATG: autophagy-related; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; MYO6: myosin VI; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: IκB kinase; LIR: LC3-interacting region; LZ: leucine zipper; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-κB: nuclear factor kappa B subunit; OPTN: optineurin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RTECs: renal tubular epithelial cells; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TOM1: target of myb1 membrane trafficking protein; UBD: ubiquitin-binding domain; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; ZF: zinc finger.
Collapse
Affiliation(s)
- Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
7
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
8
|
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020; 108:822-842. [PMID: 32931756 PMCID: PMC7736125 DOI: 10.1016/j.neuron.2020.08.022] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Tassoni-Tsuchida
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
McCall AL, Dhindsa JS, Pucci LA, Kahn AF, Fusco AF, Biswas DD, Strickland LM, Tseng HC, ElMallah MK. Respiratory pathology in the Optn -/- mouse model of Amyotrophic Lateral Sclerosis. Respir Physiol Neurobiol 2020; 282:103525. [PMID: 32805420 DOI: 10.1016/j.resp.2020.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder that results in death due to respiratory failure. Many genetic defects are associated with ALS; one such defect is a mutation in the gene encoding optineurin (OPTN). Using an optineurin null mouse (Optn-/-), we sought to characterize the impact of optineurin deficiency on respiratory neurodegeneration. Respiratory function was assessed at 6 and 12 mo of age using whole body plethysmography at baseline during normoxia (FiO2: 0.21; N2 balance) and during a respiratory challenge with hypoxia and hypercapnia (FiCO2: 0.07, FiO2: 0.10; N2 balance). Histological analyses to assess motor neuron viability and respiratory nerve integrity were performed in the medulla, cervical spinal cord, hypoglossal nerve, and phrenic nerve. Minute ventilation, peak inspiratory flow, and peak expiratory flow are significantly reduced during a respiratory challenge in 6 mo Optn-/-mice. By 12 mo, tidal volume is also significantly reduced in Optn-/- mice. Furthermore, 12mo Optn-/- mice exhibit hypoglossal motor neuron loss, phrenic and hypoglossal dysmyelination, and accumulated mitochondria in the hypoglossal nerve axons. Overall, these data indicate that Optn-/- mice display neurodegenerative respiratory dysfunction and are a useful model to study the impact of novel therapies on respiratory function for optineurin-deficient ALS patients.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Justin S Dhindsa
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Logan A Pucci
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Amanda F Kahn
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Anna F Fusco
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Debolina D Biswas
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Laura M Strickland
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Mai K ElMallah
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA.
| |
Collapse
|
10
|
Goldstein O, Kedmi M, Gana-Weisz M, Nefussy B, Vainer B, Fainmesser Y, Drory VE, Orr-Urtreger A. A novel mutation in TARDBP segregates with amyotrophic lateral sclerosis in a large family with early onset and fast progression. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:280-285. [PMID: 32253937 DOI: 10.1080/21678421.2020.1747496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To identify the genetic background of ALS segregating in a large Bedouin family in Israel. Methods: Exome sequencing was carried out on three siblings in a family segregating ALS, two affected and one without neurological symptoms. Filtering for causative variants and for modifiers was carried out. Eight variants were confirmed by Sanger sequencing and genotyped on nine available members of the family (three affected and six unaffected). Results: We report the identification of a novel mutation in TARDBP, p.Ala321Asp, segregating in the family. The patients are affected with early onset (average age 34.5, 21-43 years old) and fast progressive disease. The mutation is in exon 6, in the glycin-rich domain, and is predicted to be deleterious. Additional rare, potentially deleterious variants were observed in the three patients, only one of them, PLEKHG5-Phe538Leu, which is located 4.5 Mb upstream to the TARDBP, was also fully segregating in the family. Conclusion: We identified a novel mutation in TARDBP which segregates with the disease in a large family. Additional rare variants were identified, and the combination of next-generation-sequencing together with linkage analysis was optimal to identify causality and modification, emphasizing the importance of combining the two analyses. Burden of deleterious variants may be associated with early age at onset.
Collapse
Affiliation(s)
- Orly Goldstein
- The Genomic Research Laboratory for Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Merav Kedmi
- The Genomic Research Laboratory for Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- The Genomic Research Laboratory for Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Beatrice Nefussy
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, and
| | - Batel Vainer
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, and
| | - Yaara Fainmesser
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, and
| | - Vivian E Drory
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, and.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- The Genomic Research Laboratory for Neurodegeneration, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Feng SM, Che CH, Feng SY, Liu CY, Li LY, Li YX, Huang HP, Zou ZY. Novel mutation in optineurin causing aggressive ALS+/-frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:2377-2383. [PMID: 31838784 PMCID: PMC6917321 DOI: 10.1002/acn3.50928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Mutations in optineurin (OPTN) have been identified in familial and sporadic amyotrophic lateral sclerosis (ALS). We screened a cohort of Chinese patients for mutations in optineurin. We also performed an extensive literatures review of all mutations in optineurin identified previously to detect genotype–phenotype associations. Methods All 16 exons of the OPTN gene in a cohort of 15 familial ALS indexes and 275 sporadic ALS patients of Chinese origin were sequenced by targeted next generation sequencing. Results Two known heterozygous missense mutations in the OPTN, c.1481T> G (p.L494W), and c.1546G> C (p.E516Q), as well as one novel heterozygous missense mutation c.1690G> C (p.D564H) were each detected in one sporadic ALS patient. The patient carrying the p.E516Q mutation developed clinical features of ALS‐frontotemporal dementia (FTD) and the patient carrying the p.D564H mutation showed a phenotype of ALS. They both had an aggressive course, with a survival of 18 and 14 months respectively. Literature review showed that the clinical phenotypes in OPTN mutated ALS were not homogeneous, although some individuals showed a relatively slow progression and a long duration, some mutations carriers developed an aggressive progression and a short survival. Interpretation OPTN mutations contribute to ALS in Chinese population and account for 0.8% of sporadic ALS patients and 1.5% of familial ALS in the pooled Chinese ALS cohorts. Mutations in optineurin can cause aggressive ALS+/−FTD.
Collapse
Affiliation(s)
- Shu-Man Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shu-Yan Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Liu-Yi Li
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yuan-Xiao Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
12
|
Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. ACTA ACUST UNITED AC 2019; 60:3625-3635. [DOI: 10.1167/iovs.19-27184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kseniia Chernyshova
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Liu Z, Li H, Hong C, Chen M, Yue T, Chen C, Wang Z, You Q, Li C, Weng Q, Xie H, Hu R. ALS-Associated E478G Mutation in Human OPTN (Optineurin) Promotes Inflammation and Induces Neuronal Cell Death. Front Immunol 2018; 9:2647. [PMID: 30519240 PMCID: PMC6251386 DOI: 10.3389/fimmu.2018.02647] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of neurodegenerative disorders that featured with the death of motor neurons, which leads to loss of voluntary control on muscles. The etiologies vary among different subtypes of ALS, and no effective management or medication could be provided to the patients, with the underlying mechanisms incompletely understood yet. Mutations in human Optn (Optineurin), particularly E478G, have been found in many ALS patients. In this work, we report that NF-κB activity was increased in Optn knockout (Optn−/−) MEF (mouse embryonic fibroblast) cells expressing OPTN of different ALS-associated mutants especially E478G. Inflammation was significantly activated in mice infected with lenti-virus that allowed overexpression of OPTNE478G mutation in the motor cortex, with marked increase in the secretion of pro-inflammatory cytokines as well as neuronal cell death. Our work with both cell and animal models strongly suggested that anti-inflammation treatment could represent a powerful strategy to intervene into disease progression in ALS patients who possess the distinctive mutations in OPTN gene.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongming Li
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chungu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Menglu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Yue
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyuan Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qing You
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| | - Chuanyin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| | - Qinjie Weng
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.,Department of life science, Shanghai Tech University, Shanghai, China
| |
Collapse
|
14
|
Toth RP, Atkin JD. Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma. Front Immunol 2018; 9:1017. [PMID: 29875767 PMCID: PMC5974248 DOI: 10.3389/fimmu.2018.01017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and glaucoma, affect millions of people worldwide. ALS is caused by the loss of motor neurons in the spinal cord, brainstem, and brain, and genetic mutations are responsible for 10% of all ALS cases. Glaucoma is characterized by the loss of retinal ganglion cells and is the most common cause of irreversible blindness. Interestingly, mutations in OPTN, encoding optineurin, are associated with both ALS and glaucoma. Optineurin is a highly abundant protein involved in a wide range of cellular processes, including the inflammatory response, autophagy, Golgi maintenance, and vesicular transport. In this review, we summarize the role of optineurin in cellular mechanisms implicated in neurodegenerative disorders, including neuroinflammation, autophagy, and vesicular trafficking, focusing in particular on the consequences of expression of mutations associated with ALS and glaucoma. This review, therefore showcases the impact of optineurin dysfunction in ALS and glaucoma.
Collapse
Affiliation(s)
- Reka P Toth
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018; 9:1024. [PMID: 29867991 PMCID: PMC5962687 DOI: 10.3389/fimmu.2018.01024] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin is a multifunctional adaptor protein intimately involved in various vesicular trafficking pathways. Through interactions with an array of proteins, such as myosin VI, huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many cellular processes associated with the trafficking of membrane-delivered cargo. Due to its diverse interactions and its distinct functions, optineurin is an essential component in a number of homeostatic pathways, such as protein trafficking and organelle maintenance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, optineurin also serves as a selective autophagic receptor for the removal of a wide range of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the clearance of protein aggregates. Regarding its disease associations, mutations in the optineurin gene are associated with glaucoma and have more recently been found to correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, ALS-associated mutations in optineurin result in defects in neuronal vesicular localisation, autophagosome–lysosome fusion, and secretory pathway function. More recent molecular and functional analysis has shown that it also plays a role in mitophagy, thus linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, we review the role of optineurin in intracellular membrane trafficking, with a focus on autophagy, and describe how upstream signalling cascades are critical to its regulation. Current data and contradicting reports would suggest that optineurin is an important and selective autophagy receptor under specific conditions, whereby interplay, synergy, and functional redundancy with other receptors occurs. We will also discuss how dysfunction in optineurin-mediated pathways may lead to perturbation of critical cellular processes, which can drive the pathologies of number of diseases. Therefore, further understanding of optineurin function, its target specificity, and its mechanism of action will be critical in fully delineating its role in human disease.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Minegishi Y, Nakayama M, Iejima D, Kawase K, Iwata T. Significance of optineurin mutations in glaucoma and other diseases. Prog Retin Eye Res 2016; 55:149-181. [DOI: 10.1016/j.preteyeres.2016.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
|
17
|
Fifita JA, Williams KL, Sundaramoorthy V, Mccann EP, Nicholson GA, Atkin JD, Blair IP. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:126-133. [DOI: 10.1080/21678421.2016.1218517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer A. Fifita
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Kelly L. Williams
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Vinod Sundaramoorthy
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Emily P. Mccann
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Garth A. Nicholson
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia,
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia,
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia, and
| | - Julie D. Atkin
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Ian P. Blair
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| |
Collapse
|
18
|
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6:49-64. [PMID: 30050368 PMCID: PMC6053097 DOI: 10.2147/dnnd.s84956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in loss of the upper and lower motor neurons from motor cortex, brainstem, and spinal cord. While the majority of cases are sporadic, approximately 10% show familial inheritance. ALS is usually inherited in an autosomal dominant manner, although autosomal recessive and X-linked inheritance do occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS and to frontotemporal dementia-ALS, where family pedigrees contain individuals with frontotemporal dementia with/without ALS. The most commonly established genetic causes of familial ALS (FALS) to date are the presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and mutation of SOD1, TARDBP, and FUS, with frequencies of 12%-23.5%, 5%, and 4.1%, respectively. However, with the increasing use of next-generation sequencing of small family pedigrees, this has led to an increasing number of genes being associated with ALS. This review provides a comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms associated with these genes. Commonly implicated pathways have been established, including RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome system, as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays in both FALS and sporadic ALS is essential for understanding the subsequent cellular dysregulation that leads to motor neuron loss, in order to develop future effective therapeutic strategies.
Collapse
Affiliation(s)
- Afnan A Alsultan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| |
Collapse
|
19
|
Goldstein O, Nayshool O, Nefussy B, Traynor BJ, Renton AE, Gana-Weisz M, Drory VE, Orr-Urtreger A. OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes. Neurology 2016; 86:446-53. [PMID: 26740678 DOI: 10.1212/wnl.0000000000002334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To detect genetic variants underlying familial and sporadic amyotrophic lateral sclerosis (ALS). METHODS We analyzed 2 founder Jewish populations of Moroccan and Ashkenazi origins and ethnic matched controls. Exome sequencing of 2 sisters with ALS from Morocco was followed by genotyping the identified causative null mutation in 379 unrelated patients with ALS and 1,000 controls. The shared risk haplotype was characterized using whole-genome single nucleotide polymorphism array. RESULTS We identified 5 unrelated patients with ALS homozygous for the null 691_692insAG mutation in the optineurin gene (OPTN), accounting for 5.8% of ALS of Moroccan origin and 0.3% of Ashkenazi. We also identified a high frequency of heterozygous carriers among patients with ALS, 8.7% and 2.9%, respectively, compared to 0.75% and 1.0% in controls. The risk of carriers for ALS was significantly increased, with odds ratio of 13.46 and 2.97 in Moroccan and Ashkenazi Jews, respectively. We determined that 691_692insAG is a founder mutation in the tested populations with a minimal risk haplotype of 58.5 Kb, encompassing the entire OPTN gene. CONCLUSIONS Our data show that OPTN 691_692insAG mutation is a founder mutation in Moroccan and Ashkenazi Jews. This mutation causes autosomal recessive ALS and significantly increases the risk to develop the disease in heterozygous carriers, suggesting both a recessive mode of inheritance and a dominant with incomplete penetrance. These data emphasize the important role of OPTN in ALS pathogenesis, and demonstrate the complex genetics of ALS, as the same mutation leads to different phenotypes and appears in 2 patterns of inheritance.
Collapse
Affiliation(s)
- Orly Goldstein
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Omri Nayshool
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Beatrice Nefussy
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Bryan J Traynor
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Alan E Renton
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Mali Gana-Weisz
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Vivian E Drory
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel
| | - Avi Orr-Urtreger
- From The Genetic Institute (O.G., O.N., M.G.-W., A.O.-U.) and the Neuromuscular Service, Department of Neurology (B.N., V.E.D.), Tel Aviv Sourasky Medical Center, Israel; the Laboratory of Neurogenetics (B.J.T., A.E.R.), National Institute on Aging, Bethesda, MD; and the Sackler Faculty of Medicine (V.E.D., A.O.-U.), Tel Aviv University, Israel.
| |
Collapse
|
20
|
Li C, Ji Y, Tang L, Zhang N, He J, Ye S, Liu X, Fan D. Optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in China. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:485-9. [PMID: 26503823 DOI: 10.3109/21678421.2015.1089909] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengyu Li
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Ying Ji
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing, China
| |
Collapse
|
21
|
Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JMB, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015; 347:1436-41. [PMID: 25700176 DOI: 10.1126/science.aaa3650] [Citation(s) in RCA: 711] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth T Cirulli
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter C Sapp
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Claire S Leblond
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Brian J Krueger
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yujun Han
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Braden E Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jack R Wimbish
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Lindsay L Waite
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Angela L Jones
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | | | - Winnie W Xin
- Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessandra Chesi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alya R Raphael
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Janet Cady
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J M B Vianney de Jong
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Kevin P Kenna
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Jack Miller
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Athina Gkazi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | | | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands
| | - Jan Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | | | - Stanley Appel
- Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ericka Simpson
- Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Summer Gibson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Elman
- Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leo McCluskey
- Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - John M Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Katherine B Sims
- Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tom Maniatis
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - Sebastian D Hayes
- Biogen Idec, Cambridge, MA 02142, USA. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthew B Harms
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Dual Role of Autophagy in Neurodegenerative Diseases: The Case of Amyotrophic Lateral Sclerosis. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-13939-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging 2014; 36:1602.e17-27. [PMID: 25499087 PMCID: PMC4357530 DOI: 10.1016/j.neurobiolaging.2014.10.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
Mutations in the gene encoding profilin 1 (PFN1) have recently been shown to cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We sequenced the PFN1 gene in a cohort of ALS patients (n = 485) and detected 2 novel variants (A20T and Q139L), as well as 4 cases with the previously identified E117G rare variant (∼ 1.2%). A case-control meta-analysis of all published E117G ALS+/- frontotemporal dementia cases including those identified in this report was significant p = 0.001, odds ratio = 3.26 (95% confidence interval, 1.6-6.7), demonstrating this variant to be a susceptibility allele. Postmortem tissue from available patients displayed classic TAR DNA-binding protein 43 pathology. In both transient transfections and in fibroblasts from a patient with the A20T change, we showed that this novel PFN1 mutation causes protein aggregation and the formation of insoluble high molecular weight species which is a hallmark of ALS pathology. Our findings show that PFN1 is a rare cause of ALS and adds further weight to the underlying genetic heterogeneity of this disease.
Collapse
|
24
|
Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PLoS One 2014; 9:e109922. [PMID: 25329564 PMCID: PMC4199637 DOI: 10.1371/journal.pone.0109922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
Collapse
Affiliation(s)
- Jeremiah D. Paulus
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
25
|
Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet 2014; 10:e1004704. [PMID: 25299611 PMCID: PMC4191946 DOI: 10.1371/journal.pgen.1004704] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive degeneration of motor neurons, ultimately leading to paralysis and death. Approximately 10% of ALS cases are familial, with the remaining 90% of cases being sporadic. Genetic studies in familial cases of ALS have been extremely informative in determining the causative mutations behind ALS, especially as the same mutations identified in familial ALS can also cause sporadic disease. However, the cause of ALS in approximately 30% of familial cases and in the majority of sporadic cases remains unknown. Sporadic ALS cases represent an underutilized resource for genetic information about ALS; therefore, we undertook a targeted sequencing approach of 169 known and candidate ALS disease genes in 242 sporadic ALS cases and 129 matched controls to try to identify novel variants linked to ALS. We found a significant enrichment in novel and rare variants in cases versus controls, indicating that we are likely identifying disease associated mutations. This study highlights the utility of next generation sequencing techniques combined with functional studies and rare variant analysis tools to provide insight into the genetic etiology of a heterogeneous sporadic disease. Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.
Collapse
Affiliation(s)
- Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alya R. Raphael
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roxana Daneshjou
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Our understanding of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways as targets for therapeutic development. This article reviews our current understanding of the heritability of ALS and provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS.
Collapse
Affiliation(s)
- Matthew B Harms
- Neuromuscular Division, Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
27
|
Ngo S, Steyn F, McCombe P. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 2014; 340:5-12. [DOI: 10.1016/j.jns.2014.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
28
|
Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014; 71:287-97. [PMID: 23912896 PMCID: PMC11113174 DOI: 10.1007/s00018-013-1429-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Chiara F. Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), Paul-Ehrlich-Strasse 17, 72076, Tübingen, Germany
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
29
|
Munitic I, Torchia MLG, Meena NP, Zhu G, Li CC, Ashwell JD. Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6231-40. [PMID: 24244017 PMCID: PMC3886234 DOI: 10.4049/jimmunol.1301696] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a widely expressed polyubiquitin-binding protein that has been implicated in regulating cell signaling via its NF-κB essential modulator-homologous C-terminal ubiquitin (Ub)-binding region. Its functions are controversial, with in vitro studies finding that optineurin suppressed TNF-mediated NF-κB activation and virus-induced activation of IFN regulatory factor 3 (IRF3), whereas bone marrow-derived macrophages (BMDMs) from mice carrying an optineurin Ub-binding point mutation had normal TLR-mediated NF-κB activation and diminished IRF3 activation. We have generated a mouse model in which the entire Ub-binding C-terminal region is deleted (Optn(470T)). Akin to C-terminal optineurin mutations found in patients with certain neurodegenerative diseases, Optn(470T) was expressed at substantially lower levels than the native protein, allowing assessment not only of the lack of Ub binding, but also of protein insufficiency. Embryonic lethality with incomplete penetrance was observed for 129 × C57BL/6 Optn(470T/470T) mice, but after further backcrossing to C57BL/6, offspring viability was restored. Moreover, the mice that survived were indistinguishable from wild type littermates and had normal immune cell distributions. Activation of NF-κB in Optn(470T) BMDM and BM-derived dendritic cells with TNF or via TLR4, T cells via the TCR, and B cells with LPS or anti-CD40 was normal. In contrast, optineurin and/or its Ub-binding function was necessary for optimal TANK binding kinase 1 and IRF3 activation, and both Optn(470T) BMDMs and bone marrow-derived dendritic cells had diminished IFN-β production upon LPS stimulation. Importantly, Optn(470T) mice produced less IFN-β upon LPS challenge. Therefore, endogenous optineurin is dispensable for NF-κB activation but necessary for optimal IRF3 activation in immune cells.
Collapse
Affiliation(s)
- Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Netra Pal Meena
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Guozhi Zhu
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Caiyi C. Li
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79:416-38. [PMID: 23931993 DOI: 10.1016/j.neuron.2013.07.033] [Citation(s) in RCA: 1262] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.
Collapse
Affiliation(s)
- Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | | | |
Collapse
|
31
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
32
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
33
|
Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125:777-94. [PMID: 23673820 PMCID: PMC3661910 DOI: 10.1007/s00401-013-1125-6] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the aggregation of ubiquitinated proteins in affected motor neurons. Recent studies have identified several new molecular constituents of ALS-linked cellular aggregates, including FUS, TDP-43, OPTN, UBQLN2 and the translational product of intronic repeats in the gene C9ORF72. Mutations in the genes encoding these proteins are found in a subgroup of ALS patients and segregate with disease in familial cases, indicating a causal relationship with disease pathogenesis. Furthermore, these proteins are often detected in aggregates of non-mutation carriers and those observed in other neurodegenerative disorders, supporting a widespread role in neuronal degeneration. The molecular characteristics and distribution of different types of protein aggregates in ALS can be linked to specific genetic alterations and shows a remarkable overlap hinting at a convergence of underlying cellular processes and pathological effects. Thus far, self-aggregating properties of prion-like domains, altered RNA granule formation and dysfunction of the protein quality control system have been suggested to contribute to protein aggregation in ALS. The precise pathological effects of protein aggregation remain largely unknown, but experimental evidence hints at both gain- and loss-of-function mechanisms. Here, we discuss recent advances in our understanding of the molecular make-up, formation, and mechanism-of-action of protein aggregates in ALS. Further insight into protein aggregation will not only deepen our understanding of ALS pathogenesis but also may provide novel avenues for therapeutic intervention.
Collapse
|
34
|
A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany. Neurobiol Aging 2013; 34:1516.e9-15. [DOI: 10.1016/j.neurobiolaging.2012.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/22/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022]
|
35
|
Maruyama H, Kawakami H. Optineurin and amyotrophic lateral sclerosis. Geriatr Gerontol Int 2012; 13:528-32. [PMID: 23279185 DOI: 10.1111/ggi.12022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating disease, and thus it is important to identify the causative gene and resolve the mechanism of the disease. We identified optineurin as a causative gene for amyotrophic lateral sclerosis. We found three types of mutations: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Optineurin negatively regulates the tumor necrosis factor-α-induced activation of nuclear factor kappa B. Nonsense and missense mutations abolished this function. Mutations related to amyotrophic lateral sclerosis also negated the inhibition of interferon regulatory factor-3. The missense mutation showed a cyotoplasmic distribution different from that of the wild type. There are no specific clinical symptoms related to optineurin. However, severe brain atrophy was detected in patients with homozygous deletion. Neuropathologically, an E478G patient showed transactive response DNA-binding protein of 43 kDa-positive neuronal intracytoplasmic inclusions in the spinal and medullary motor neurons. Furthermore, Golgi fragmentation was identified in 73% of this patient's anterior horn cells. In addition, optineurin is colocalized with fused in sarcoma in the basophilic inclusions of amyotrophic lateral sclerosis with fused in sarcoma mutations, and in basophilic inclusion body disease. These findings strongly suggest that optineurin is involved in the pathogenesis of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Hirofumi Maruyama
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | |
Collapse
|
36
|
Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B, Behl C, Terzic J, Dikic I. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 2012. [PMID: 23178947 DOI: 10.1242/jcs.114926] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increases protein aggregation in HeLa cells and that morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is colocalized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at serine 177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.
Collapse
Affiliation(s)
- Jelena Korac
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
38
|
Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012; 2012:736905. [PMID: 22518139 PMCID: PMC3320095 DOI: 10.1155/2012/736905] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation is a continuous process in our cells. Some proteins aggregate in a regulated manner required for different vital functional processes in the cells whereas other protein aggregates result from misfolding caused by various stressors. The decision to form an aggregate is largely made by chaperones and chaperone-assisted proteins. Proteins that are damaged beyond repair are degraded either by the proteasome or by the lysosome via autophagy. The aggregates can be degraded by the proteasome and by chaperone-mediated autophagy only after dissolution into soluble single peptide species. Hence, protein aggregates as such are degraded by macroautophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy. Here we review the processes of aggregate formation, recognition, transport, and sequestration into autophagosomes by autophagy receptors and the role of aggrephagy in different protein aggregation diseases.
Collapse
|