1
|
Wuestefeld A, Pichet Binette A, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early-versus late-onset amnestic Alzheimer's disease. Alzheimers Res Ther 2024; 16:204. [PMID: 39285454 PMCID: PMC11403779 DOI: 10.1186/s13195-024-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS BioFINDER-2 participants with memory impairment, abnormal amyloid-β and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-β-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden.
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden
- Image and Function, Skåne University Hospital, Lund, 22242, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Department of Neurology, Skåne University Hospital, Lund, 22242, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, 22184, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden.
| |
Collapse
|
2
|
Wuestefeld A, Binette AP, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early- versus late-onset amnestic Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594976. [PMID: 38826333 PMCID: PMC11142072 DOI: 10.1101/2024.05.21.594976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking. Methods BioFINDER-2 participants with memory impairment, abnormal amyloid-β status and tau-PET were included. Forty-one EOAD individuals aged ≤65 years and, as comparison, late-onset AD (LOAD, ≥70 years, n=154) and Aβ-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. Results AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups, although LOAD showed thinner entorhinal cortices compared to EOAD. EOAD showed lower WMH compared to LOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity was found. Conclusions We found in vivo evidence for MTL atrophy in amnestic EOAD and overall similar levels to LOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
- Image and Function, Skåne University Hospital, 22242 Lund Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Department of Neurology, Skåne University Hospital, 22242 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Laura EM Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
| |
Collapse
|
3
|
Liu S, Hou X, Shi M, Shen Y, Li Z, Hu Z, Yang D. Cortical Sulcal Abnormalities Revealed by Sulcal Morphometry in Patients with Chronic and Episodic Migraine. J Pain Res 2024; 17:477-488. [PMID: 38318330 PMCID: PMC10843978 DOI: 10.2147/jpr.s447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Previous studies have reported mixed results regarding the importance of cortical abnormalities in patients with migraines. However, cortical sulci, as a component of the cerebral cortex, have not been specifically investigated in migraine patients. Therefore, we aim to evaluate alterations in cortical sulcal morphology among patients with chronic migraine (CM), episodic migraine (EM), and healthy controls (HCs). Patients and Methods In this cross-sectional study, structural magnetic resonance images were acquired from 35 patients with CM, 35 with EM, and 35 HCs. Cortical sulci were identified and reconstructed using the BrainVisa 5.0.4 software. We focused on regions involved in pain processing in which abnormal cortical structure were identified in previous neuroimaging studies. Morphometric analysis was performed to calculate sulcal parameters including mean depth, cortical thickness, and opening width. Partial correlation analyses of clinical characteristics and sulcal parameters were performed for CM, EM and the combined migraine (CM + EM) groups. Results In comparison with HCs, both CM and EM groups showed increased opening width in bilateral insula. In comparison with HC and EM groups, CM patients showed increased cortical thickness in bilateral superior postcentral sulcus, bilateral median frontal sulcus and left superior parietal sulcus, as well as increased mean depth in the left anterior callosomarginal fissure and decreased mean depth in bilateral superior frontal sulcus and left median frontal sulcus. Migraine frequency and disease duration were both correlated with cortical thickness in bilateral superior postcentral sulcus. Conclusion Abnormal sulcal morphometry primarily affected areas associated with pain processing in patients with migraine, with CM exhibiting more extensive abnormalities in areas related to sensory and affective processing. These changes may contribute to understanding the pathology of EM and CM.
Collapse
Affiliation(s)
- Shanyu Liu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaolin Hou
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Min Shi
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuling Shen
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhaoying Li
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhenzhu Hu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongdong Yang
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Merenstein JL, Zhao J, Overson DK, Truong TK, Johnson KG, Song AW, Madden DJ. Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cereb Cortex 2024; 34:bhad525. [PMID: 38185996 PMCID: PMC10839848 DOI: 10.1093/cercor/bhad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Kim G Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
5
|
Sighinolfi G, Mitolo M, Pizzagalli F, Stanzani-Maserati M, Remondini D, Rochat MJ, Cantoni E, Venturi G, Vornetti G, Bartiromo F, Capellari S, Liguori R, Tonon C, Testa C, Lodi R. Sulcal Morphometry Predicts Mild Cognitive Impairment Conversion to Alzheimer's Disease. J Alzheimers Dis 2024; 99:177-190. [PMID: 38640154 PMCID: PMC11191431 DOI: 10.3233/jad-231192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Being able to differentiate mild cognitive impairment (MCI) patients who would eventually convert (MCIc) to Alzheimer's disease (AD) from those who would not (MCInc) is a key challenge for prognosis. Objective This study aimed to investigate the ability of sulcal morphometry to predict MCI progression to AD, dedicating special attention to an accurate identification of sulci. Methods Twenty-five AD patients, thirty-seven MCI and twenty-five healthy controls (HC) underwent a brain-MR protocol (1.5T scanner) including a high-resolution T1-weighted sequence. MCI patients underwent a neuropsychological assessment at baseline and were clinically re-evaluated after a mean of 2.3 years. At follow-up, 12 MCI were classified as MCInc and 25 as MCIc. Sulcal morphometry was investigated using the BrainVISA framework. Consistency of sulci across subjects was ensured by visual inspection and manual correction of the automatic labelling in each subject. Sulcal surface, depth, length, and width were retrieved from 106 sulci. Features were compared across groups and their classification accuracy in predicting MCI conversion was tested. Potential relationships between sulcal features and cognitive scores were explored using Spearman's correlation. Results The width of sulci in the temporo-occipital region strongly differentiated between each pair of groups. Comparing MCIc and MCInc, the width of several sulci in the bilateral temporo-occipital and left frontal areas was significantly altered. Higher width of frontal sulci was associated with worse performances in short-term verbal memory and phonemic fluency. Conclusions Sulcal morphometry emerged as a strong tool for differentiating HC, MCI, and AD, demonstrating its potential prognostic value for the MCI population.
Collapse
Affiliation(s)
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Elena Cantoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Greta Venturi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gianfranco Vornetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Maboudian SA, Willbrand EH, Jagust WJ, Weiner KS. Defining overlooked structures reveals new associations between cortex and cognition in aging and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546558. [PMID: 37425904 PMCID: PMC10327001 DOI: 10.1101/2023.06.29.546558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we first manually defined 4,362 PMC sulci in 432 hemispheres in 216 participants. Tertiary sulci showed more age- and AD-related thinning than non-tertiary sulci, with the strongest effects for two newly uncovered tertiary sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci were most associated with memory and executive function scores in older adults. These findings support the retrogenesis hypothesis linking brain development and aging, and provide new neuroanatomical targets for future studies of aging and AD.
Collapse
Affiliation(s)
- Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | | |
Collapse
|
7
|
Lei D, Mao C, Li J, Huang X, Sha L, Liu C, Dong L, Xu Q, Gao J. CSF biomarkers for early-onset Alzheimer's disease in Chinese population from PUMCH dementia cohort. Front Neurol 2023; 13:1030019. [PMID: 36698871 PMCID: PMC9868908 DOI: 10.3389/fneur.2022.1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is one of the highly concerned degenerative disorders in recent decades. Though vast amount of researches has been done in various aspects, early-onset subtype, however, needs more investigation in diagnosis for its atypical manifestations and progression process. Fundamental CSF biomarkers of early-onset AD are explored in PUMCH dementia cohort to depict its laboratory characteristics. Materials and methods A total of 125 individuals (age of onset <65 years old) from PUMCH dementia cohort were recruited consecutively and classified into AD, non-AD dementia, and control groups. Levels of amyloid-β 42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) were measured using ELISA INNOTEST (Fujirebio, Ghent, Belgium). Students' t-test or non-parametric test are used to evaluate the differences between groups. Area under curve (AUC) of receiver operating characteristic (ROC) curve was introduced to prove the diagnostic powers of corresponding markers. Logistic regression is used to establish diagnostic model to combine several markers together to promote the diagnostic power. Results The average of all three biomarkers and two calculated ratios (t-tau/Aβ42, p-tau/Aβ42) were statistically different in the AD group compared with the other two groups (Ps < 0.01). From our data, we were able to provide cutoff values (Aβ42 < 570.9 pg/mL; p-tau > 56.49 pg/mL; t-tau > 241.6 pg/mL; t-tau/Aβ42 > 0.529; p-tau/Aβ42 > 0.0846) with acceptable diagnostic accuracy compared to other studies. Using a combination of biomarkers and logistic regression (area under curve 0.951), we were able to further improve diagnostic efficacy. Discussion Our study supports the diagnostic usefulness of biomarkers and defined cutoff values to diagnose early-onset AD. We showed that the ratios of t-tau/Aβ42 and p-tau/Aβ42 are more sensitive than relying on Aβ42 levels alone, and that we can further improve diagnostic accuracy by combining biomarkers.
Collapse
Affiliation(s)
- Dan Lei
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chenhui Mao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinying Huang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caiyan Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liling Dong
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jing Gao ✉
| |
Collapse
|
8
|
Sun BB, Loomis SJ, Pizzagalli F, Shatokhina N, Painter JN, Foley CN, Jensen ME, McLaren DG, Chintapalli SS, Zhu AH, Dixon D, Islam T, Ba Gari I, Runz H, Medland SE, Thompson PM, Jahanshad N, Whelan CD. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat Commun 2022; 13:6071. [PMID: 36241887 PMCID: PMC9568560 DOI: 10.1038/s41467-022-33829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.
Collapse
Affiliation(s)
- Benjamin B Sun
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Stephanie J Loomis
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Fabrizio Pizzagalli
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher N Foley
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Optima Partners, Edinburgh, UK
| | - Megan E Jensen
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Donald G McLaren
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | | | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | | |
Collapse
|
9
|
McIntyre-Wood C, Madan C, Owens M, Amlung M, Sweet LH, MacKillop J. Neuroanatomical foundations of delayed reward discounting decision making II: Evaluation of sulcal morphology and fractal dimensionality. Neuroimage 2022; 257:119309. [PMID: 35598732 DOI: 10.1016/j.neuroimage.2022.119309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Delayed reward discounting (DRD) is a form of decision-making reflecting valuation of smaller immediate rewards versus larger delayed rewards, and high DRD has been linked to several health behaviors, including substance use disorders, attention-deficit/hyperactivity disorder, and obesity. Elucidating the underlying neuroanatomical factors may offer important insights into the etiology of these conditions. We used structural MRI scans of 1038 Human Connectome Project participants (Mage = 28.86, 54.7% female) to explore two novel measures of neuroanatomy related to DRD: 1) sulcal morphology (SM; depth and width) and 2) fractal dimensionality (FD), or cortical morphometric complexity, of parcellated cortical and subcortical regions. To ascertain unique contributions to DRD preferences, indicators that displayed significant partial correlations with DRD after family-wise error correction were entered into iterative mixed-effect models guided by the association magnitude. When considering only SM indicators, the depth of the right inferior and width of the left central sulci were uniquely associated with DRD preferences. When considering only FD indicators, the FD of the left middle temporal gyrus, right lateral orbitofrontal cortex, and left lateral occipital and entorhinal cortices uniquely contributed DRD. When considering SM and FD indicators simultaneously, the right inferior frontal sulcus depth and left central sulcus width; and the FD of the left middle temporal gyrus, lateral occipital cortex and entorhinal cortex were uniquely associated with DRD. These results implicate SM and FD as features of the brain that underlie variation in the DRD decision-making phenotype and as promising candidates for understanding DRD as a biobehavioral disease process.
Collapse
Affiliation(s)
- Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Christopher Madan
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Max Owens
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Michael Amlung
- Cofrin Logan Center for Addiction Research and Treatment, Lawrence, KS, United States of America; Department of Applied Behavioural Sciences, University of Kansas, Lawrence, KS, United States of America
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, GA, United States of America
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Wang Y, Xu F, Zhou W, Hou L, Tang Y, Liu S. Morphological and hemispheric and sex differences of the anterior ascending ramus and the horizontal ascending ramus of the lateral sulcus. Brain Struct Funct 2022; 227:1949-1961. [PMID: 35441988 PMCID: PMC9232435 DOI: 10.1007/s00429-022-02482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Broca’s area is composed of the pars opercularis (PO) and the pars triangularis (PTR) of the inferior frontal gyrus; the anterior ascending ramus of the lateral sulcus (aals) separates the PO from the PTR, and the horizontal ascending ramus of the lateral sulcus (hals) separates the PTR from the pars orbitalis. The morphometry of these two sulci maybe has potential effects on the various functions of Broca’s area. Exploring the morphological variations, hemispheric differences and sex differences of these two sulci contributed to a better localization of Broca's area. BrainVISA was used to reconstruct and parameterize these two sulci based on data from 3D MR images of 90 healthy right-handed subjects. The 3D anatomic morphologies of these two sulci were investigated using 4 sulcal parameters: average depth (AD), average width (AW), outer length (OL) and inner length (IL). The aals and hals could be identified in 98.89% and 98.33%, respectively, of the hemispheres evaluated. The morphological patterns of these two sulci were categorized into four typical types. There were no statistically significant interhemispheric or sex differences in the frequency of the morphological patterns. There was statistically significant interhemispheric difference in the IL of the aals. Significant sex differences were found in the AD and the IL of the aals and OL of the hals. Our results not only provide a structural basis for functional studies related to Broca’s area but also are helpful in determining the precise position of Broca’s area in neurosurgery.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjuan Zhou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Lanwei Hou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Mortamais M, Laure-Anne G, Balem M, Bars EL, de Champfleur NM, Bouyahia A, Chupin M, Perus L, Fisher C, Vellas B, Andrieu S, Mangin JF, Berr C, Gabelle A. Sulcal morphology as cognitive decline predictor in older adults with memory complaints. Neurobiol Aging 2022; 113:84-94. [DOI: 10.1016/j.neurobiolaging.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
|
12
|
Razafsha M, Buch KA, Vitolo OV, Chemali ZN. When real life conditions do not follow textbook diagnosis: A diagnostic challenge from a neuropsychiatric clinic. Int J Psychiatry Med 2021; 56:459-469. [PMID: 33297806 DOI: 10.1177/0091217420979629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present the case of a 61-year-old retired catholic priest, who was adopted at a very young age, with psychiatric history of anxiety and depression presenting for evaluation of at least 4 year memory loss and word finding difficulties. Over the preceding couple of years his cognitive functions had rapidly declined. As a result, he became dependent on his elderly parents for most of his instrumental activities of daily living including administration of medication, financial management, and driving. He continues to be independent in his personal care. His presentation offered diagnostic challenges due to the interplay of anxiety and cognitive disorders involving both memory and language domains. In addition, he resisted to repeat formal neuropsychological evaluation. At the bedside, his poor effort on testing was often blamed on his severe anxiety confounding the clinical picture. Lack of knowledge of his family history and his childhood development, and unclear premorbid functioning complicated the diagnostic formulation. A differential diagnosis ranging from possible functional cognitive disorder to neurodevelopmental disorder and neurodegenerative disorders will be discussed.
Collapse
Affiliation(s)
- Mahdi Razafsha
- Neuropsychiatry Clinic, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Karen A Buch
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ottavio V Vitolo
- Neuropsychiatry Clinic, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Zeina N Chemali
- Neuropsychiatry Clinic, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Contador J, Pérez-Millán A, Tort-Merino A, Balasa M, Falgàs N, Olives J, Castellví M, Borrego-Écija S, Bosch B, Fernández-Villullas G, Ramos-Campoy O, Antonell A, Bargalló N, Sanchez-Valle R, Sala-Llonch R, Lladó A. Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer's disease. NEUROIMAGE-CLINICAL 2021; 32:102804. [PMID: 34474317 PMCID: PMC8405839 DOI: 10.1016/j.nicl.2021.102804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023]
Abstract
There is evidence of longitudinal atrophy in posterior brain areas in early-onset Alzheimer's disease (EOAD; aged < 65 years), but no studies have been conducted in an EOAD cohort with fluid biomarkers characterization. We used 3T-MRI and Freesurfer 6.0 to investigate cortical and subcortical gray matter loss at two years in 12 EOAD patients (A + T + N + ) compared to 19 controls (A-T-N-) from the Hospital Clínic Barcelona cohort. We explored group differences in atrophy patterns and we correlated atrophy and baseline CSF-biomarkers levels in EOAD. We replicated the correlation analyses in 14 EOAD (A + T + N + ) and 55 late-onset AD (LOAD; aged ≥ 75 years; A + T + N + ) participants from the Alzheimer's disease Neuroimaging Initiative. We found that EOAD longitudinal atrophy spread with a posterior-to-anterior gradient and beyond hippocampus/amygdala. In EOAD, higher initial CSF NfL levels correlated with higher ventricular volumes at baseline. On the other hand, higher initial CSF Aβ42 levels (within pathological range) predicted higher rates of cortical loss in EOAD. In EOAD and LOAD subjects, higher CSF t-tau values at baseline predicted higher rates of subcortical atrophy. CSF p-tau did not show any significant correlation. In conclusion, posterior cortices, hippocampus and amygdala capture EOAD atrophy from early stages. CSF Aβ42 might predict cortical thinning and t-tau/NfL subcortical atrophy.
Collapse
Affiliation(s)
- José Contador
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Agnès Pérez-Millán
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute; Department of Neurology, Memory & Aging Center, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain
| | - Nuria Bargalló
- Image Diagnostic Centre, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Roser Sala-Llonch
- Institute of Neurosciences. Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, 08036, Spain; Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain.
| |
Collapse
|
14
|
Blinkouskaya Y, Weickenmeier J. Brain Shape Changes Associated With Cerebral Atrophy in Healthy Aging and Alzheimer's Disease. FRONTIERS IN MECHANICAL ENGINEERING 2021; 7:705653. [PMID: 35465618 PMCID: PMC9032518 DOI: 10.3389/fmech.2021.705653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Both healthy and pathological brain aging are characterized by various degrees of cognitive decline that strongly correlate with morphological changes referred to as cerebral atrophy. These hallmark morphological changes include cortical thinning, white and gray matter volume loss, ventricular enlargement, and loss of gyrification all caused by a myriad of subcellular and cellular aging processes. While the biology of brain aging has been investigated extensively, the mechanics of brain aging remains vastly understudied. Here, we propose a multiphysics model that couples tissue atrophy and Alzheimer's disease biomarker progression. We adopt the multiplicative split of the deformation gradient into a shrinking and an elastic part. We model atrophy as region-specific isotropic shrinking and differentiate between a constant, tissue-dependent atrophy rate in healthy aging, and an atrophy rate in Alzheimer's disease that is proportional to the local biomarker concentration. Our finite element modeling approach delivers a computational framework to systematically study the spatiotemporal progression of cerebral atrophy and its regional effect on brain shape. We verify our results via comparison with cross-sectional medical imaging studies that reveal persistent age-related atrophy patterns. Our long-term goal is to develop a diagnostic tool able to differentiate between healthy and accelerated aging, typically observed in Alzheimer's disease and related dementias, in order to allow for earlier and more effective interventions.
Collapse
|
15
|
Özbek Y, Fide E, Yener GG. Resting-state EEG alpha/theta power ratio discriminates early-onset Alzheimer's disease from healthy controls. Clin Neurophysiol 2021; 132:2019-2031. [PMID: 34284236 DOI: 10.1016/j.clinph.2021.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The present study aims to compare early-onset Alzheimer's disease (EOAD) patients with healthy controls (HC), and late-onset Alzheimer's disease (LOAD) patients using resting-state delta, theta, alpha, and beta oscillations and provide a cut-off score of alpha/theta ratio to discriminate individuals with EOAD and young HC. METHODS Forty-seven individuals with EOAD, 51 individuals with LOAD, and demographically-matched 49 young and 51 older controls were included in the study. Spectral-power analysis using Fast-Fourier Transformation (FFT) is performed on resting-state electroencephalography (EEG) data. Delta, theta, alpha, and beta oscillations compared between groups and Receiver Operating Characteristic (ROC) curve analysis was conducted. RESULTS Compared to healthy controls individuals with EOAD showed an increase in slow frequency bands and a decrease in fast frequency bands. Frontal alpha/theta power ratio is the best discriminating value between EOAD and young HC with the sensitivity and specificity greater than 80% with area under the curve (AUC) 0.881. CONCLUSIONS EOAD display more widespread and severe electrophysiological abnormalities than LOAD and HC which may reflect more pronounced pathological burden and cholinergic deficits in EOAD. Additionally, the alpha/theta ratio can discriminate EOAD and young HC successfully. SIGNIFICANCE This study is the first to report that resting-state EEG power can be a promising marker for diagnostic accuracy between EOAD and healthy controls.
Collapse
Affiliation(s)
- Yağmur Özbek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Görsev G Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir University of Economics, Faculty of Medicine, Izmir, Turkey.
| |
Collapse
|
16
|
Olivieri P, Hamelin L, Lagarde J, Hahn V, Guichart-Gomez E, Roué-Jagot C, Sarazin M. Characterization of the initial complaint and care pathways prior to diagnosis in very young sporadic Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:90. [PMID: 33926533 PMCID: PMC8086269 DOI: 10.1186/s13195-021-00829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Very-early-onset Alzheimer's disease (young-AD) differentiates from late-onset AD (old-AD) by a predominant involvement of the parietal neocortex leading to atypical presentations. The diagnosis of AD is often not the first to be mentioned in such young patients. METHODS We retrospectively reviewed the initial complaint and care pathways of 66 sporadic young-AD (age < 62) and 30 old-AD patients (age > 65) and compared their neuropsychological profiles at the time of diagnosis (based on clinical-biological criteria) with 44 amyloid-negative controls. RESULTS The initial complaint of young-AD was non-cognitive and mimicked a burnout in 32% of cases. Their main cognitive complaints were memory (38% vs 87% in old-AD) and language (17% vs 13%) impairment. The referral to a psychiatrist prior to AD diagnosis was more frequent in young-AD than in old-AD (26% vs 0%). At the time of diagnosis, young-AD were at a more severe stage of dementia than old-AD (24% vs 10% with CDR ≥ 1) but had less anosognosia. CONCLUSIONS Better identifying the initial signs of very-early-onset AD is crucial to improve the early diagnosis and develop new treatments.
Collapse
Affiliation(s)
- Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France. .,Université de Paris, F-75006, Paris, France. .,Université Paris-Saclay, BioMaps, CEA, CNRS, Inserm, F-91401, Orsay, France.
| | - Lorraine Hamelin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,Université Paris-Saclay, BioMaps, CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,Université Paris-Saclay, BioMaps, CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Valérie Hahn
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France
| | - Elodie Guichart-Gomez
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France
| | - Carole Roué-Jagot
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, 1 rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,Université Paris-Saclay, BioMaps, CEA, CNRS, Inserm, F-91401, Orsay, France
| |
Collapse
|
17
|
Rizzi L, Aventurato ÍK, Balthazar MLF. Neuroimaging Research on Dementia in Brazil in the Last Decade: Scientometric Analysis, Challenges, and Peculiarities. Front Neurol 2021; 12:640525. [PMID: 33790850 PMCID: PMC8005640 DOI: 10.3389/fneur.2021.640525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
The last years have evinced a remarkable growth in neuroimaging studies around the world. All these studies have contributed to a better understanding of the cerebral outcomes of dementia, even in the earliest phases. In low- and middle-income countries, studies involving structural and functional neuroimaging are challenging due to low investments and heterogeneous populations. Outstanding the importance of diagnosing mild cognitive impairment and dementia, the purpose of this paper is to offer an overview of neuroimaging dementia research in Brazil. The review includes a brief scientometric analysis of quantitative information about the development of this field over the past 10 years. Besides, discusses some peculiarities and challenges that have limited neuroimaging dementia research in this big and heterogeneous country of Latin America. We systematically reviewed existing neuroimaging literature with Brazilian authors that presented outcomes related to a dementia syndrome, published from 2010 to 2020. Briefly, the main neuroimaging methods used were morphometrics, followed by fMRI, and DTI. The major diseases analyzed were Alzheimer's disease, mild cognitive impairment, and vascular dementia, respectively. Moreover, research activity in Brazil has been restricted almost entirely to a few centers in the Southeast region, and funding could be the main driver for publications. There was relative stability concerning the number of publications per year, the citation impact has historically been below the world average, and the author's gender inequalities are not relevant in this specific field. Neuroimaging research in Brazil is far from being developed and widespread across the country. Fortunately, increasingly collaborations with foreign partnerships contribute to the impact of Brazil's domestic research. Although the challenges, neuroimaging researches performed in the native population regarding regional peculiarities and adversities are of pivotal importance.
Collapse
Affiliation(s)
- Liara Rizzi
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | |
Collapse
|
18
|
White matter hyperintensities and patterns of atrophy in early onset Alzheimer's disease with causative gene mutations. Clin Neurol Neurosurg 2021; 203:106552. [PMID: 33601235 DOI: 10.1016/j.clineuro.2021.106552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE White matter hyperintensities could be found in many degenerative dementias including Alzheimer's disease (AD). Pathogenesis of white matter hyperintensities in AD is complicated. We aim to identify the features of white matter hyperintensities and the atrophy pattern in early onset Alzheimer's disease with causative gene mutations. METHODS 7 AD dementia patients with causative mutations were included and the clinical history, neuropsychology, neuroimaging,APOE genotype and whole-genome sequencing (WGS) were analyzed. Axial T1-weighted images and Fluid attenuated inversion recovery (FLAIR) were analyzed with visual rating scale to examine cortical atrophy and white matter hyperintensities. RESULTS 5 female and 2 male patients with 4PSEN1, 2PSEN2 and 1APP mutation were included. The average age of onset was 46.7y/o (44-52) and the duration of disease was 28.6 months (8-60). Clinical phenotype included memory loss (100 %), visual/spatial disorder (100 %), executive dysfunction (100 %), calculation disorder (85.7 %), disorientation (85.7 %), language problem (57.1 %), personality change (28.6 %) and movement disorder (14.3 %). The grading of posterior cortex atrophy was higher than medial temporal lobe atrophy. Periventricular hyperintensities surrounding occipital and frontal horn of ventricle and sub-ventricular bands were most common, while small foci of lesions were also detected in deep white matter, sub-cortical and juxta-cortical area. Mutations carriers in the APP gene or PSEN1 gene postcodon 200 had more severe white matter hyperintensities than other mutations. CONCLUSION White matter hyperintensities were found in early onset AD with causative mutations. The severity was related to genotypes and spatial distributions. Axon degeneration following neuronal loss and ischemic injury might be the pathogenesis of white matter damage. Severer atrophy in the posterior cortex than medial temporal lobe can present in early onset AD.
Collapse
|
19
|
Tang H, Liu T, Liu H, Jiang J, Cheng J, Niu H, Li S, Brodaty H, Sachdev P, Wen W. A slower rate of sulcal widening in the brains of the nondemented oldest old. Neuroimage 2021; 229:117740. [PMID: 33460796 DOI: 10.1016/j.neuroimage.2021.117740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/09/2021] [Indexed: 11/15/2022] Open
Abstract
The relationships between aging and brain morphology have been reported in many previous structural brain studies. However, the trajectories of successful brain aging in the extremely old remain underexplored. In the limited research on the oldest old, covering individuals aged 85 years and older, there are very few studies that have focused on the cortical morphology, especially cortical sulcal features. In this paper, we measured sulcal width and depth as well as cortical thickness from T1-weighted scans of 290 nondemented community-dwelling participants aged between 76 and 103 years. We divided the participants into young old (between 76 and 84; mean = 80.35±2.44; male/female = 76/88) and oldest old (between 85 and 103; mean = 91.74±5.11; male/female = 60/66) groups. The results showed that most of the examined sulci significantly widened with increased age and that the rates of sulcal widening were lower in the oldest old. The spatial pattern of the cortical thinning partly corresponded with that of sulcal widening. Compared to females, males had significantly wider sulci, especially in the oldest old. This study builds a foundation for future investigations of neurocognitive disorders and neurodegenerative diseases in the oldest old, including centenarians.
Collapse
Affiliation(s)
- Hui Tang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China.
| | - Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Sydney, NSW 2052, Australia
| | - Jian Cheng
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Shuyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Sydney, NSW 2052, Australia; Dementia Centre for Research Collaboration, School of Psychiatry, UNSW Sydney, NSW 2052, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Sydney, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Sydney, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
20
|
Fumagalli GG, Basilico P, Arighi A, Mercurio M, Scarioni M, Carandini T, Colombi A, Pietroboni AM, Sacchi L, Conte G, Scola E, Triulzi F, Scarpini E, Galimberti D. Parieto-occipital sulcus widening differentiates posterior cortical atrophy from typical Alzheimer disease. Neuroimage Clin 2020; 28:102453. [PMID: 33045537 PMCID: PMC7559336 DOI: 10.1016/j.nicl.2020.102453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Posterior Cortical Atrophy (PCA) is an atypical presentation of Alzheimer disease (AD) characterized by atrophy of posterior brain regions. This pattern of atrophy is usually evaluated with Koedam visual rating scale, a score developed to enable visual assessment of parietal atrophy on magnetic resonance imaging (MRI). However, Koedam scale is complex to assess and its utility in the differential diagnosis between PCA and typical AD has not been demonstrated yet. The aim of this study is therefore to spot a simple and reliable MRI element able to differentiate between PCA and typical AD using visual rating scales. METHODS 15 patients who presented with progressive complex visual disorders and predominant occipitoparietal hypometabolism on PET-FDG were selected from our centre and compared with 30 typical AD patients and 15 healthy subjects. We used previously validated visual rating scales including Koedam scale, which we divided into three major components: posterior cingulate, precuneus and parieto-occipital. Subsequently we validated the results using the automated software Brainvisa Morphologist and Voxel Based Morphometry (VBM). RESULTS Patients with PCA, compared to typical AD, showed higher widening of the parieto-occipital sulcus, assessed both with visual rating scales and Brainvisa. In the corresponding areas, the VBM analysis showed an inverse correlation between the results obtained from the visual evaluation scales with the volume of the grey matter and a direct correlation between the same results with the cerebrospinal fluid volume. CONCLUSIONS A visually based rating scale for parieto-occipital sulcus can distinguish Posterior Cortical Atrophy from typical Alzheimer disease.
Collapse
Affiliation(s)
- Giorgio G Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50121 Firenze, Italy.
| | | | - Andrea Arighi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Matteo Mercurio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Marta Scarioni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy; Department of Neurology, Amsterdam University Medical Centers, Location VUmc, Alzheimer Center, Amsterdam, the Netherlands
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Annalisa Colombi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Anna M Pietroboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Luca Sacchi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Elisa Scola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, CRC Molecular Basis of Neuro-Psycho-Geriatrics Diseases, University of Milan, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, CRC Molecular Basis of Neuro-Psycho-Geriatrics Diseases, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Pizzagalli F, Auzias G, Yang Q, Mathias SR, Faskowitz J, Boyd JD, Amini A, Rivière D, McMahon KL, de Zubicaray GI, Martin NG, Mangin JF, Glahn DC, Blangero J, Wright MJ, Thompson PM, Kochunov P, Jahanshad N. The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Commun Biol 2020; 3:510. [PMID: 32934300 PMCID: PMC7493906 DOI: 10.1038/s42003-020-01163-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 EB015611 NIBIB NIH HHS
- P01 AG026276 NIA NIH HHS
- R21 NS064534 NINDS NIH HHS
- R01 MH078111 NIMH NIH HHS
- R01 HD050735 NICHD NIH HHS
- R01 NS056307 NINDS NIH HHS
- R01 MH121246 NIMH NIH HHS
- P50 MH071616 NIMH NIH HHS
- R03 EB012461 NIBIB NIH HHS
- R01 AG059874 NIA NIH HHS
- U24 RR021382 NCRR NIH HHS
- P30 AG066444 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- U54 MH091657 NIMH NIH HHS
- R01 AG021910 NIA NIH HHS
- R01 MH078143 NIMH NIH HHS
- P41 RR015241 NCRR NIH HHS
- S10 OD023696 NIH HHS
- R01 MH083824 NIMH NIH HHS
- This research was funded in part by NIH ENIGMA Center grant U54 EB020403, supported by the Big Data to Knowledge (BD2K) Centers of Excellence program funded by a cross-NIH initiative. Additional grant support was provided by: R01 AG059874, R01 MH117601, R01 MH121246, and P41 EB015922. QTIM was supported by NIH R01 HD050735, and the NHMRC 486682, Australia; GOBS: Financial support for this study was provided by the National Institute of Mental Health grants MH078143 (PI: DC Glahn), MH078111 (PI: J Blangero), and MH083824 (PI: DC Glahn & J Blangero); HCP data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University; UK Biobank: This research was conducted using the UK Biobank Resource under Application Number ‘11559’; BrainVISA’s Morphologist software development received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 & 785907 (Human Brain ProjectSGA1 & SGA2), and by the FRM DIC20161236445. OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R. Buckner, J. Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382. KKI was supported by NIH grants NCRR P41 RR015241 (Peter C.M. van Zijl), 1R01NS056307 (Jerry Prince), 1R21NS064534-01A109 (Bennett A. Landman/Jerry L. Prince), 1R03EB012461-01 (Bennett A. Landman). Neda Jahanshad and Paul Thompson are MPIs of a research project grant from Biogen, Inc. (PO 969323).
Collapse
Affiliation(s)
- Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Qifan Yang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Joshua D Boyd
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Armand Amini
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - Katie L McMahon
- School of Clinical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| |
Collapse
|
22
|
Núñez C, Callén A, Lombardini F, Compta Y, Stephan-Otto C. Different Cortical Gyrification Patterns in Alzheimer's Disease and Impact on Memory Performance. Ann Neurol 2020; 88:67-80. [PMID: 32277502 DOI: 10.1002/ana.25741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The study of cortical gyrification in Alzheimer's disease (AD) could help to further understanding of the changes undergone in the brain during neurodegeneration. Here, we aimed to study brain gyrification differences between healthy controls (HC), mild cognitive impairment (MCI) patients, and AD patients, and explore how cerebral gyrification patterns were associated with memory and other cognitive functions. METHODS We applied surface-based morphometry techniques in 2 large, independent cross-sectional samples, obtained from the Alzheimer's Disease Neuroimaging Initiative project. Both samples, encompassing a total of 1,270 participants, were analyzed independently. RESULTS Unexpectedly, we found that AD patients presented a more gyrificated entorhinal cortex than HC. Conversely, the insular cortex of AD patients was hypogyrificated. A decrease in the gyrification of the insular cortex was also found in older HC participants as compared with younger HC, which argues against the specificity of this finding in AD. However, an increased degree of folding of the insular cortex was specifically associated with better memory function and semantic fluency, only in AD patients. Overall, MCI patients presented an intermediate gyrification pattern. All these findings were consistently observed in the two samples. INTERPRETATION The marked atrophy of the medial temporal lobe observed in AD patients may explain the increased folding of the entorhinal cortex. We additionally speculate regarding alternative mechanisms that may also alter its folding. The association between increased gyrification of the insular cortex and memory function, specifically observed in AD, could be suggestive of compensatory mechanisms to overcome the loss of memory function. ANN NEUROL 2020 ANN NEUROL 2020;88:67-80.
Collapse
Affiliation(s)
- Christian Núñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Antonio Callén
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Federica Lombardini
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona & Maria de Maeztu Excellence Center Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | |
Collapse
|
23
|
Mangin JF, Rivière D, Duchesnay E, Cointepas Y, Gaura V, Verny C, Damier P, Krystkowiak P, Bachoud-Lévi AC, Hantraye P, Remy P, Douaud G. Neocortical morphometry in Huntington's disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes. NEUROIMAGE-CLINICAL 2020; 26:102211. [PMID: 32113174 PMCID: PMC7044794 DOI: 10.1016/j.nicl.2020.102211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
We found shallower central, intraparietal and left intermediate frontal sulci in HD. Shallow calcarine fissure is further evidence of primary cortical degeneration in HD. Healthy subjects show strong asymmetry in length of posterior Sylvian fissure (pSF). Absence of pSF asymmetry in HD indicates genetic interplay with neurodevelopment.
Huntington's disease (HD) is an inherited, autosomal dominant disorder that is characteristically thought of as a degenerative disorder. Despite cellular and molecular grounds suggesting HD could also impact normal development, there has been scarce systems-level data obtained from in vivo human studies supporting this hypothesis. Sulcus-specific morphometry analysis may help disentangle the contribution of coexisting neurodegenerative and neurodevelopmental processes, but such an approach has never been used in HD. Here, we investigated cortical sulcal depth, related to degenerative process, as well as cortical sulcal length, related to developmental process, in early-stage HD and age-matched healthy controls. This morphometric analysis revealed significant differences in the HD participants compared with the healthy controls bilaterally in the central and intra-parietal sulcus, but also in the left intermediate frontal sulcus and calcarine fissure. As the primary visual cortex is not connected to the striatum, the latter result adds to the increasing in vivo evidence for primary cortical degeneration in HD. Those sulcal measures that differed between HD and healthy populations were mainly atrophy-related, showing shallower sulci in HD. Conversely, the sulcal morphometry also revealed a crucial difference in the imprint of the Sylvian fissure that could not be related to loss of grey matter volume: an absence of asymmetry in the length of this fissure in HD. Strong asymmetry in that cortical region is typically observed in healthy development. As the formation of the Sylvian fissure appears early in utero, and marked asymmetry is specifically found in this area of the neocortex in newborns, this novel finding likely indicates the foetal timing of a disease-specific, genetic interplay with neurodevelopment.
Collapse
Affiliation(s)
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Edouard Duchesnay
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Yann Cointepas
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Véronique Gaura
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France
| | - Christophe Verny
- Centre national de référence des maladies neurogénétiques, Service de neurologie, CHU, 49000 Angers, France, UMR CNRS 6214 - INSERM U1083, France
| | | | | | | | - Philippe Hantraye
- MIRCen, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux Energies Alternatives, France
| | - Philippe Remy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France
| | - Gwenaëlle Douaud
- Functional Magnetic Resonance Imaging of the Brain (FMRIB) Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer disease (AD) is defined as having an age of onset younger than 65 years. While early-onset AD is often overshadowed by the more common late-onset AD, recognition of the differences between early- and late-onset AD is important for clinicians. RECENT FINDINGS Early-onset AD comprises about 5% to 6% of cases of AD and includes a substantial percentage of phenotypic variants that differ from the usual amnestic presentation of typical AD. Characteristics of early-onset AD in comparison to late-onset AD include a larger genetic predisposition (familial mutations and summed polygenic risk), more aggressive course, more frequent delay in diagnosis, higher prevalence of traumatic brain injury, less memory impairment and greater involvement of other cognitive domains on presentation, and greater psychosocial difficulties. Neuroimaging features of early-onset AD in comparison to late-onset AD include greater frequency of hippocampal sparing and posterior neocortical atrophy, increased tau burden, and greater connectomic changes affecting frontoparietal networks rather than the default mode network. SUMMARY Early-onset AD differs substantially from late-onset AD, with different phenotypic presentations, greater genetic predisposition, and differences in neuropathologic burden and topography. Early-onset AD more often presents with nonamnestic phenotypic variants that spare the hippocampi and with greater tau burden in posterior neocortices. The early-onset AD phenotypic variants involve different neural networks than typical AD. The management of early-onset AD is similar to that of late-onset AD but with special emphasis on targeting specific cognitive areas and more age-appropriate psychosocial support and education.
Collapse
|
25
|
Bertoux M, Lagarde J, Corlier F, Hamelin L, Mangin JF, Colliot O, Chupin M, Braskie MN, Thompson PM, Bottlaender M, Sarazin M. Sulcal morphology in Alzheimer's disease: an effective marker of diagnosis and cognition. Neurobiol Aging 2019; 84:41-49. [PMID: 31491594 DOI: 10.1016/j.neurobiolaging.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Measuring the morphology of brain sulci has been recently proposed as a novel imaging approach in Alzheimer's disease (AD). We aimed to investigate the relevance of such an approach in AD, by exploring its (1) clinical relevance in comparison with traditional imaging methods, (2) relationship with amyloid deposition, (3) association with cognitive functions. Here, 51 patients (n = 32 mild cognitive impairment/mild dementia-AD, n = 19 moderate/severe dementia-AD) diagnosed according to clinical-biological criteria (CSF biomarkers and amyloid-PET) and 29 controls (with negative amyloid-PET) underwent neuropsychological and 3T-MRI examinations. Mean sulcal width (SW) and mean cortical thickness around the sulcus (CT-S) were automatically measured. We found higher SW and lower CT-S in patients with AD than in controls. These differences were more pronounced at later stages of the disease and provided the best diagnostic accuracies among the imaging markers. Correlations were not found between CT-S or SW and amyloid deposition but between specific cognitive functions and regional CT-S/SW in key associated regions. Sulcal morphology is a good supporting diagnosis tool that reflects the main cognitive impairments in AD. It could be considered as a good surrogate marker to evaluate the efficacy of new drugs.
Collapse
Affiliation(s)
- Maxime Bertoux
- Univ Lille, Inserm, CHU Lille, UMR 1171, Degenerative and Vascular Cognitive Disorders, Lille, France; Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France.
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Fabian Corlier
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Lorraine Hamelin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Olivier Colliot
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Marie Chupin
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Meredith N Braskie
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, USA
| | - Michel Bottlaender
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France; Neurospin, CEA, Gif-sur-Yvette, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Université Paris Descartes, Sorbonne Paris Cité, Centre Hospitalier Sainte Anne, Paris, France; UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
26
|
Abstract
While it is well established that cortical morphology differs in relation to a variety of inter-individual factors, it is often characterized using estimates of volume, thickness, surface area, or gyrification. Here we developed a computational approach for estimating sulcal width and depth that relies on cortical surface reconstructions output by FreeSurfer. While other approaches for estimating sulcal morphology exist, studies often require the use of multiple brain morphology programs that have been shown to differ in their approaches to localize sulcal landmarks, yielding morphological estimates based on inconsistent boundaries. To demonstrate the approach, sulcal morphology was estimated in three large sample of adults across the lifespan, in relation to aging. A fourth sample is additionally used to estimate test–retest reliability of the approach. This toolbox is now made freely available as supplemental to this paper: https://cmadan.github.io/calcSulc/.
Collapse
|
27
|
Eckerström C, Klasson N, Olsson E, Selnes P, Rolstad S, Wallin A. Similar pattern of atrophy in early- and late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:253-259. [PMID: 29780870 PMCID: PMC5956802 DOI: 10.1016/j.dadm.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Previous research on structural changes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) have reported inconsistent findings. Methods In the present substudy of the Gothenburg MCI study, 1.5 T scans were used to estimate lobar and hippocampal volumes using FreeSurfer. Study participants (N = 145) included 63 patients with AD, (24 patients with EOAD [aged ≤65 years], 39 patients with LOAD [aged >65 years]), 25 healthy controls aged ≤65 years, and 57 healthy controls aged >65 years. Results Hippocampal atrophy is the most prominent feature of both EOAD and LOAD compared with controls. Direct comparison between EOAD and LOAD showed that the differences between the groups did not remain after correcting for age. Discussion Structurally, EOAD and LOAD does not seem to be different nosological entities. The difference in brain volumes between the groups compared with controls is likely due to age-related atrophy. Hippocampal atrophy is the most prominent feature of both early- and late-onset AD. No structural difference between early- and late-onset AD after adjusting for age. Early- and late-onset AD exhibits a similar pattern of atrophy.
Collapse
Affiliation(s)
- Carl Eckerström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Niklas Klasson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Erik Olsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sindre Rolstad
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| |
Collapse
|
28
|
Sarazin M, Lagarde J, Bottlaender M. Distinct tau PET imaging patterns in typical and atypical Alzheimer's disease. Brain 2018; 139:1321-4. [PMID: 27189580 DOI: 10.1093/brain/aww041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte Anne and Université Paris Descartes, Sorbonne Paris Cité, France
| | - Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte Anne and Université Paris Descartes, Sorbonne Paris Cité, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à l'Energie Atomique; Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction des sciences du vivant, Commissariat à l'Energie Atomique, France
| |
Collapse
|
29
|
Diagnosis of Alzheimer's Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:9060124. [PMID: 29065663 PMCID: PMC5499252 DOI: 10.1155/2017/9060124] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Background. Error-free diagnosis of Alzheimer's disease (AD) from healthy control (HC) patients at an early stage of the disease is a major concern, because information about the condition's severity and developmental risks present allows AD sufferer to take precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided diagnosis in magnetic resonance image (MRI) classification. However, distinguishing between Alzheimer's brain data and healthy brain data in older adults (age > 60) is challenging because of their highly similar brain patterns and image intensities. Recently, cutting-edge feature extraction technologies have found extensive application in numerous fields, including medical image analysis. Here, we propose a dual-tree complex wavelet transform (DTCWT) for extracting features from an image. The dimensionality of feature vector is reduced by using principal component analysis (PCA). The reduced feature vector is sent to feed-forward neural network (FNN) to distinguish AD and HC from the input MR images. These proposed and implemented pipelines, which demonstrate improvements in classification output when compared to that of recent studies, resulted in high and reproducible accuracy rates of 90.06 ± 0.01% with a sensitivity of 92.00 ± 0.04%, a specificity of 87.78 ± 0.04%, and a precision of 89.6 ± 0.03% with 10-fold cross-validation.
Collapse
|
30
|
Abstract
Early-onset Alzheimer disease (EOAD), with onset in individuals younger than 65 years, although overshadowed by the more common late-onset AD (LOAD), differs significantly from LOAD. EOAD comprises approximately 5% of AD and is associated with delays in diagnosis, aggressive course, and age-related psychosocial needs. One source of confusion is that a substantial percentage of EOAD are phenotypic variants that differ from the usual memory-disordered presentation of typical AD. The management of EOAD is similar to that for LOAD, but special emphasis should be placed on targeting the specific cognitive areas involved and more age-appropriate psychosocial support and education.
Collapse
Affiliation(s)
- Mario F Mendez
- Behavioral Neurology Program, David Geffen School of Medicine at UCLA, 300 Westwood Plaza, Suite B-200, Box 956975, Los Angeles, CA 90095, USA; Neurobehavior Unit, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 206, Los Angeles, CA 90073, USA.
| |
Collapse
|
31
|
Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, Zhang J, Liu T, Wen W. Identification of Early-Stage Alzheimer's Disease Using Sulcal Morphology and Other Common Neuroimaging Indices. PLoS One 2017; 12:e0170875. [PMID: 28129351 PMCID: PMC5271367 DOI: 10.1371/journal.pone.0170875] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Identifying Alzheimer’s disease (AD) at its early stage is of major interest in AD research. Previous studies have suggested that abnormalities in regional sulcal width and global sulcal index (g-SI) are characteristics of patients with early-stage AD. In this study, we investigated sulcal width and three other common neuroimaging morphological measures (cortical thickness, cortical volume, and subcortical volume) to identify early-stage AD. These measures were evaluated in 150 participants, including 75 normal controls (NC) and 75 patients with early-stage AD. The global sulcal index (g-SI) and the width of five individual sulci (the superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure) were extracted from 3D T1-weighted images. The discriminative performances of the other three traditional neuroimaging morphological measures were also examined. Information Gain (IG) was used to select a subset of features to provide significant information for separating NC and early-stage AD subjects. Based on the four modalities of the individual measures, i.e., sulcal measures, cortical thickness, cortical volume, subcortical volume, and combinations of these individual measures, three types of classifiers (Naïve Bayes, Logistic Regression and Support Vector Machine) were applied to compare the classification performances. We observed that sulcal measures were either superior than or equal to the other measures used for classification. Specifically, the g-SI and the width of the Sylvian fissure were two of the most sensitive sulcal measures and could be useful neuroanatomical markers for detecting early-stage AD. There were no significant differences between the three classifiers that we tested when using the same neuroanatomical features.
Collapse
Affiliation(s)
- Kunpeng Cai
- School of Computer Science and Engineering, Beihang University, Beijing, China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China
| | - Hong Xu
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Hao Guan
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wanlin Zhu
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jicong Zhang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tao Liu
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing key laboratory of rehabilitation engineering for elderly, Beijing, China
- * E-mail:
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
32
|
Zhang Y, Wang S, Phillips P, Yang J, Yuan TF. Three-Dimensional Eigenbrain for the Detection of Subjects and Brain Regions Related with Alzheimer's Disease. J Alzheimers Dis 2016; 50:1163-79. [PMID: 26836190 DOI: 10.3233/jad-150988] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Considering that Alzheimer's disease (AD) is untreatable, early diagnosis of AD from the healthy elderly controls (HC) is pivotal. However, computer-aided diagnosis (CAD) systems were not widely used due to its poor performance. OBJECTIVE Inspired from the eigenface approach for face recognition problems, we proposed an eigenbrain to detect AD brains. Eigenface is only for 2D image processing and is not suitable for volumetric image processing since faces are usually obtained as 2D images. METHODS We extended the eigenbrain to 3D. This 3D eigenbrain (3D-EB) inherits the fundamental strategies in either eigenface or 2D eigenbrain (2D-EB). All the 3D brains were transferred to a feature space, which encoded the variation among known 3D brain images. The feature space was named as the 3D-EB, and defined as eigenvectors on the set of 3D brains. We compared four different classifiers: feed-forward neural network, support vector machine (SVM) with linear kernel, polynomial (Pol) kernel, and radial basis function kernel. RESULTS The 50x10-fold stratified cross validation experiments showed that the proposed 3D-EB is better than the 2D-EB. SVM with Pol kernel performed the best among all classifiers. Our "3D-EB + Pol-SVM" achieved an accuracy of 92.81% ± 1.99% , a sensitivity of 92.07% ± 2.48% , a specificity of 93.02% ± 2.22% , and a precision of 79.03% ± 2.37% . Based on the most important 3D-EB U1, we detected 34 brain regions related with AD. The results corresponded to recent literature. CONCLUSIONS We validated the effectiveness of the proposed 3D-EB by detecting subjects and brain regions related to AD.
Collapse
Affiliation(s)
- Yudong Zhang
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, Guilin, Guangxi, China
| | - Shuihua Wang
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Preetha Phillips
- School of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV, USA
| | - Jiquan Yang
- Jiangsu Key Laboratory of 3d Printing Equipment And Manufacturing, Nanjing, Jiangsu, China
| | - Ti-Fei Yuan
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Plocharski M, Østergaard LR. Extraction of sulcal medial surface and classification of Alzheimer's disease using sulcal features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 133:35-44. [PMID: 27393798 DOI: 10.1016/j.cmpb.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advancements in medical imaging have resulted in a significant growth in diagnostic possibilities of neurodegenerative disorders. Neuroanatomical abnormalities of the cerebral cortex in Alzheimer's disease (AD), the most frequent type of dementia in the elderly, can be observed in morphology analysis of cortical sulci, and used to distinguish between cognitively normal (CN) subjects and subjects with AD. OBJECTIVE The purpose of this paper was to extract sulcal features by means of computing a sulcal medial surface for AD/CN classification. METHODS 24 distinct sulci per subject were extracted from 210 subjects from the ADNI database by the BrainVISA sulcal identification pipeline. Sulcal medial surface features (depth, length, mean and Gaussian curvature, surface area) were computed for AD/CN classification with a support vector machine (SVM). RESULTS The obtained 10-fold cross-validated classification accuracy was 87.9%, sensitivity 90.0%, and specificity 86.7%, based on ten features. The area under the receiver operating characteristic curve (AUC) was 0.89. CONCLUSIONS The sulcal medial surface features can be used as biomarkers for cortical neuroanatomical abnormalities in AD. All the features were located in the left hemisphere, which had previously been reported to be more severely affected in AD and to lose grey matter faster than the right hemisphere.
Collapse
Affiliation(s)
- Maciej Plocharski
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | | |
Collapse
|
34
|
Wang J, Redmond SJ, Bertoux M, Hodges JR, Hornberger M. A Comparison of Magnetic Resonance Imaging and Neuropsychological Examination in the Diagnostic Distinction of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia. Front Aging Neurosci 2016; 8:119. [PMID: 27378905 PMCID: PMC4909756 DOI: 10.3389/fnagi.2016.00119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
The clinical distinction between Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) remains challenging and largely dependent on the experience of the clinician. This study investigates whether objective machine learning algorithms using supportive neuroimaging and neuropsychological clinical features can aid the distinction between both diseases. Retrospective neuroimaging and neuropsychological data of 166 participants (54 AD; 55 bvFTD; 57 healthy controls) was analyzed via a Naïve Bayes classification model. A subgroup of patients (n = 22) had pathologically-confirmed diagnoses. Results show that a combination of gray matter atrophy and neuropsychological features allowed a correct classification of 61.47% of cases at clinical presentation. More importantly, there was a clear dissociation between imaging and neuropsychological features, with the latter having the greater diagnostic accuracy (respectively 51.38 vs. 62.39%). These findings indicate that, at presentation, machine learning classification of bvFTD and AD is mostly based on cognitive and not imaging features. This clearly highlights the urgent need to develop better biomarkers for both diseases, but also emphasizes the value of machine learning in determining the predictive diagnostic features in neurodegeneration.
Collapse
Affiliation(s)
- Jingjing Wang
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, NSW, Australia
| | - Stephen J Redmond
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, NSW, Australia
| | - Maxime Bertoux
- Norwich Medical School, University of East Anglia Norwich, UK
| | - John R Hodges
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|