1
|
Clancy U, Radakovic R, Doubal F, Hernández MDCV, Maniega SM, Taylor AM, Corley J, Chappell FM, Russ TC, Cox SR, Bastin ME, Deary IJ, Wardlaw JM. Are neuropsychiatric symptoms a marker of small vessel disease progression in older adults? Evidence from the Lothian Birth Cohort 1936. Int J Geriatr Psychiatry 2023; 38:e5855. [PMID: 36490272 PMCID: PMC10108049 DOI: 10.1002/gps.5855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropsychiatric symptoms could form part of an early cerebral small vessel disease prodrome that is detectable before stroke or dementia onset. We aimed to identify whether apathy, depression, anxiety, and subjective memory complaints associate with longitudinal white matter hyperintensity (WMH) progression. METHODS Community-dwelling older adults from the observational Lothian Birth Cohort 1936 attended three visits at mean ages 73, 76, and 79 years, repeating MRI, Mini-Mental State Examination, neuropsychiatric (Dimensional Apathy Scale, Hospital Anxiety and Depression Scale), and subjective memory symptoms. We ran regression and mixed-effects models for symptoms and normalised WMH volumes (cube root of WMH:ICV × 10). RESULTS At age 73, 76, and 79, m = 672, n = 476, and n = 382 participants attended MRI respectively. Worse apathy at age 79 was associated with WMH volume increase (β = 0.27, p = 0.04) in the preceding 6 years. A 1SD increase in apathy score at age 79 associated with a 0.17 increase in WMH (β = 0.17 normalised WMH percent ICV, p = 0.009). In apathy subscales, executive (β = 0.13, p = 0.05) and emotional (β = 0.13, p = 0.04) scores associated with increasing WMH more than initiation scores (β = 0.11, p = 0.08). Increasing WMH also associated with age (β = 0.40, p = 0.002) but not higher depression (β = -0.01, p = 0.78), anxiety (β = 0.05, p = 0.13) scores, or subjective memory complaints (β = 1.12, p = 0.75). CONCLUSIONS Apathy independently associates with preceding longitudinal WMH progression, while depression, anxiety, and subjective memory complaints do not. Patients with apathy should be considered for enrolment to small vessel disease trials.
Collapse
Affiliation(s)
- Una Clancy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Ratko Radakovic
- Department of Clinical Psychology and Psychological TherapiesUniversity of East AngliaNorwichUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
- Euan MacDonald Centre for MND ResearchUniversity of EdinburghEdinburghUK
| | - Fergus Doubal
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Maria del C. Valdés Hernández
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Adele M. Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Janie Corley
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Francesca M. Chappell
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Tom C. Russ
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
- Division of PsychiatryCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Simon R. Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Ian J. Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| |
Collapse
|
2
|
Pietschnig J, Gerdesmann D, Zeiler M, Voracek M. Of differing methods, disputed estimates and discordant interpretations: the meta-analytical multiverse of brain volume and IQ associations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211621. [PMID: 35573038 PMCID: PMC9096623 DOI: 10.1098/rsos.211621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Brain size and IQ are positively correlated. However, multiple meta-analyses have led to considerable differences in summary effect estimations, thus failing to provide a plausible effect estimate. Here we aim at resolving this issue by providing the largest meta-analysis and systematic review so far of the brain volume and IQ association (86 studies; 454 effect sizes from k = 194 independent samples; N = 26 000+) in three cognitive ability domains (full-scale, verbal, performance IQ). By means of competing meta-analytical approaches as well as combinatorial and specification curve analyses, we show that most reasonable estimates for the brain size and IQ link yield r-values in the mid-0.20s, with the most extreme specifications yielding rs of 0.10 and 0.37. Summary effects appeared to be somewhat inflated due to selective reporting, and cross-temporally decreasing effect sizes indicated a confounding decline effect, with three quarters of the summary effect estimations according to any reasonable specification not exceeding r = 0.26, thus contrasting effect sizes were observed in some prior related, but individual, meta-analytical specifications. Brain size and IQ associations yielded r = 0.24, with the strongest effects observed for more g-loaded tests and in healthy samples that generalize across participant sex and age bands.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Daniel Gerdesmann
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
- Department of Physics Education, Faculty of Mathematics, Natural Sciences and Technology, University of Education Freiburg, Germany
| | - Michael Zeiler
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
3
|
Mogensen MB, Macoveanu J, Knudsen GM, Ott CV, Miskowiak KW. Influence of pre-treatment structural brain measures on effects of action-based cognitive remediation on executive function in partially or fully remitted patients with bipolar disorder. Eur Neuropsychopharmacol 2022; 56:50-59. [PMID: 34933219 DOI: 10.1016/j.euroneuro.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Cognitive impairment is an emerging treatment target in patients with bipolar disorder (BD) but so far, no evidence-based treatment options are available. Recent studies indicate promising effects of Cognitive Remediation (CR) interventions, but it is unclear who responds most to these interventions. This report aimed to investigate whether pre-treatment dorsal prefrontal cortex (dPFC) thickness predicts improvement of executive function in response to Action-Based Cognitive Remediation (ABCR) in patients with BD. Complete baseline magnetic resonance imaging (MRI) data were available from 45 partially or fully remitted patients with BD from our randomized controlled ABCR trial (ABCR: n = 25, control group: n = 20). We performed cortical reconstruction and volumetric segmentation using FreeSurfer. Multiple linear regression analysis was conducted to assess the influence of dPFC thickness on ABCR-related executive function improvement, reflected by change in the One Touch Stocking of Cambridge performance from baseline to post-treatment. We also conducted whole brain vertex wise analysis for exploratory purposes. Groups were well-matched for demographic and clinical variables. Less pre-treatment dPFC thickness was associated with greater effect of ABCR on executive function (p = 0.02). Further, whole-brain vertex analysis revealed an association between smaller pre-treatment superior temporal gyrus volume and greater ABCR-related executive function improvement. The observed associations suggest that structural abnormalities in dPFC and superior temporal gyrus are key neurocircuitry treatment targets for CR interventions that target impaired executive function in BD.
Collapse
Affiliation(s)
- M B Mogensen
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - J Macoveanu
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - C V Ott
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark
| | - K W Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Distaso E, Milella G, Mezzapesa DM, Introna A, D'Errico E, Fraddosio A, Zoccolella S, Dicuonzo F, Simone IL. Magnetic resonance metrics to evaluate the effect of therapy in amyotrophic lateral sclerosis: the experience with edaravone. J Neurol 2021; 268:3307-3315. [PMID: 33655342 PMCID: PMC8357666 DOI: 10.1007/s00415-021-10495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Edaravone was approved as a new treatment for amyotrophic lateral sclerosis (ALS), although there are different opinions on its effectiveness. Magnetic resonance (MRI) measures appear promising as diagnostic and prognostic indicators of disease. However, published studies on MRI using to monitor treatment efficacy in ALS are lacking. PURPOSE The objective of this study was to investigate changes in brain MRI measures in patients treated with edaravone. METHODS Thirteen ALS patients assuming edaravone (ALS-EDA) underwent MRI at baseline (T0) and after 6 months (T6) to measure cortical thickness (CT) and fractional anisotropy (FA) of white matter (WM) tracts. MRI data of ALS-EDA were compared at T0 with those of 12 control subjects (CS), and at T6 with those of 11 ALS patients assuming only riluzole (ALS-RIL), extracted from our ALS cohort using a propensity-score-matching. A longitudinal MRI analysis was performed in ALS-EDA between T6 and T0. RESULTS At T0, ALS-EDA showed a cortical widespread thinning in both hemispheres, particularly in the bilateral precentral gyrus, and a reduction of FA in bilateral corticospinal tracts, in comparison to CS. Thinning in bilateral precentral cortex and significant widespread reduction of FA in several WM tracts were observed in ALS-EDA at T6 compared to T0. At T6, no significant differences in MRI measures of ALS-EDA versus ALS-RIL were found. CONCLUSIONS Patients treated with edaravone showed progression of damage in the motor cortex and several WM tracts, at a six-month follow-up. Moreover, this study showed no evidence of a difference between edaravone and riluzole.
Collapse
Affiliation(s)
- Eugenio Distaso
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giammarco Milella
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Domenico Maria Mezzapesa
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Angela Fraddosio
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | | | - Franca Dicuonzo
- Neuroradiology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
5
|
Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites 2020; 10:metabo10110450. [PMID: 33171879 PMCID: PMC7695180 DOI: 10.3390/metabo10110450] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidencethat indicates that the aging of the brain results from the decline of energy metabolism. In particular, the neuronal metabolism of glucose declines steadily, resulting in a growing deficit of adenosine triphosphate (ATP) production-which, in turn, limits glucose access. This vicious circle of energy metabolism at the cellular level is evoked by a rising deficiency of nicotinamide adenine dinucleotide (NAD) in the mitochondrial salvage pathway and subsequent impairment of the Krebs cycle. A decreasing NAD level also impoverishes the activity of NAD-dependent enzymes that augments genetic errors and initiate processes of neuronal degeneration and death.This sequence of events is characteristic of several brain structures in which neurons have the highest energy metabolism. Neurons of the cerebral cortex and basal ganglia with long unmyelinated axons and these with numerous synaptic junctions are particularly prone to senescence and neurodegeneration. Unfortunately, functional deficits of neurodegeneration are initially well-compensated, therefore, clinical symptoms are recognized too late when the damages to the brain structures are already irreversible. Therefore, future treatment strategies in neurodegenerative disorders should focus on energy metabolism and compensation age-related NAD deficit in neurons. This review summarizes the complex interrelationships between metabolic processes on the systemic and cellular levels and provides directions on how to reduce the risk of neurodegeneration and protect the elderly against neurodegenerative diseases.
Collapse
Affiliation(s)
- Janusz Wiesław Błaszczyk
- Department of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
6
|
Gerłowska J, Furtak-Niczyporuk M, Rejdak K. Robotic assistance for people with dementia: a viable option for the future? Expert Rev Med Devices 2020; 17:507-518. [PMID: 32511027 DOI: 10.1080/17434440.2020.1770592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Demographic changes in society and fewer personnel working in healthcare services have resulted in an increase in the speed of development of safe, reliable robotic assistance technologies for patients with neurological diseases. This paper aims to advocate for the frailty of patients in light of the economic need for robotic assistance, discuss potential hazards, and outline related factors that influence positive outcomes. AREAS COVERED This article reviews the state of the art and perspectives regarding the use of robotics in older adults with dementia. We focus on current trends in the development of robotic technologies for these patients and discuss the potential hazards associated with the implementation of such cutting-edge technology in daily practice. EXPERT OPINION We envisage a gradual increase in the usage of robot-based devices for the management and support of patients with cognitive deficits. In particular, the introduction of artificial intelligence will enhance the functionality of these technologies, but also increase potential hazards resulting from human-robot interactions. The development of such technology must consider whether neurological syndromes are static or progressive. Progressive syndromes pose the biggest challenge since the functionality of robotic devices must adapt to patients changing cognitive and motor performance profiles.
Collapse
Affiliation(s)
| | | | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
7
|
Mitchell BL, Cuéllar-Partida G, Grasby KL, Campos AI, Strike LT, Hwang LD, Okbay A, Thompson PM, Medland SE, Martin NG, Wright MJ, Rentería ME. Educational attainment polygenic scores are associated with cortical total surface area and regions important for language and memory. Neuroimage 2020; 212:116691. [PMID: 32126298 DOI: 10.1016/j.neuroimage.2020.116691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 02/01/2023] Open
Abstract
It is well established that higher cognitive ability is associated with larger brain size. However, individual variation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, sufficient statistical power to detect small associations. This study investigates the association between three global (total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on two independent target samples of young twin adults with neuroimaging data, from Australia (N = 1097) and the USA (N = 723), and found that higher EA-PGS were significantly associated with larger global brain size measures, ICV and TSA (R2 = 0.006 and 0.016 respectively, p < 0.001) but not average thickness. At the regional level, we identified seven cortical regions-in the frontal and temporal lobes-that showed variation in surface area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Altogether, these findings advance our understanding of the neurobiology that underpins educational attainment and cognitive ability, providing focus points for future research.
Collapse
Affiliation(s)
- Brittany L Mitchell
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina L Grasby
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Adrian I Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicholas G Martin
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
The Whole Picture: From Isolated to Global MRI Measures of Neurovascular and Neurodegenerative Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 31894568 DOI: 10.1007/978-3-030-31904-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Structural magnetic resonance imaging (MRI) has been used to characterise the appearance of the brain in cerebral small vessel disease (SVD), ischaemic stroke, cognitive impairment, and dementia. SVD is a major cause of stroke and dementia; features of SVD include white matter hyperintensities (WMH) of presumed vascular origin, lacunes of presumed vascular origin, microbleeds, and perivascular spaces. Cognitive impairment and dementia have traditionally been stratified into subtypes of varying origin, e.g., vascular dementia versus dementia of the Alzheimer's type (Alzheimer's disease; AD). Vascular dementia is caused by reduced blood flow in the brain, often as a result of SVD, and AD is thought to have its genesis in the accumulation of tau and amyloid-beta leading to brain atrophy. But after early seminal studies in the 1990s found neurovascular disease features in around 30% of AD patients, it is becoming recognised that so-called "mixed pathologies" (of vascular and neurodegenerative origin) exist in many more patients diagnosed with stroke, only one type of dementia, or cognitive impairment. On the back of these discoveries, attempts have recently been made to quantify the full extent of degenerative and vascular disease in the brain in vivo on MRI. The hope being that these "global" methods may one day lead to better diagnoses of disease and provide more sensitive measurements to detect treatment effects in clinical trials. Indeed, the "Total MRI burden of cerebral small vessel disease", the "Brain Health Index" (BHI), and "MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease" have all been shown to have stronger associations with clinical and cognitive phenotypes than individual brain MRI features. This chapter will review individual structural brain MRI features commonly seen in SVD, stroke, and dementia. The relationship between these features and differing clinical and cognitive phenotypes will be discussed along with developments in their measurement and quantification. The chapter will go on to review emerging methods for quantifying the collective burden of structural brain MRI findings and how these "whole picture" methods may lead to better diagnoses of neurovascular and neurodegenerative disorders.
Collapse
|
9
|
Brain structure mediates the association between height and cognitive ability. Brain Struct Funct 2018; 223:3487-3494. [PMID: 29748873 PMCID: PMC6425087 DOI: 10.1007/s00429-018-1675-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/28/2018] [Indexed: 01/30/2023]
Abstract
Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.
Collapse
|