1
|
Valančienė J, Melaika K, Šliachtenko A, Šiaurytė-Jurgelėnė K, Ekkert A, Jatužis D. Stroke genetics and how it Informs novel drug discovery. Expert Opin Drug Discov 2024; 19:553-564. [PMID: 38494780 DOI: 10.1080/17460441.2024.2324916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficient etiopathology-based treatment. It is partly due to the complexity and heterogenicity of the disease. It is estimated that around one-third of ischemic stroke is heritable, emphasizing the importance of genetic factors identification and targeting for therapeutic purposes. AREAS COVERED In this review, the authors provide an overview of the current knowledge of stroke genetics and its value in diagnostics, personalized treatment, and prognostication. EXPERT OPINION As the scale of genetic testing increases and the cost decreases, integration of genetic data into clinical practice is inevitable, enabling assessing individual risk, providing personalized prognostic models and identifying new therapeutic targets and biomarkers. Although expanding stroke genetics data provides different diagnostics and treatment perspectives, there are some limitations and challenges to face. One of them is the threat of health disparities as non-European populations are underrepresented in genetic datasets. Finally, a deeper understanding of underlying mechanisms of potential targets is still lacking, delaying the application of novel therapies into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | - Kamilė Šiaurytė-Jurgelėnė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Dalius Jatužis
- Center of Neurology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Taniguchi A, Shindo A, Tabei KI, Onodera O, Ando Y, Urabe T, Kimura K, Kitagawa K, Miyamoto Y, Takegami M, Ihara M, Mizuta I, Mizuno T, Tomimoto H. Imaging Characteristics for Predicting Cognitive Impairment in Patients With Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Front Aging Neurosci 2022; 14:876437. [PMID: 35754959 PMCID: PMC9226637 DOI: 10.3389/fnagi.2022.876437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) show various clinical symptoms, including migraine, recurrent stroke, and cognitive impairment. We investigated the associations between magnetic resonance imaging (MRI) markers of small vessel disease and neuropsychological tests and identified the MRI characteristics for predicting cognitive impairment in patients with CADASIL. Methods Subjects included 60 CADASIL patients diagnosed with genetic tests and registered in the Japanese CADASIL REDCap database between June 2016 and December 2020. Patient information including clinical data, modified Rankin Scale (mRS); MRI findings of small vessel disease including periventricular and deep white matter lesions (WML), lacunar infarcts, and cerebral microbleeds (CMBs); and neuropsychological tests, including the Japanese version of the Mini-Mental State Examination (MMSE), the Japanese version of the Montreal Cognitive Assessment (MoCA-J), and the Frontal Assessment Battery (FAB), were evaluated. Results Data from 44 CADASIL patients were eligible for this study, compared between patients with and without dementia. Regarding the neuroimaging findings, the Fazekas score of periventricular and deep WML was higher in patients with dementia (periventricular, p = 0.003; deep, p = 0.009). The number of lacunar infarcts was higher in patients with dementia (p = 0.001). The standardized partial regression coefficient (SPRC) in MoCA-J was 0.826 (95% CI, 0.723-0.942; p = 0.005) for the number of CMBs. The SPRC in MMSE was 0.826 (95% CI, 0.719-0.949; p = 0.007) for the number of CMBs. The SPRC for FAB decreased significantly to 0.728 (95% CI, 0.551-0.960; p = 0.024) for the number of lacunar infarcts. Receiver operating characteristic (ROC) curves for dementia showed that in the number of lacunar infarcts, a cut-off score of 5.5 showed 90.9% sensitivity and 61.1% specificity. For the number of CMBs, a cut-off score of 18.5 showed 45.5% sensitivity and 100% specificity. Conclusion The characteristic MRI findings were that CADASIL patients with dementia had severe WML, both periventricular and deep, and a larger number of lacunar infarcts than those without dementia. The risk of dementia may be associated with ≥ 6 lacunar infarcts, ≥19 CMBs, or a Fazekas scale score of 3 in periventricular and deep WML.
Collapse
Affiliation(s)
- Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken-ichi Tabei
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- School of Industrial Technology, Advanced Institute of Industrial Technology, Tokyo Metropolitan Public University Corporation, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Amyloidosis Research, Nagasaki International University, Nagasaki, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kazumi Kimura
- Department of Neurology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yoshihiro Miyamoto
- Open Innovation Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
NOTCH3 mutations in a cohort of Portuguese patients within CADASIL spectrum phenotype. Neurogenetics 2021; 23:1-9. [PMID: 34851492 DOI: 10.1007/s10048-021-00679-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common inherited cerebral small vessel disease. It is caused by mutations in the NOTCH3 gene, which encodes a membranebound receptor protein with three main distinct functional domains. Thus far, several different NOTCH3 mutations, most of them cysteine altering variants, have been described and although they tend to cluster in certain exons, their distribution varies in different geographically populations. Therefore, in this study, we describe the mutation analysis of NOTCH3 gene in 24 Portuguese families with small vessel disease suspected to have CADASIL from the central region of Portugal. The genetic analysis revealed 15 different heterozygous variants, eight pathogenic cysteine altering variants, six cysteine sparing variants and one nonsense variant, located mainly in the exons 4, 8 and 11. Thus, in our population, the genetic testing should initially be focused on these exons. In addition, the genetic findings broaden the mutational and clinical spectrum of CADASIL related phenotype and provide additional evidences for genetic counseling and clinical management.
Collapse
|
4
|
Min JY, Park SJ, Kang EJ, Hwang SY, Han SH. Mutation spectrum and genotype-phenotype correlations in 157 Korean CADASIL patients: a multicenter study. Neurogenetics 2021; 23:45-58. [PMID: 34741685 DOI: 10.1007/s10048-021-00674-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
CADASIL is an inherited disease caused by mutations in the NOTCH3 gene. We aimed to investigate the mutation and clinical spectrum, and genotype-phenotype correlations of Korean CADASIL patients. Samples from 492 clinically suspicious patients were collected from four hospitals. Sanger sequencing was performed to screen exons 2 to 25 of the NOTCH3 gene and variants of unknown significance (VUS) were analyzed using the ACMG guidelines. The medical records and MRI data were received from each hospital, for comprehensive analysis of genotype-phenotype correlations. Previously reported NOTCH3 variants were most commonly detected in exon 11 whereas exon 4 was the most common in European studies. The variants were detected equally between the EGFr domains 1-6 and 7-34, which was different from EGFr 1-6 predominant European studies. The average age-of-onset of patients with EGFr 1-6 variants were 4.81 ± 1.95 years younger than patients with EGFr 7-34 variants. Overall, it took Korean patients 51.2 ± 10 years longer to develop CADASIL in comparison to European patients. The most common mutation was p.R544C, which was associated with a later onset of stroke and a significant time-to-event curve difference. We verified four atypical phenotypes of p.R544C that had been reported in previous studies. Eight novel variants in 15 patients were detected but remained a VUS based on the ACMG criteria. This study reported a different EGFr distribution of Korean patients in comparison to European patients and its correlation with a later age-of-onset. An association between a later onset of stroke/TIA and p.R544C was observed.
Collapse
Affiliation(s)
- Ji-You Min
- Division of Biotechnology, Bio-Core Co. Ltd., 6954 IT valley 13, Heungdeok 1-ro, Giheung-gu, Yongin, Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Korea
| | - Seo-Jin Park
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Joo Kang
- Division of Biotechnology, Bio-Core Co. Ltd., 6954 IT valley 13, Heungdeok 1-ro, Giheung-gu, Yongin, Korea
| | - Seung-Yong Hwang
- Division of Biotechnology, Bio-Core Co. Ltd., 6954 IT valley 13, Heungdeok 1-ro, Giheung-gu, Yongin, Korea
| | - Sung-Hee Han
- Division of Biotechnology, Bio-Core Co. Ltd., 6954 IT valley 13, Heungdeok 1-ro, Giheung-gu, Yongin, Korea.
| |
Collapse
|
5
|
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1856-1870. [PMID: 33895122 PMCID: PMC8647433 DOI: 10.1016/j.ajpath.2021.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Kapoor A, Nation DA. Role of Notch signaling in neurovascular aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:90-97. [PMID: 33384205 PMCID: PMC8236496 DOI: 10.1016/j.semcdb.2020.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved cell signaling system known to be involved in vascular development and function. Recent evidence suggests that dysfunctional Notch signaling could play a critical role in the pathophysiology of neurodegenerative diseases. We reviewed current literature on the role of Notch signaling pathway, and specifically Notch receptor genes and proteins, in aging, cerebrovascular disease and Alzheimer's disease. We hypothesize that Notch signaling may represent a key point of overlap between age-related vascular and Alzheimer's pathophysiology contributing to their comorbidity and combined influence on cognitive decline and dementia. Numerous findings from studies of genetics, neuropathology and cell culture models all suggest a link between altered Notch signaling and Alzheimer's pathophysiology. Age-related changes in Notch signaling may also trigger neurovascular dysfunction, contributing to the development of neurodegenerative diseases; however, additional studies are warranted. Future research directly exploring the influence of aberrant Notch signaling in the development of Alzheimer's disease is needed to better understand this mechanism.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Guo L, Jiao B, Liao X, Xiao X, Zhang W, Yuan Z, Liu X, Zhou L, Wang X, Zhu Y, Yang Q, Wang J, Tang B, Shen L. The role of NOTCH3 variants in Alzheimer's disease and subcortical vascular dementia in the Chinese population. CNS Neurosci Ther 2021; 27:930-940. [PMID: 33942994 PMCID: PMC8265940 DOI: 10.1111/cns.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
AIMS NOTCH3 gene mutations predominantly cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a common etiology of subcortical vascular dementia (SVaD). Besides, there may be a pathogenic link between NOTCH3 variants and Alzheimer's disease (AD). We aimed to study the role of NOTCH3 variants in AD and SVaD patients. METHODS We recruited 763 patients with dementia (667 AD and 96 SVaD) and 365 healthy controls from the Southern Han Chinese population. Targeted capture sequencing was performed on NOTCH3 coding and adjacent intron regions to detect the pathogenic variants in AD and SVaD. The relationship between common or rare NOTCH3 variants and AD was further analyzed using Plink1.9. RESULTS Five known pathogenic variants (p.R182C, p.C201S, p.R544C, p.R607C, and p.R1006C) and two novel likely pathogenic variants (p.C201F and p.C1061F) were detected in 16 SVaD patients. Additionally, no pathogenic or likely pathogenic variants were found in AD patients. NOTCH3 was not associated with AD in either single-variant association analysis or gene-based association analysis. CONCLUSION Our findings broaden the mutational spectrum of NOTCH3 and validate the pathogenic role of NOTCH3 mutations in SVaD, but do not support the notion that NOTCH3 variation influences the risk of AD.
Collapse
Affiliation(s)
- Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
8
|
Yoon CW, Kim YE, Kim HJ, Ki CS, Lee H, Rha JH, Na DL, Seo SW. Comparison of Longitudinal Changes of Cerebral Small Vessel Disease Markers and Cognitive Function Between Subcortical Vascular Mild Cognitive Impairment With and Without NOTCH3 Variant: A 5-Year Follow-Up Study. Front Neurol 2021; 12:586366. [PMID: 33716917 PMCID: PMC7947323 DOI: 10.3389/fneur.2021.586366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
No study yet has compared the longitudinal course and prognosis between subcortical vascular cognitive impairment patients with and without genetic component. In this study, we compared the longitudinal changes in cerebral small vessel disease markers and cognitive function between subcortical vascular mild cognitive impairment (svMCI) patients with and without NOTCH3 variant [NOTCH3(+) svMCI vs. NOTCH3(-) svMCI]. We prospectively recruited patients with svMCI and screened for NOTCH3 variants by sequence analysis for mutational hotspots in the NOTCH3 gene. Patients were annually followed-up for 5 years through clinical interviews, neuropsychological tests, and brain magnetic resonance imaging. Among 63 svMCI patients, 9 (14.3%) had either known mutations or possible pathogenic variants. The linear mixed effect models showed that the NOTCH3(+) svMCI group had much greater increases in the lacune and cerebral microbleed counts than the NOTCH3(-) svMCI group. However, there were no significant differences between the two groups regarding dementia conversion rate and neuropsychological score changes over 5 years.
Collapse
Affiliation(s)
- Cindy W. Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Seok Ki
- Genome Research Center, Green Cross Genome, Yong-in, South Korea
| | - Hyejoo Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joung-Ho Rha
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Lee JS, Ko KH, Oh JH, Kim JG, Kang CH, Song SK, Kang SY, Kang JH, Park JH, Koh MJ, Lee HK, Choi JC. Apolipoprotein E ε4 Is Associated With the Development of Incident Dementia in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Patients With p.Arg544Cys Mutation. Front Aging Neurosci 2020; 12:591879. [PMID: 33328970 PMCID: PMC7714778 DOI: 10.3389/fnagi.2020.591879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose To identify clinical, laboratory, and magnetic resonance imaging (MRI) features in predicting incident stroke and dementia in Korean patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Materials and Methods We enrolled 87 Korean CADASIL patients who had undergone baseline clinical, laboratory, and MRI examinations between March 2012 and February 2015. The primary outcome of this study is the occurrence of stroke and dementia during the study period. The occurrence of incident stroke was confirmed by neuroimaging study, and dementia was defined by the diagnostic and statistical manual of mental disorders, fourth edition, criteria. Results Of the 87 patients, 57.5% were men, and the mean age was 63 ± 13 years (range 34–90 years), and 82 patients (94.3%) had p.Arg544Cys mutation. During an average follow-up of 67 months (interquartile range: 53–69 months), incident stroke occurred in 14 of 87 patients (16.1%) and incident dementia in 7 of 70 non-demented patients (10.0%). In adjusted analysis, increased systolic blood pressure was associated with increased risk of incident stroke [for every 10-mmHg increase; hazard ratio, 1.44 (1.02–2.03)]. Apolipoprotein E ε4 genotype was associated with an increased risk of incident dementia [hazard ratio, 10.70 (1.27–89.88)]. Conclusion In this study, apolipoprotein E ε4 genotype was associated with the development of incident dementia, and higher blood pressure was associated with increased risk of incident stroke in CADASIL patients with predominant p.Arg544Cys mutation.
Collapse
Affiliation(s)
- Jung Seok Lee
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Keun Hyuk Ko
- Department of Neurology, Hankook Hospital, Jeju, South Korea
| | - Jung-Hwan Oh
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Joong-Goo Kim
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Chul-Hoo Kang
- Department of Neurology, Jeju National University Hospital, Jeju, South Korea
| | - Sook-Keun Song
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Sa-Yoon Kang
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Ji-Hoon Kang
- Department of Neurology, Jeju National University, Jeju, South Korea
| | - Joon Hyuk Park
- Department of Psychiatry, Jeju National University, Jeju, South Korea
| | - Myeong Ju Koh
- Department of Radiology, Jeju National University, Jeju, South Korea
| | - Ho Kyu Lee
- Department of Radiology, Jeju National University, Jeju, South Korea
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
- *Correspondence: Jay Chol Choi,
| |
Collapse
|
10
|
Panahi M, Rodriguez PR, Fereshtehnejad SM, Arafa D, Bogdanovic N, Winblad B, Cedazo-Minguez A, Rinne J, Darreh-Shori T, Hase Y, Kalaria RN, Viitanen M, Behbahani H. Insulin-Independent and Dependent Glucose Transporters in Brain Mural Cells in CADASIL. Front Genet 2020; 11:1022. [PMID: 33101365 PMCID: PMC7522350 DOI: 10.3389/fgene.2020.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez Rodriguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed-Mohammad Fereshtehnejad
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Donia Arafa
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Neurogeriatric Clinic, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Juha Rinne
- University of Turku, Turku University Hospital Kiinanmyllynkatu, Turku, Finland
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku,Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Ramirez J, Dilliott AA, Binns MA, Breen DP, Evans EC, Beaton D, McLaughlin PM, Kwan D, Holmes MF, Ozzoude M, Scott CJM, Strother SC, Symons S, Swartz RH, Grimes D, Jog M, Masellis M, Black SE, Joutel A, Marras C, Rogaeva E, Hegele RA, Lang AE. Parkinson's Disease, NOTCH3 Genetic Variants, and White Matter Hyperintensities. Mov Disord 2020; 35:2090-2095. [PMID: 32573853 DOI: 10.1002/mds.28171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND White matter hyperintensities (WMH) on magnetic resonance imaging may influence clinical presentation in patients with Parkinson's disease (PD), although their significance and pathophysiological origins remain unresolved. Studies examining WMH have identified pathogenic variants in NOTCH3 as an underlying cause of inherited forms of cerebral small vessel disease. METHODS We examined NOTCH3 variants, WMH volumes, and clinical correlates in 139 PD patients in the Ontario Neurodegenerative Disease Research Initiative cohort. RESULTS We identified 13 PD patients (~9%) with rare (<1% of general population), nonsynonymous NOTCH3 variants. Bayesian linear modeling demonstrated a doubling of WMH between variant negative and positive patients (3.1 vs. 6.9 mL), with large effect sizes for periventricular WMH (d = 0.8) and lacunes (d = 1.2). Negative correlations were observed between WMH and global cognition (r = -0.2). CONCLUSION The NOTCH3 rare variants in PD may significantly contribute to increased WMH burden, which in turn may negatively influence cognition. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily C Evans
- Mississauga Academy of Medicine, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Derek Beaton
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Paula M McLaughlin
- Queen's University, Centre for Neuroscience Studies, Kingston, Ontario.,Nova Scotia Health Authority, Dalhousie University, Department of Medicine-Geriatrics, Halifax, Nova Scotia, Canada
| | - Donna Kwan
- Queen's University, Centre for Neuroscience Studies, Kingston, Ontario
| | - Melissa F Holmes
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Miracle Ozzoude
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J M Scott
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean Symons
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Ontario, Canada
| | - David Grimes
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Ontario, Canada
| | - Anne Joutel
- Institute of Psychiatry and Neuroscience of Paris- Institut national de la santé et de la recherche médicale (INSERM), Paris Descartes University, Paris, France
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Algahtani H, Shirah B, Alharbi SY, Al-Qahtani MH, Abdulkareem AA, Naseer MI. A Novel Heterozygous Variant in Exon 19 of NOTCH3 in a Saudi Family with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. J Stroke Cerebrovasc Dis 2020; 29:104832. [PMID: 32414585 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022] Open
Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL; OMIM #125310) is the most common cause of monogenic familial cerebral small vessel disease. It typically manifests at middle adulthood with highly variable clinical features including migraine with aura, recurrent transient ischemic attacks or ischemic strokes, mood disorders, and progressive cognitive decline. It is caused by mutations in the NOTCH3 gene, which maps to the short arm of chromosome 19 and encode for epidermal growth factor-like repeats. In this article, we report a 40-year-old male patient who presented with a two-year history of progressive cognitive decline including impaired attention, memory, executive functions, and processing speed whose family history was strongly positive for young-onset ischemic stroke and memory impairment. His father, uncle, and grandfather died due to ischemic strokes and cognitive impairment (similar condition). A whole exome sequencing to the patient (proband II-1) revealed a novel heterozygous missense variant c.3009G>T, p.(Trp1003Cys) (chr19;15291625; hg19) in exon 19 of the NOTCH3 gene. Sanger sequencing was used to confirm the variant in other family members. This variant has not been described in the literature so far. The novel mutation described in the present study widened the genetic spectrum of NOTCH3-associated diseases, which will benefit studies addressing this disease in the future. CADASIL remains a disabling disorder leading to medical retirement in our patient due to late clinical presentation, lack of family history taking prior to joining the military, and lack of curative therapy. Further research for therapeutic options is needed including stem cell therapy .
Collapse
Affiliation(s)
- Hussein Algahtani
- King Abdulaziz Medical City / King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| | - Bader Shirah
- King Abdullah International Medical Research Center / King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| | - Suzan Y Alharbi
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammad H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Xiromerisiou G, Marogianni C, Dadouli K, Zompola C, Georgouli D, Provatas A, Theodorou A, Zervas P, Nikolaidou C, Stergiou S, Ntellas P, Sokratous M, Stathis P, Paraskevas GP, Bonakis A, Voumvourakis K, Hadjichristodoulou C, Hadjigeorgiou GM, Tsivgoulis G. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases. NEUROLOGY-GENETICS 2020; 6:e434. [PMID: 32582863 PMCID: PMC7238894 DOI: 10.1212/nxg.0000000000000434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023]
Abstract
Objective The aim of this study was to evaluate the correlation between the various NOTCH3 mutations and their clinical and genetic profile, along with the presentation of a novel mutation in a patient. Methods Here, we describe the phenotype of a patient with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) harboring a novel mutation. We also performed an extensive literature research for NOTCH3 mutations published since the identification of the gene and performed a systematic review of all published cases with NOTCH3 mutations. We evaluated the mutation pathogenicity in a great number of patients with detailed clinical and genetic evaluation and investigated the possible phenotype-genotype correlations. Results Our patient harbored a novel mutation in the NOTCH3 gene, the c.3084 G > C, corresponding to the aminoacidic substitution p.Trp1028Cys, presenting with seizures as the first neurologic manifestation. We managed to find a correlation between the pathogenicity of mutations, severity of the phenotype, and age at onset of CADASIL. Significant differences were also identified between men and women regarding the phenotype severity. Conclusions The collection and analysis of these scarce data published since the identification of NOTCH3 qualitatively by means of a systematic review and quantitatively regarding genetic profile and pathogenicity scores, highlight the significance of the ongoing trend of investigating phenotypic genotypic correlations.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Chrysoula Marogianni
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Katerina Dadouli
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christina Zompola
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Despoina Georgouli
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Antonios Provatas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Aikaterini Theodorou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Paschalis Zervas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christina Nikolaidou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Stergios Stergiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Panagiotis Ntellas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Maria Sokratous
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Pantelis Stathis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios P Paraskevas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Anastasios Bonakis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Konstantinos Voumvourakis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christos Hadjichristodoulou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios Tsivgoulis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| |
Collapse
|
14
|
Kim KW, Kwon H, Kim YE, Yoon CW, Kim YJ, Kim YB, Lee JM, Yoon WT, Kim HJ, Lee JS, Jang YK, Kim Y, Jang H, Ki CS, Youn YC, Shin BS, Bang OY, Kim GM, Chung CS, Kim SJ, Na DL, Duering M, Cho H, Seo SW. Multimodal imaging analyses in patients with genetic and sporadic forms of small vessel disease. Sci Rep 2019; 9:787. [PMID: 30692550 PMCID: PMC6349863 DOI: 10.1038/s41598-018-36580-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/24/2018] [Indexed: 11/09/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is thought to be a pure genetic form of subcortical vascular cognitive impairment (SVCI). The aim of this study was to compare white matter integrity and cortical thickness between typical CADASIL, a genetic form, and two sporadic forms of SVCI (with NOTCH3 and without NOTCH3 variants). We enrolled typical CADASIL patients (N = 11) and SVCI patients [with NOTCH3 variants (N = 15), without NOTCH3 variants (N = 101)]. To adjust the age difference, which reflects the known difference in clinical and radiologic courses between typical CADASIL patients and SVCI patients, we constructed a W-score of measurement for diffusion tensor image and cortical thickness. Typical CADASIL patients showed more frequent white matter hyperintensities in the bilateral posterior temporal region compared to SVCI patients (p < 0.001, uncorrected). We found that SVCI patients, regardless of the presence of NOTCH3 variants, showed significantly greater microstructural alterations (W-score, p < 0.05, FWE-corrected) and cortical thinning (W-score, p < 0.05, FDR-corrected) than typical CADASIL patients. In this study, typical CADASIL and SVCI showed distinct anatomic vulnerabilities in the cortical and subcortical structures. However, there was no difference between SVCI with NOTCH3 variants and SVCI without NOTCH3 variants.
Collapse
Affiliation(s)
- Ko Woon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Neurology, Chonbuk National University Medical School & Hospital, Jeonju, Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Young-Eun Kim
- Genome Research Center, Green Cross Genome, Yong-in, Korea
| | - Cindy W Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - Yeo Jin Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Yong Bum Kim
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Won Tae Yoon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Young Kyoung Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byoung-Soo Shin
- Department of Neurology, Chonbuk National University Medical School & Hospital, Jeonju, Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Joo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, and Departments of, Clinical Research Design and Evaluation, Seoul, Korea.
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Korea. .,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
15
|
Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, Boutabla A, Cardona-Vélez J, Amarnani D, Saint-Geniez M, Siebel CW, Kim LA, D'Amore PA, Arboleda-Velasquez JF. Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med 2017; 214:2271-2282. [PMID: 28698285 PMCID: PMC5551569 DOI: 10.1084/jem.20161715] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/28/2017] [Accepted: 06/08/2017] [Indexed: 11/29/2022] Open
Abstract
Machuca-Parra et al. show that restoring Notch3 signaling via genetic rescue in a Notch3 knockout or using a Notch3 agonist antibody in a mouse model of CADASIL can prevent small vessel disease. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3. No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling.
Collapse
Affiliation(s)
- Arturo I Machuca-Parra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Alexander A Bigger-Allen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Angie V Sanchez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Anissa Boutabla
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA.,Grenoble Alpes University, Grenoble, France
| | - Jonathan Cardona-Vélez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA.,Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA .,Department of Pathology, Harvard Medical School, Boston, MA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Rutten JW, Dauwerse HG, Gravesteijn G, van Belzen MJ, van der Grond J, Polke JM, Bernal-Quiros M, Lesnik Oberstein SAJ. Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 2016; 3:844-853. [PMID: 27844030 PMCID: PMC5099530 DOI: 10.1002/acn3.344] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022] Open
Abstract
Objective To determine the frequency of distinctive EGFr cysteine altering NOTCH3 mutations in the 60,706 exomes of the exome aggregation consortium (ExAC) database. Methods ExAC was queried for mutations distinctive for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), namely mutations leading to a cysteine amino acid change in one of the 34 EGFr domains of NOTCH3. The genotype‐phenotype correlation predicted by the ExAC data was tested in an independent cohort of Dutch CADASIL patients using quantified MRI lesions. The Dutch CADASIL registry was probed for paucisymptomatic individuals older than 70 years. Results We identified 206 EGFr cysteine altering NOTCH3 mutations in ExAC, with a total prevalence of 3.4/1000. More than half of the distinct mutations have been previously reported in CADASIL patients. Despite the clear overlap, the mutation distribution in ExAC differs from that in reported CADASIL patients, as mutations in ExAC are predominantly located outside of EGFr domains 1–6. In an independent Dutch CADASIL cohort, we found that patients with a mutation in EGFr domains 7–34 have a significantly lower MRI lesion load than patients with a mutation in EGFr domains 1–6. Interpretation The frequency of EGFr cysteine altering NOTCH3 mutations is 100‐fold higher than expected based on estimates of CADASIL prevalence. This challenges the current CADASIL disease paradigm, and suggests that certain mutations may more frequently cause a much milder phenotype, which may even go clinically unrecognized. Our data suggest that individuals with a mutation located in EGFr domains 1–6 are predisposed to the more severe “classical” CADASIL phenotype, whereas individuals with a mutation outside of EGFr domains 1–6 can remain paucisymptomatic well into their eighth decade.
Collapse
Affiliation(s)
- Julie W Rutten
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands; Department of Human Genetics Leiden University Medical Center Leiden The Netherlands
| | - Hans G Dauwerse
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands; Department of Human Genetics Leiden University Medical Center Leiden The Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | - Martine J van Belzen
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | | | - James M Polke
- Neurogenetics Unit National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Manuel Bernal-Quiros
- Neurogenetics Unit National Hospital for Neurology and Neurosurgery London United Kingdom
| | | |
Collapse
|
17
|
Possible Role of a Missense Mutation of p.P167S on NOTCH3 Gene Associated with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Dement Neurocogn Disord 2016; 15:52-54. [PMID: 30906341 PMCID: PMC6427975 DOI: 10.12779/dnd.2016.15.2.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/27/2022] Open
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a single-gene disorder caused by mutations in the NOTCH3 gene, located on chromosome 19p13. NOTCH3 encodes a transmembrane receptor which plays a role in cellular differentiation and cell cycle regulation. Case Report A 71-year-old female showing headache and memory impairment, familial history of stroke and having a missense mutation from proline to serine at codon 167 in the exon 4 on NOTCH3 gene. Five family members revealed the same mutation (c.499C>T), who presented migrainous headache and stroke. In this study, we have uncovered a novel NOTCH3 mutation at the nucleotide position 499 (c.499C>T; p.P167S) in a family with CADASIL. Conclusions We suggested a missense mutation of proline to serine at codon 167 in exon 4 of the NOTCH3 gene, which resulted in the substitution of cytosine to thymine (c.499C>T) resulting migraine, stroke and vascular cognitive impairment.
Collapse
|