1
|
Galin M, de Girolamo L, Clarisse B, Segura-Djezzar C, Glöckner F, Elia C, Réhel S, Clochon P, Doidy F, Chavant J, Etard O, Viader F, Grellard JM, Lequesne J, Joly F, Eustache F, Martin T, Giffard B, Quarck G, Perrier J. Exploration of effects of galvanic vestibular stimulation on circadian rhythms and its associations with sleep and spatial memory in patients with breast cancer: The ICANSLEEP-2 protocol. PLoS One 2024; 19:e0306462. [PMID: 39083526 PMCID: PMC11290633 DOI: 10.1371/journal.pone.0306462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Patients with breast cancer (BC) exhibit circadian rhythm disruptions, mainly of rest-activity rhythm (RAR), of which sleep is an essential component, and cortisol rhythm. Sleep complaints such as insomnia and cognitive impairments are prevalent in BC. In general population, sleep is known to contribute greatly to cognition. Thus, improving RAR (and particularly sleep) could help limiting cognitive impairments in BC patients. It has recently been suggested that, in addition to its essential role in spatial memory, the vestibular system contributes to RAR synchronization. Its stimulation could therefore limit both sleep disturbances and spatial memory deficits in BC. OBJECTIVES The main aim of the ICANSLEEP-2 study is to assess the effects of galvanic vestibular stimulation (GVS) on circadian rhythms. The secondary aim is to assess whether GVS improves sleep and spatial memory in BC patients. METHODS Two groups with insomnia complaints (Insomnia Severity Index > 7) will be included: a patients' group with BC (n = 50) and a healthy control group without history of cancer (n = 25). There will be two assessment sessions, before and after 2 weeks of GVS. Patients will be randomly assigned to either a GVS group or a sham group (noneffective stimulation). Controls will receive GVS. GVS effects will be quantified and compared between groups. Assessments will include actigraphy, salivary cortisol, polysomnography, a cognitive test battery (including a computer-based task for spatial memory) and validated questionnaires (for psychological functioning and sleep complaints). DISCUSSION Current methods for improving sleep in BC have had controversial outcomes regarding sleep structure. We expect GVS to offer a new mean of directly targeting RAR disruptions in BC patients, with beneficial effects on sleep structure. Given the crucial impact of sleep on cognitive functioning, notably spatial memory, improving sleep of BC patients should enhance their cognitive functioning. ETHICS AND DISSEMINATION This study received ethical approval from the Ile de France IV institutional review board on 19 April 2022 (no. ID-RCB: 2022-A00437-36). The findings yielded by this protocol will be presented at various conferences and in peer-reviewed journals. CLINICALTRIALS.GOV REGISTRATION NUMBER NCT05414357.
Collapse
Affiliation(s)
- Melvin Galin
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
- COMETE Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Laura de Girolamo
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | | | | | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Clara Elia
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Stéphane Réhel
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Patrice Clochon
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Franck Doidy
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Julien Chavant
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Olivier Etard
- COMETE Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Fausto Viader
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | | | - Justine Lequesne
- Clinical Research Department, François Baclesse Center, Caen, France
| | - Florence Joly
- Clinical Research Department, François Baclesse Center, Caen, France
- Cancer and Cognition Platform, French League Against Cancer, Caen, France
- Cancer Prevention and Treatment (ANTICIPE) Research Unit, INSERM, Normandy University, Caen, France
| | - Francis Eustache
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Tristan Martin
- Movement – Interactions, Performance (MIP) Team, Faculty of Sciences and Technologies, Le Mans University, Le Mans, France
| | - Bénédicte Giffard
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
- Cancer and Cognition Platform, French League Against Cancer, Caen, France
| | - Gaëlle Quarck
- COMETE Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| | - Joy Perrier
- Neuropsychology and Imaging of Human Memory Research Unit, GIP Cyceron-Normandy University-PSL-EPHE-INSERM-Caen University Hospital, Caen, France
| |
Collapse
|
2
|
Rekers S, Finke C. Translating spatial navigation evaluation from experimental to clinical settings: The virtual environments navigation assessment (VIENNA). Behav Res Methods 2024; 56:2033-2048. [PMID: 37166580 PMCID: PMC10991013 DOI: 10.3758/s13428-023-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
Spatial navigation abilities are frequently impaired in neurological disorders and they also decline with normal aging. Researchers and clinicians therefore need valid and easy-to-use spatial navigation assessment tools to study the impact of different neuropathologies and prevent relevant cognitive impairments from going undetected. However, current experimental paradigms rarely address which cognitive processes they recruit, often have resource-intensive setups, and usually require active navigation, e.g., using a joystick or keyboard, thus confounding cognitive performance with fine motor skills. Yet, for clinical feasibility, time-efficient paradigms are needed that are informative and easy to administer in participants with limited technical experience and diverging impairments. Here, we introduce the virtual environments navigation assessment (VIENNA), a virtual adaptation of a brief, standardized, and intuitive spatial navigation paradigm ( https://osf.io/kp4c5/ ). VIENNA is designed to assess spatial navigation without episodic memory demands, requires no interface device, and takes about 16 min to complete. We evaluated VIENNA in 79 healthy middle-aged to older participants (50-85 years) and provide evidence for its feasibility and construct validity. Tests of visuospatial and executive functions, but not episodic memory or selective attention, were identified as cognitive correlates of VIENNA, even when controlling for participant age and overall cognitive performance. Furthermore, VIENNA scores correlated with subjective navigation ability and age, but not with depressiveness, cognitive complaints, or education. The straightforward administration of VIENNA allows for its integration into routine neuropsychological assessments and enables differentiated evaluation of spatial navigation performance in patients with motor impairments and episodic memory deficits.
Collapse
Affiliation(s)
- Sophia Rekers
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Schneider I, Schönfeld R, Hanert A, Philippen S, Tödt I, Granert O, Mehdorn M, Becktepe J, Deuschl G, Berg D, Paschen S, Bartsch T. Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease. Brain Commun 2024; 6:fcae068. [PMID: 38560516 PMCID: PMC10979721 DOI: 10.1093/braincomms/fcae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Schneider
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Robby Schönfeld
- Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | - Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Sarah Philippen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Inken Tödt
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Oliver Granert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maximilian Mehdorn
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Jos Becktepe
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Günther Deuschl
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Daniela Berg
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Steffen Paschen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
4
|
Gönner L, Baeuchl C, Glöckner F, Riedel P, Smolka MN, Li SC. Levodopa suppresses grid-like activity and impairs spatial learning in novel environments in healthy young adults. Cereb Cortex 2023; 33:11247-11256. [PMID: 37782941 PMCID: PMC10690865 DOI: 10.1093/cercor/bhad361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Accumulated evidence from animal studies suggests a role for the neuromodulator dopamine in memory processes, particularly under conditions of novelty or reward. Our understanding of how dopaminergic modulation impacts spatial representations and spatial memory in humans remains limited. Recent evidence suggests age-specific regulation effects of dopamine pharmacology on activity in the medial temporal lobe, a key region for spatial memory. To which degree this modulation affects spatially patterned medial temporal representations remains unclear. We reanalyzed recent data from a pharmacological dopamine challenge during functional brain imaging combined with a virtual object-location memory paradigm to assess the effect of Levodopa, a dopamine precursor, on grid-like activity in the entorhinal cortex. We found that Levodopa impaired grid cell-like representations in a sample of young adults (n = 55, age = 26-35 years) in a novel environment, accompanied by reduced spatial memory performance. We observed no such impairment when Levodopa was delivered to participants who had prior experience with the task. These results are consistent with a role of dopamine in modulating the encoding of novel spatial experiences. Our results suggest that dopamine signaling may play a larger role in shaping ongoing spatial representations than previously thought.
Collapse
Affiliation(s)
- Lorenz Gönner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, 01062 Dresden, Germany
- Department of Psychiatry, TU Dresden, 01307 Dresden, Germany
| | - Christian Baeuchl
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, 01062 Dresden, Germany
- Department of Psychiatry, TU Dresden, 01307 Dresden, Germany
| | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, 01062 Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, TU Dresden, 01307 Dresden, Germany
| | | | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, 01062 Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
5
|
Ibáñez A, Kühne K, Miklashevsky A, Monaco E, Muraki E, Ranzini M, Speed LJ, Tuena C. Ecological Meanings: A Consensus Paper on Individual Differences and Contextual Influences in Embodied Language. J Cogn 2023; 6:59. [PMID: 37841670 PMCID: PMC10573819 DOI: 10.5334/joc.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 10/17/2023] Open
Abstract
Embodied theories of cognition consider many aspects of language and other cognitive domains as the result of sensory and motor processes. In this view, the appraisal and the use of concepts are based on mechanisms of simulation grounded on prior sensorimotor experiences. Even though these theories continue receiving attention and support, increasing evidence indicates the need to consider the flexible nature of the simulation process, and to accordingly refine embodied accounts. In this consensus paper, we discuss two potential sources of variability in experimental studies on embodiment of language: individual differences and context. Specifically, we show how factors contributing to individual differences may explain inconsistent findings in embodied language phenomena. These factors include sensorimotor or cultural experiences, imagery, context-related factors, and cognitive strategies. We also analyze the different contextual modulations, from single words to sentences and narratives, as well as the top-down and bottom-up influences. Similarly, we review recent efforts to include cultural and language diversity, aging, neurodegenerative diseases, and brain disorders, as well as bilingual evidence into the embodiment framework. We address the importance of considering individual differences and context in clinical studies to drive translational research more efficiently, and we indicate recommendations on how to correctly address these issues in future research. Systematically investigating individual differences and context may contribute to understanding the dynamic nature of simulation in language processes, refining embodied theories of cognition, and ultimately filling the gap between cognition in artificial experimental settings and cognition in the wild (i.e., in everyday life).
Collapse
Affiliation(s)
- Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US
- Trinity College Dublin (TCD), Dublin, Ireland, IE
| | - Katharina Kühne
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Elisa Monaco
- Laboratory for Cognitive and Neurological Sciences, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, CH
| | - Emiko Muraki
- Department of Psychology & Hotchkiss Brain Institute, University of Calgary, CA
| | | | | | - Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, IT
| |
Collapse
|
6
|
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li SC. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. Neuroimage 2023; 273:120099. [PMID: 37037380 DOI: 10.1016/j.neuroimage.2023.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Franka Glöckner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course (LIFE), Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, German
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Koch C, Baeuchl C, Glöckner F, Riedel P, Petzold J, Smolka MN, Li SC, Schuck NW. L-DOPA enhances neural direction signals in younger and older adults. Neuroimage 2022; 264:119670. [PMID: 36243268 PMCID: PMC9771830 DOI: 10.1016/j.neuroimage.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany.
| | - Christian Baeuchl
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Tuena C, Riva G, Murru I, Campana L, Goulene KM, Pedroli E, Stramba-Badiale M. Contribution of cognitive and bodily navigation cues to egocentric and allocentric spatial memory in hallucinations due to Parkinson's disease: A case report. Front Behav Neurosci 2022; 16:992498. [PMID: 36311858 PMCID: PMC9606325 DOI: 10.3389/fnbeh.2022.992498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) manifestations can include visual hallucinations and illusions. Recent findings suggest that the coherent integration of bodily information within an egocentric representation could play a crucial role in these phenomena. Egocentric processing is a key aspect of spatial navigation and is supported by the striatum. Due to the deterioration of the striatal and motor systems, PD mainly impairs the egocentric rather than the allocentric spatial frame of reference. However, it is still unclear the interplay between spatial cognition and PD hallucinations and how different navigation mechanisms can influence such spatial frames of reference. We report the case of A.A., a patient that suffers from PD with frequent episodes of visual hallucinations and illusions. We used a virtual reality (VR) navigation task to assess egocentric and allocentric spatial memory under five navigation conditions (passive, immersive, map, path decision, and attentive cues) in A.A. and a PD control group without psychosis. In general, A.A. exhibited a statistically significant classical dissociation between the egocentric and allocentric performance with a greater deficit for the former. In particular, the dissociation was statistically significant in the "passive" and "attentive cues" conditions. Interestingly in the "immersive" condition, the dissociation was not significant and, in contrast to the other conditions, trends showed better performance for egocentric than allocentric memory. Within the theories of embodiment, we suggest that body-based information, as assessed with VR navigation tasks, could play an important role in PD hallucinations. In addition, the possible neural underpinnings and the usefulness of VR are discussed.
Collapse
Affiliation(s)
- Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Immacolata Murru
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Campana
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Karine M. Goulene
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Pedroli
- Faculty of Psychology, Università eCampus, Novedrate, Italy
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
9
|
Glöckner F, Schuck NW, Li SC. Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Sci Rep 2021; 11:15257. [PMID: 34315933 PMCID: PMC8316315 DOI: 10.1038/s41598-021-94530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Spatial learning can be based on intramaze cues and environmental boundaries. These processes are predominantly subserved by striatal- and hippocampal-dependent circuitries, respectively. Maturation and aging processes in these brain regions may affect lifespan differences in their contributions to spatial learning. We independently manipulated an intramaze cue or the environment's boundary in a navigation task in 27 younger children (6-8 years), 30 older children (10-13 years), 29 adolescents (15-17 years), 29 younger adults (20-35 years) and 26 older adults (65-80 years) to investigate lifespan age differences in the relative prioritization of either information. Whereas learning based on an intramaze cue showed earlier maturation during the progression from younger to later childhood and remained relatively stable across adulthood, maturation of boundary-based learning was more protracted towards peri-adolescence and showed strong aging-related decline. Furthermore, individual differences in prioritizing intramaze cue- over computationally more demanding boundary-based learning was positively associated with cognitive processing fluctuations and this association was partially mediated by spatial working memory capacity during adult, but not during child development. This evidence reveals different age gradients of two modes of spatial learning across the lifespan, which seem further influenced by individual differences in cognitive processing fluctuations and working memory, particularly during aging.
Collapse
Affiliation(s)
- Franka Glöckner
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Nicolas W. Schuck
- grid.419526.d0000 0000 9859 7917Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI - Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
10
|
Tuena C, Mancuso V, Stramba-Badiale C, Pedroli E, Stramba-Badiale M, Riva G, Repetto C. Egocentric and Allocentric Spatial Memory in Mild Cognitive Impairment with Real-World and Virtual Navigation Tasks: A Systematic Review. J Alzheimers Dis 2021; 79:95-116. [PMID: 33216034 PMCID: PMC7902987 DOI: 10.3233/jad-201017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spatial navigation is the ability to estimate one's position on the basis of environmental and self-motion cues. Spatial memory is the cognitive substrate underlying navigation and relies on two different reference frames: egocentric and allocentric. These spatial frames are prone to decline with aging and impairment is even more pronounced in Alzheimer's disease (AD) or in mild cognitive impairment (MCI). OBJECTIVE To conduct a systematic review of experimental studies investigating which MCI population and tasks are used to evaluate spatial memory and how allocentric and egocentric deficits are impaired in MCI after navigation. METHODS PRISMA and PICO guidelines were applied to carry out the systematic search. Down and Black checklist was used to assess methodological quality. RESULTS Our results showed that amnestic MCI and AD pathology are the most investigated typologies; both egocentric and allocentric memory are impaired in MCI individuals, and MCI due to AD biomarkers has specific encoding and retrieval impairments; secondly, spatial navigation is principally investigated with the hidden goal task (virtual and real-world version), and among studies involving virtual reality, the privileged setting consists of non-immersive technology; thirdly, despite subtle differences, real-world and virtual versions showed good overlap for the assessment of MCI spatial memory. CONCLUSION Considering that MCI is a subclinical entity with potential risk for conversion to dementia, investigating spatial memory deficits with navigation tasks might be crucial to make accurate diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Faculty of Psychology, Universitá eCampus, Novedrate, Italy
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Claudia Repetto
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
11
|
Bauer M, Buckley MG, Bast T. Individual differences in theta-band oscillations in a spatial memory network revealed by electroencephalography predict rapid place learning. Brain Neurosci Adv 2021; 5:23982128211002725. [PMID: 35174296 PMCID: PMC8842440 DOI: 10.1177/23982128211002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in ‘search preference’ during ‘probe trials’, a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.
Collapse
Affiliation(s)
- Markus Bauer
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Matthew G Buckley
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Steinke A, Kopp B. Toward a Computational Neuropsychology of Cognitive Flexibility. Brain Sci 2020; 10:E1000. [PMID: 33348638 PMCID: PMC7766646 DOI: 10.3390/brainsci10121000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive inflexibility is a well-documented, yet non-specific corollary of many neurological diseases. Computational modeling of covert cognitive processes supporting cognitive flexibility may provide progress toward nosologically specific aspects of cognitive inflexibility. We review computational models of the Wisconsin Card Sorting Test (WCST), which represents a gold standard for the clinical assessment of cognitive flexibility. A parallel reinforcement-learning (RL) model provides the best conceptualization of individual trial-by-trial WCST responses among all models considered. Clinical applications of the parallel RL model suggest that patients with Parkinson's disease (PD) and patients with amyotrophic lateral sclerosis (ALS) share a non-specific covert cognitive symptom: bradyphrenia. Impaired stimulus-response learning appears to occur specifically in patients with PD, whereas haphazard responding seems to occur specifically in patients with ALS. Computational modeling hence possesses the potential to reveal nosologically specific profiles of covert cognitive symptoms, which remain undetectable by traditionally applied behavioral methods. The present review exemplifies how computational neuropsychology may advance the assessment of cognitive flexibility. We discuss implications for neuropsychological assessment and directions for future research.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | | |
Collapse
|
13
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Xie C, Prasad AA. Probiotics Treatment Improves Hippocampal Dependent Cognition in a Rodent Model of Parkinson's Disease. Microorganisms 2020; 8:microorganisms8111661. [PMID: 33120961 PMCID: PMC7692862 DOI: 10.3390/microorganisms8111661] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with motor dysfunction and a number of psychiatric symptoms. Symptoms such as anxiety and cognitive deficits emerge prior to motor symptoms and persist over time. There are limited treatments targeting PD psychiatric symptoms. Emerging studies reveal that the gut microbe is altered in PD patients. Here we assessed the effect of a probiotic treatment in a rat model of PD. We used the neurotoxin (6-hydroxydopamine, 6-OHDA) in a preclinical PD model to examine the impact of a probiotic treatment (Lacticaseibacillus rhamnosus HA-114) on anxiety and memory. Rats underwent either sham surgery or received 6-OHDA bilaterally into the striatum. Three weeks post-surgery, rats were divided into three experimental groups: a sham group that received probiotics, a 6-OHDA group that received probiotics, and the third group of 6-OHDA received the placebo formula. All rats had access to either placebo or probiotics formula for 6 weeks. All groups were assessed for anxiety-like behaviour using the elevated plus maze. Cognition was assessed for both non-hippocampal and hippocampal dependent tasks using the novel object recognition and novel place recognition. We report that the 6-OHDA lesion induced anxiety-like behaviour and deficits in hippocampal dependent cognition. Interestingly, the probiotics treatment had no impact on anxiety-like behaviour but selectively improved hippocampal dependent cognition deficits. Together, the results presented here highlight the utility of animal models in examining the neuropsychiatric symptoms of PD and the potential of probiotics as adjunctive treatment for non-motor symptoms of PD.
Collapse
|
15
|
Fernandez-Baizan C, Paula Fernandez Garcia M, Diaz-Caceres E, Menendez-Gonzalez M, Arias JL, Mendez M. Patients with Parkinson's Disease Show Alteration in their Visuospatial Abilities and in their Egocentric and Allocentric Spatial Orientation Measured by Card Placing Tests. JOURNAL OF PARKINSONS DISEASE 2020; 10:1807-1816. [PMID: 33016894 DOI: 10.3233/jpd-202122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Visuospatial skills are impaired in Parkinson's disease (PD). Other related skills exist, such as spatial orientation have been poorly studied. The egocentric (based on internal cues) and allocentric frameworks (based on external cues) are used in daily spatial orientation. Depending on PD onset, the allocentric framework may have a higher level of impairment in tremor-dominant and the egocentric one in akinetic-rigid. OBJECTIVE To evaluate spatial orientation and visuospatial functions in PD patients and controls, and to assess whether their performance is related to disease duration and the PD subtype (tremor-dominant and akinetic-rigid). METHODS We evaluated egocentric and allocentric spatial orientation (Egocentric and Allocentric Spatial Memory Tasks) and visuospatial abilities, span and working memory in 59 PD patients and 51 healthy controls. RESULTS Visuospatial skills, visuospatial span, and egocentric and allocentric orientation are affected in PD. Visuospatial skills and allocentric orientation undergo deterioration during the first 5 years of the disease progression, while egocentric orientation and visuospatial span do so at later stages (9-11 years). The akinetic-rigid subtype presents worse results in all the spatial abilities that were measured when compared to controls, and worse scores in visuospatial working memory, visuospatial abilities and allocentric orientation when compared to the tremor-dominant group. The tremor-dominant group performed worse than controls in egocentric and allocentric orientation. CONCLUSION PD patients show deficits in their visuospatial abilities and in their egocentric and allocentric spatial orientation compared to controls, specifically in akinetic-rigid PD. Only spatial orientation are affected in tremor-dominant PD patients. Allocentric orientation is affected earlier in the progression of the disease.
Collapse
Affiliation(s)
- Cristina Fernandez-Baizan
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - M Paula Fernandez Garcia
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Elena Diaz-Caceres
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.,Servicio de Rehabilitación, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Manuel Menendez-Gonzalez
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.,Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain.,Fundación para la Investigación y la Innovación Biosanitaria del Principado de Asturias (FINBA), Oviedo, Spain.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
16
|
Yang Y, Wu YC, Jiang L, Chen L, Pei Z. Intact wayfinding abilities in patients with Parkinson's disease. Clin Park Relat Disord 2020; 3:100067. [PMID: 34316647 PMCID: PMC8298789 DOI: 10.1016/j.prdoa.2020.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/07/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction Previous studies have found that patients with Parkinson's Disease (PD) showed impairments in certain aspects of spatial orientation. The current study aimed to systematically investigate whether these impairments extend to wayfinding abilities in patients with PD. Wayfinding refers to the ability to navigate to an unseen location in the environment and is essential to one's everyday functioning. Methods A total of 24 patients with PD, 20 ability matched controls, 21 college students participated in a series of experimental behavioral tasks and a self-report of environmental abilities. In the route learning task, participants learned and then recalled routes. In the survey learning task, participants were asked to form configurational or survey knowledge. In the map tracing tack, participants were asked to trace the turning directions of a route on a map. Results Patients with PD showed no impairments in the behavioral measures of wayfinding relative to ability matched controls. Both groups performed worse than college students, who had higher cognitive levels. Patients with PD, however, reported a higher competency in environmental abilities than college students. Conclusion Although wayfinding abilities may decrease as cognitive abilities decline, they do not appear as a unique impairment for patients with PD relative to their cognitive level.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Psychology, Montclair State University, 1 Normal Ave. Montclair, NJ. 07043, United States of America
| | - Yingwei Catherine Wu
- Department of psychology, Sun Yat-sen University, 135 Xingang W Rd, Binjiang Road, Haizhu District, Guangzhou, Guangdong Province, China
| | - Lulu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
17
|
Steinke A, Lange F, Seer C, Hendel MK, Kopp B. Computational Modeling for Neuropsychological Assessment of Bradyphrenia in Parkinson's Disease. J Clin Med 2020; 9:E1158. [PMID: 32325662 PMCID: PMC7230210 DOI: 10.3390/jcm9041158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The neural mechanisms of cognitive dysfunctions in neurological diseases remain poorly understood. Here, we conjecture that this unsatisfying state-of-the-art is in part due to the non-specificity of the typical behavioral indicators for cognitive dysfunctions. Our study addresses the topic by advancing the assessment of cognitive dysfunctions through computational modeling. We investigate bradyphrenia in Parkinson's disease (PD) as an exemplary case of cognitive dysfunctions in neurological diseases. Our computational model conceptualizes trial-by-trial behavioral data as resulting from parallel cognitive and sensorimotor reinforcement learning. We assessed PD patients 'on' and 'off' their dopaminergic medication and matched healthy control (HC) participants on a computerized version of the Wisconsin Card Sorting Test. PD patients showed increased retention of learned cognitive information and decreased retention of learned sensorimotor information from previous trials in comparison to HC participants. Systemic dopamine replacement therapy did not remedy these cognitive dysfunctions in PD patients but incurred non-desirable side effects such as decreasing cognitive learning from positive feedback. Our results reveal novel insights into facets of bradyphrenia that are indiscernible by observable behavioral indicators of cognitive dysfunctions. We discuss how computational modeling may contribute to the advancement of future research on brain-behavior relationships and neuropsychological assessment.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Merle K. Hendel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
18
|
Koch C, Li SC, Polk TA, Schuck NW. Effects of aging on encoding of walking direction in the human brain. Neuropsychologia 2020; 141:107379. [PMID: 32088219 DOI: 10.1016/j.neuropsychologia.2020.107379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Human aging is characterized by impaired spatial cognition and reductions in the distinctiveness of category-specific fMRI activation patterns. Yet, little is known about age-related decline in neural distinctiveness of information that humans use when navigating spatial environments. Here, we asked whether neural tuning functions of walking direction are broadened in older versus younger adults. To test this idea, we developed a novel method that allowed us to investigate changes in fMRI-measured pattern similarity while participants navigated in different directions in a virtual spatial navigation task. We expected that directional tuning functions would be broader in older adults, and thus activation patterns that reflect neighboring directions would be less distinct as compared to non-adjacent directions. Because loss of distinctiveness leads to more confusions when information is read out by downstream areas, we analyzed predictions of a decoder trained on directional fMRI patterns and asked (1) whether decoder confusions between two directions increase proportionally to their angular similarity, (2) and how this effect may differ between age groups. Evidence for tuning-function-like signals was found in the retrosplenial complex and early visual cortex, reflecting the primarily visual nature of directional information in our task. Significant age differences in tuning width, however, were only found in early visual cortex, suggesting that less precise visual information could lead to worse directional signals in older adults. At the same time, only directional information encoded in RSC, but not visual cortex, correlated with memory on task. These results shed new light on neural mechanisms underlying age-related spatial navigation impairments and introduce a novel approach to measure tuning specificity using fMRI.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany.
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität, Dresden, Germany; Centre for tactile internet with Human-in-the-Loop (CeTI), Technische Universität, Dresden, Germany
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany, and London, United Kingdom
| |
Collapse
|
19
|
Sharaf NE, Galal AF, El-Sawy MS, Shalby AB, Sayed AH, Ahmed HH. Role of designed Bio-Geometrical forms in antagonizing neurobehavioral burden of Wi-Fi radiation: Evidence-based experimental study. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study investigated the impact of Wi-Fi signals exposure on cognitive function and its relevant brain biomarkers and the possible role of designed Bio-Geometrical forms in restoring the neurobehavioral alterations resulting from the exposure to the emerging radiation.Rats were assigned into 3 groups; Gp I control group (away from exposure to radiation); Gp II, III were exposed to wireless router signals for 24 h for 6 months and Gp III was protected by a set of designed BioGeometrical shapes. Animals were tested for spatial memory, anxiety and emotionality in addition to the related neurotransmitters (dopamine, serotonin and acetylcholine) in different brain areas. Melatonin, Heat Shock Protein (HSP-70) and acetylcholine esterase (AchE) were also measured in various brain regions and histopathological examination was carried out as well. Wi-Fi radiation exposed group showed elevated anxiety level and impaired spatial memory. Moreover, significant decline in dopamine, serotonin and acetylcholine levels in the investigated brain areas has been recorded. Melatonin levels were decreased in the cortex, striatum and hippocampus while HSP-70 was depleted in the cortex only. Using Bio-Geometrical forms along with Wi-Fi exposure could combat the burden of Wi-Fi radiation. This was evidenced by the recovery of the anxiety level and the improvement of memory task. In addition, the presence of Bio-Geometrical shapes could retrieve dopamine, serotonin and acetylcholine as well as melatonin and HSP-70 levels This study provides solid foundation for the potential use of Bio-Geometrical shapes to modify the insult of Wi-Fi radiation on brain function and structure.
Collapse
Affiliation(s)
- Nevin E. Sharaf
- Department of Environmental and Occupational Medicine, National Research Centre, Giza, Egypt
| | - Asmaa F. Galal
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Giza, Egypt
| | - Mohamed S. El-Sawy
- Department of Architecture, Faculty of engineering, Misr University, Giza, Egypt
| | - Aziza B. Shalby
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt
| | - Alaa H. Sayed
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt. 5Applied Medical Sciences Department, Community College in AlQurayyat Al-Jouf, Saudi Arabia
| | - Hanaa H. Ahmed
- Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
20
|
Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Sci Rep 2019; 9:9310. [PMID: 31249334 PMCID: PMC6597709 DOI: 10.1038/s41598-019-45757-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Hippocampal and striatal circuits play important roles in spatial navigation. These regions integrate environmental information and receive intrinsic afferent inputs from the vestibular system. Past research indicates that galvanic vestibular stimulation (GVS) is a non-invasive technique that modulates hippocampal and striatal activities. There are also evidences for enhanced motor and cognitive functions through GVS. This study extends previous research to investigate whether noisy GVS may improve hippocampal- and striatal-associated aspects of spatial navigation performance. Using a virtual navigation task, we examined effects of noisy GVS on spatial learning and memory. To probe the participants’ sensitivity to hippocampal- or striatal-associated spatial information, we either enlarged the virtual environment’s boundary or replaced an intra-environmental location cue, respectively. Noisy GVS or sham stimulation was applied online during the learning phase in a within-subject crossover design. The results showed that noisy GVS enhanced spatial learning and the sensitivity foremost to hippocampal-dependent spatial information both in males and females. Individual differences in spatial working memory capacity moderated the effects of GVS, with individuals with lower capacity benefitting more from the stimulation. Furthermore, sex-related differences in GVS effects on the two forms of spatial representations may reflect differences between males and females in preferred spatial strategies.
Collapse
|
21
|
The Neuroprotective Effect of L-Stepholidine on Methamphetamine-Induced Memory Deficits in Mice. Neurotox Res 2019; 36:376-386. [PMID: 31201732 DOI: 10.1007/s12640-019-00069-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Repeated methamphetamine (METH) exposure can cause severe neurotoxicity to the central nervous system, and lead to memory deficits. L-Stepholidine (L-SPD) is a structurally identified alkaloid extract of the Chinese herb Stephania intermedia, which elicits dopamine (DA) D1-type receptors partial agonistic activity and D2-type receptors antagonistic activity. In this study, we investigated the effect of L-SPD on METH-induced memory deficits in mice and its underlying mechanisms. We found that repeated exposure to METH (10 mg/kg, i.p., once per day for 7 consecutive days) impaired memory functions in the novel object recognition experiment. Pretreatment of L-SPD (10 mg/kg, i.p.) significantly improved METH-induced memory deficits in mice. Meanwhile, the protein expression of dopaminergic D2 receptors in hippocampus area was significantly increased by repeated METH exposure, while the protein expression of dopamine transporter (DAT) was significantly reduced. Additionally, the protein expression of phospho-protein kinase A (p-PKA) was significantly increased by repeated METH exposure. The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, which was a key regulator of memory functions and could be regulated by p-PKA, was also significantly increased by repeated METH exposure. These changes caused by METH could be prevented by L-SPD pretreatment. Therefore, our data firstly showed that pretreatment of L-SPD exhibited the protective effect against METH-induced memory deficits, possibly through reducing METH-induced upregulation of dopaminergic pathway and HCN1 channels.
Collapse
|
22
|
Wittkuhn L, Eppinger B, Bartsch LM, Thurm F, Korb FM, Li SC. Repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex modulates value-based learning during sequential decision-making. Neuroimage 2017; 167:384-395. [PMID: 29191478 DOI: 10.1016/j.neuroimage.2017.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/04/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
Adaptive behavior in daily life often requires the ability to acquire and represent sequential contingencies between actions and the associated outcomes. Although accumulating evidence implicates the role of dorsolateral prefrontal cortex (dlPFC) in complex value-based learning and decision-making, direct evidence for involvements of this region in integrating information across sequential decision states is still scarce. Using a 3-stage deterministic Markov decision task, here we applied offline, inhibitory low-frequency 1-Hz repetitive transcranial magnetic stimulation (rTMS) over the left dlPFC in young male adults (n = 31, mean age = 23.8 years, SD = 2.5 years) in a within-subject cross-over design to study the roles of this region in influencing value-based sequential decision-making. In two separate sessions, each participant received 1-Hz rTMS stimulation either over the left dlPFC or over the vertex. The results showed that transiently inhibiting the left dlPFC impaired choice accuracy, particularly in situations in which the acquisition of sequential transitions between decision states and temporally lagged action-outcome contingencies played a greater role. Estimating parameters of a diffusion model from behavioral choices, we found that the diffusion drift rate, which reflects the efficiency of information integration, was attenuated by the stimulation. Moreover, the effects of rTMS interacted with session: individuals who could not efficiently integrate information across sequential states in the first session due to disrupted dlPFC function also could not catch up in performance during the second session with those individuals who could learn sequential transitions with intact dlPFC function in the first session. Taken together, our findings suggest that the left dlPFC is crucially involved in the acquisition of complex sequential relations and in the potential of such learning.
Collapse
Affiliation(s)
- Lennart Wittkuhn
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Ben Eppinger
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, D-01062 Dresden, Germany; Department of Psychology, Concordia University, Montreal, H4B1R6, Canada; PERFORM, Concordia University, Montreal, H4B1R6, Canada
| | - Lea M Bartsch
- Department of Psychology, Cognitive Psychology Unit, University of Zurich, CH-8050 Zurich, Switzerland
| | - Franka Thurm
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Franziska M Korb
- Faculty of Psychology, Chair of General Psychology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, D-01062 Dresden, Germany.
| |
Collapse
|
23
|
Papagno C, Trojano L. Cognitive and behavioral disorders in Parkinson's disease: an update. I: cognitive impairments. Neurol Sci 2017; 39:215-223. [PMID: 29043468 DOI: 10.1007/s10072-017-3154-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor symptoms such as rigidity, rest tremor, and bradykinesia. However, a growing body of evidence demonstrated that PD encompasses several non-motor disturbances as well, such as cognitive impairment. Cognitive defects can be present since early stages of the disease but tend to dominate the clinical picture as the disease progresses. Around 40% of patients with PD present with cognitive impairments in several cognitive domains including attention, working memory and executive functions, language, visuospatial skills, and episodic memory; in later stages of the disease, cognitive defects and associated behavioral disorders concur to determine clinically relevant PD-associated dementia. Part of these defects is ascribed to a dopamine-dependent dysfunction of fronto-striatal pathways, but there is a considerable heterogeneity in the cognitive impairments as well as a suggestion of the role of other neurotransmitter systems, such as the cholinergic one, mainly responsible for Parkinson-dementia syndrome. In this paper, we review recent literature with particular attention to the last 5 years on the main cognitive deficits described in PD patients as well as on the hypothesized neuro-functional substrate of such impairments. Finally, we provide some suggestions on how to test cognitive functions in PD appropriately.
Collapse
Affiliation(s)
- Costanza Papagno
- CIMeC, University of Trento, Trento, Italy. .,Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo 1, 02100, Milan, Italy.
| | - Luigi Trojano
- Department of Psychology, University of Campania 'Luigi Vanvitelli', Viale Ellittico 31, 81100, Caserta, Italy. .,ICS Maugeri, IRCCS, Telese Terme, Italy.
| |
Collapse
|
24
|
Passow S, Thurm F, Li SC. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age. Front Aging Neurosci 2017; 9:33. [PMID: 28280465 PMCID: PMC5322263 DOI: 10.3389/fnagi.2017.00033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.
Collapse
Affiliation(s)
- Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| |
Collapse
|
25
|
Seip-Cammack KM, Young JJ, Young ME, Shapiro ML. Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric learning but not spatial learning or behavioral flexibility. Behav Neurosci 2017; 131:135-142. [PMID: 28221082 DOI: 10.1037/bne0000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Degeneration of the nigrostriatal dopaminergic system in Parkinson's disease (PD) causes motor dysfunction and cognitive impairment, but the etiology of the cognitive deficits remains unclear. The present study investigated the behavioral effects of partial lesions of the nigrostriatal dopamine (DA) pathway. Rats received bilateral infusions of either 6-hydroxydopamine (6-OHDA) or vehicle into the dorsolateral striatum and were tested in spatial and procedural learning tasks. Compared with intact rats, DA-depleted rats were impaired when the first task they learned required egocentric responses. Intact rats that received prior training on a spatial task were impaired while learning a subsequent body-turn task, suggesting that prior spatial training may compete with egocentric learning in intact but not DA-depleted rats. Spatial discrimination, reversal learning, and switching between allocentric and egocentric strategies were similar in both groups. The results suggest that DA loss that is not associated with gross motor pathology temporarily impairs egocentric, but not allocentric, learning or subsequent behavioral flexibility. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - James J Young
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Megan E Young
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | | |
Collapse
|