1
|
Xu T, Weng L, Zhang C, Xiao X, Yang Q, Zhu Y, Zhou Y, Liao X, Luo S, Wang J, Tang B, Jiao B, Shen L. Genetic spectrum features and diagnostic accuracy of four plasma biomarkers in 248 Chinese patients with frontotemporal dementia. Alzheimers Dement 2024; 20:7281-7295. [PMID: 39254359 PMCID: PMC11485083 DOI: 10.1002/alz.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is characterized by phenotypic and genetic heterogeneities. However, reports on the large Chinese FTD cohort are lacking. METHODS Two hundred forty-eight patients with FTD were enrolled. All patients and 2010 healthy controls underwent next generation sequencing. Plasma samples were analyzed for glial fibrillary acidic protein (GFAP), α-synuclein (α-syn), neurofilament light chain (NfL), and phosphorylated tau protein 181 (p-tau181). RESULTS Gene sequencing identified 48 pathogenic or likely pathogenic mutations in a total of 19.4% of patients with FTD (48/248). The most common mutation was the C9orf72 dynamic mutation (5.2%, 13/248). Significantly increased levels of GFAP, α-syn, NfL, and p-tau181 were detected in patients compared to controls (all p < 0.05). GFAP and α-syn presented better performance for diagnosing FTD. DISCUSSION We investigated the characteristics of phenotypic and genetic spectrum in a large Chinese FTD cohort, and highlighted the utility of plasma biomarkers for diagnosing FTD. HIGHLIGHTS This study used a frontotemporal dementia (FTD) cohort with a large sample size in Asia to update and reveal the clinical and genetic spectrum, and explore the relationship between multiple plasma biomarkers and FTD phenotypes as well as genotypes. We found for the first time that the C9orf72 dynamic mutation frequency ranks first among all mutations, which broke the previous impression that it was rare in Asian patients. Notably, it was the first time the C9orf72 G4C2 repeat expansion had been identified via whole-genome sequencing data, and this was verified using triplet repeat primed polymerase chain reaction (TP-PCR). We analyzed the diagnostic accuracy of four plasma biomarkers (glial fibrillary acidic protein [GFAP], α-synuclein [α-syn], neurofilament light chain [NfL], and phosphorylated tau protein 181 [p-tau181]) at the same time, especially for α-syn being included in the FTD cohort for the first time, and found GFAP and α-syn had the highest diagnostic accuracy for FTD and its varied subtypes.
Collapse
Affiliation(s)
- Tianyan Xu
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Ling Weng
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Cong Zhang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Xuewen Xiao
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Qijie Yang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Yuan Zhu
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Yafang Zhou
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Department of GeriatricsXiangya Hospital, Central South UniversityChangshaChina
| | - Xinxin Liao
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Department of GeriatricsXiangya Hospital, Central South UniversityChangshaChina
| | - Shilin Luo
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Junling Wang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Brain Research CenterCentral South UniversityChangshaChina
- FuRong LaboratoryCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Lu Shen
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Brain Research CenterCentral South UniversityChangshaChina
- FuRong LaboratoryCentral South UniversityChangshaChina
| |
Collapse
|
2
|
Devenney EM, Anh N Nguyen Q, Tse NY, Kiernan MC, Tan RH. A scoping review of the unique landscape and challenges associated with dementia in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101192. [PMID: 39399870 PMCID: PMC11471059 DOI: 10.1016/j.lanwpc.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Dementia is a leading public health crisis that is projected to affect 152.8 million individuals by 2050, over half of whom will be living in the Western Pacific region. To determine the challenges and opportunities for capacity building in the region, this scoping review searched databases. Our findings reveal national and ethnoracial differences in the prevalence, literacy and genetic risk factors associated with dementia syndromes, underscoring the need to identify and mitigate relevant risk factors in this region. Importantly, ∼80% of research was derived from higher income countries, where the establishment of patient registries and biobanks reflect increased efforts and allocation of resources towards understanding the pathogenesis of dementia. We discuss the need for increased public awareness through culturally-relevant policies, the potential to support patients and caregivers through digital strategies and development of regional networks to mitigate the growing social impact and economic burden of dementia in this region. Funding FightMND Mid-Career Fellowship, NHMRC EL1 Fellowship, NHMRC Practitioner Fellowship (1156093), NHMRC Postgraduate scholarship (2022387).
Collapse
Affiliation(s)
- Emma M Devenney
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Faculty of Medicine and Health Translative Collective, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Quynh Anh N Nguyen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Nga Yan Tse
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
- Neuroscience Research Australia, 139 Barker Street, Randwick, New South Wales, 2031, Australia
| | - Rachel H Tan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
| |
Collapse
|
3
|
Sung W, Noh MY, Nahm M, Kim YS, Ki CS, Kim YE, Kim HJ, Kim SH. Progranulin haploinsufficiency mediates cytoplasmic TDP-43 aggregation with lysosomal abnormalities in human microglia. J Neuroinflammation 2024; 21:47. [PMID: 38347588 PMCID: PMC10863104 DOI: 10.1186/s12974-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Sung Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Dong S, Yin X, Wang K, Yang W, Li J, Wang Y, Zhou Y, Liu X, Wang J, Chen X. Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:167-181. [PMID: 37197644 PMCID: PMC10110782 DOI: 10.1007/s43657-022-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype-phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A, Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.
Collapse
Affiliation(s)
- Siqi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Xianhong Yin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenbo Yang
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiatong Li
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Yi Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Yanni Zhou
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiucun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| |
Collapse
|
5
|
Tan YJ, Yong ACW, Foo JN, Lian MM, Lim WK, Dominguez J, Fong ZH, Narasimhalu K, Chiew HJ, Ng KP, Ting SKS, Kandiah N, Ng ASL. C9orf72 expansions are the most common cause of genetic frontotemporal dementia in a Southeast Asian cohort. Ann Clin Transl Neurol 2023; 10:568-578. [PMID: 36799407 PMCID: PMC10109321 DOI: 10.1002/acn3.51744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Frontotemporal dementia (FTD) encompasses a spectrum of neurodegenerative disorders, including behavioural variant FTD (bvFTD), semantic variant primary progressive aphasia (svPPA) and non-fluent variant PPA (nfvPPA). While a strong genetic component is implicated in FTD, genetic FTD in Asia is less frequently reported. We aimed to investigate the frequency of Southeast Asian FTD patients harbouring known genetic FTD variants. METHODS A total of 60 FTD-spectrum patients (25 familial and 35 sporadic) from Singapore and the Philippines were included. All underwent next-generation sequencing and repeat-primed PCR for C9orf72 expansion testing. Neurofilament light chain (NfL) levels were measured in a subset of patients. RESULTS Overall, 26.6% (16/60 cases) carried pathogenic or likely pathogenic variants in a FTD-related gene, including: MAPT Gln351Arg (n = 1); GRN Cys92Ter (n = 1), Ser301Ter (n = 2), c.462 + 1G > C (n = 1); C9orf72 expansion (35-70 repeats; n = 8); TREM2 Arg47Cys (n = 1); and OPTN frameshift insertion (n = 2). Genetic mutations accounted for 48% (12/25) of patients with familial FTD, and 11.4% (4/35) of patients with sporadic FTD. C9orf72 repeat expansions were the most common genetic mutation (13.3%, 8/60), followed by GRN (6.7%, 4/60) variants. Within mutation carriers, plasma NfL was highest in a C9orf72 expansion carrier, and CSF NfL was highest in a GRN splice variant carrier. INTERPRETATION In our cohort, genetic mutations are present in one-quarter of FTD-spectrum cases, and up to half of those with family history. Our findings highlight the importance of wider implementation of genetic testing in FTD patients from Southeast Asia.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | | | - Zhi Hui Fong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kaavya Narasimhalu
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Hui Jin Chiew
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Simon K S Ting
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Kim EJ, Na DL, Kim HJ, Park KW, Lee JH, Roh JH, Kwon JC, Yoon SJ, Jung NY, Jeong JH, Jang JW, Kim HJ, Park KH, Choi SH, Kim S, Park YH, Kim BC, Youn YC, Ki CS, Kim SH, Seo SW, Kim YE. Genetic Screening in Korean Patients with Frontotemporal Dementia Syndrome. J Alzheimers Dis Rep 2022; 6:651-662. [DOI: 10.3233/adr-220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Frontotemporal dementia (FTD) syndrome is a genetically heterogeneous group of diseases. However, pathogenic variants in the chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN) genes are mainly associated with genetic FTD in Caucasian populations. Objective: To understand the genetic background of Korean patients with FTD syndrome. Methods: We searched for pathogenic variants of 52 genes related to FTD, amyotrophic lateral sclerosis, familial Alzheimer’s disease, and other dementias, and hexanucleotide repeats of the C9orf72 gene in 72 Korean patients with FTD using whole exome sequencing and the repeat-primed polymerase chain reaction, respectively. Results: One likely pathogenic variant, p.G706R of MAPT, in a patient with behavioral variant FTD (bvFTD) and 13 variants of uncertain significance (VUSs) in nine patients with FTD were identified. Of these VUSs, M232R of the PRNP gene, whose role in pathogenicity is controversial, was also found in two patients with bvFTD. Conclusions: These results indicate that known pathogenic variants of the three main FTD genes (MAPT, GRN, and C9orf72) in Western countries are rare in Korean FTD patients.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee Hoon Roh
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jay C. Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Daejeon
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Korea
| | - Jee H. Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | | | - Seung-Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
7
|
Genetic landscape of early-onset dementia in Hungary. Neurol Sci 2022; 43:5289-5300. [PMID: 35752680 PMCID: PMC9385840 DOI: 10.1007/s10072-022-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 10/31/2022]
Abstract
Abstract
Introduction
Early-onset dementias (EOD) are predominantly genetically determined, but the underlying disease-causing alterations are often unknown. The most frequent forms of EODs are early-onset Alzheimer’s disease (EOAD) and frontotemporal dementia (FTD).
Patients
This study included 120 Hungarian patients with EOD (48 familial and 72 sporadic) which had a diagnosis of EOAD (n = 49), FTD (n = 49), or atypical dementia (n = 22).
Results
Monogenic dementia was detected in 15.8% of the patients. A pathogenic hexanucleotide repeat expansion in the C9ORF72 gene was present in 6.7% of cases and disease-causing variants were detected in other known AD or FTD genes in 6.7% of cases (APP, PSEN1, PSEN2, GRN). A compound heterozygous alteration of the TREM2 gene was identified in one patient and heterozygous damaging variants in the CSF1R and PRNP genes were detected in two other cases. In two patients, the coexistence of several heterozygous damaging rare variants associated with neurodegeneration was detected (1.7%). The APOE genotype had a high odds ratio for both the APOE ɛ4/3 and the ɛ4/4 genotype (OR = 2.7 (95%CI = 1.3–5.9) and OR = 6.5 (95%CI = 1.4–29.2), respectively). In TREM2, SORL1, and ABCA7 genes, 5 different rare damaging variants were detected as genetic risk factors. These alterations were not present in the control group.
Conclusion
Based on our observations, a comprehensive, targeted panel of next-generation sequencing (NGS) testing investigating several neurodegeneration-associated genes may accelerate the path to achieve the proper genetic diagnosis since phenotypes are present on a spectrum. This can also reveal hidden correlations and overlaps in neurodegenerative diseases that would remain concealed in separated genetic testing.
Collapse
|
8
|
Fan Y, Han J, Yang Y, Chen T. Novel mitochondrial alanyl-tRNA synthetase 2 (AARS2) heterozygous mutations in a Chinese patient with adult-onset leukoencephalopathy. BMC Neurol 2022; 22:214. [PMID: 35676634 PMCID: PMC9175470 DOI: 10.1186/s12883-022-02720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background Missense mutations in the mitochondrial alanyl-tRNA synthetase 2 (AARS2) gene are clinically associated with infantile mitochondrial cardiomyopathy or adult-onset leukoencephalopathy with early ovarian failure. To date, approximately 40 cases have been reported related to AARS2 mutations, while its genetic and phenotypic spectrum remains to be defined. Case presentation We identified a 24-year-old Chinese female patient with adult-onset leukoencephalopathy carrying novel compound heterozygous pathogenic mutations in the AARS2 gene (c.718C > T and c.1040 + 1G > A) using a whole-exome sequencing approach. Conclusions Our findings further extend the mutational spectrum of AARS2-related leukoencephalopathy and highlight the importance of the whole-exome sequencing in precisely diagnosing adult-onset leukoencephalopathies.
Collapse
Affiliation(s)
- Yan Fan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yanyan Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China.
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
9
|
Jung NY, Kim HS, Kim ES, Jeon S, Lee MJ, Pak K, Lee JH, Lee YM, Lee K, Shin JH, Ko JK, Lee JM, Yoon JA, Hwang C, Choi KU, Huh GY, Kim YE, Kim EJ. Serum progranulin is not associated with rs5848 polymorphism in Korean patients with neurodegenerative diseases. PLoS One 2022; 17:e0261007. [PMID: 35085262 PMCID: PMC8794169 DOI: 10.1371/journal.pone.0261007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Low serum progranulin (PGRN) is known to be associated with granulin (GRN) gene mutation and T alleles of GRN rs5848 polymorphism. However, there have been only a few Asian studies exploring these. We investigated the serum PGRN levels, rs5848 genotypes, and their relations with cerebrospinal fluid (CSF) Alzheimer’s disease (AD) biomarkers in the Korean population. Serum PGRN levels, GRN rs5848 polymorphism, and GRN mutations were evaluated in 239 participants (22 cognitively unimpaired participants and 217 patients with neurodegenerative diseases). CSF AD biomarkers were also evaluated in 214 participants. There was no significant difference in the serum PGRN levels among the diagnostic groups. We could not find any GRN mutation carrier in our sample. The differences in the frequencies of the rs5848 genotypes among the clinical groups or the effects of the rs5848 genotypes on serum PGRN were not observed. There was no correlation between the serum PGRN level or rs5848 genotype and CSF AD biomarkers. Neither the T allele nor the TT genotype had an effect on the development of AD. Our results showed that serum PGRN levels were not associated with rs5848 genotypes, indicating that multiple single nucleotide polymorphisms might affect PGRN concentrations in an ethnicity-specific manner.
Collapse
Affiliation(s)
- Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyang-Sook Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Eun Soo Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Sumin Jeon
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Kangyoon Lee
- Department of Psychiatry, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jun Kyeung Ko
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jin A. Yoon
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chungsu Hwang
- Department of Pathology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Kyung-Un Choi
- Department of Pathology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Gi Yeong Huh
- Department of Forensic Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Yoon SY, Kim HK, Kim MJ, Suh JH, Leigh JH. Factors associated with assisted ventilation use in amyotrophic lateral sclerosis: a nationwide population-based study in Korea. Sci Rep 2021; 11:19682. [PMID: 34608192 PMCID: PMC8490422 DOI: 10.1038/s41598-021-98990-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Few studies have investigated the factors associated with assisted ventilation use in amyotrophic lateral sclerosis (ALS) in western countries with a relatively small number of participants. This study aimed to evaluate the factors associated with assisted ventilation use using a large nationwide cohort covering the entire Korean population. We selected patients with primary or secondary diagnoses of ALS (ICD-10 code: G12.21) and a registration code for ALS (V123) in the rare intractable disease registration program. Covariates included in the analyses were age, sex, socioeconomic status and medical condition. Factors associated with non-invasive ventilation (NIV) and tracheostomy invasive ventilation (TIV) were evaluated. Logistic regression analyses were performed using odds ratios and 95% confidence intervals. In total, 3057 patients with ALS were enrolled. During the 6-year follow-up period, 1228 (40%) patients started using assisted ventilation: 956 with NIV and 272 with TIV. There was no significant difference in the assisted ventilation use according to sex, whereas different patterns of discrepancies were noted between the sexes: Females living in non-metropolitan areas showed decreased use of assisted ventilation, whereas high income levels showed a positive relationship with assisted ventilation use only in males. Patients aged ≥ 70 years showed decreased use of NIV. NIV use was more affected by socioeconomic status than TIV, whereas TIV showed a significant relationship with medical conditions such as nasogastric tube insertion and gastrostomy. We found that various factors, including age, socioeconomic status, and medical condition, were related with assisted ventilation use. Understanding the pattern of assisted ventilation use would help set optimal management strategies in patients with ALS.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Han-Kyoul Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea
| | - Mi Ji Kim
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea. .,Department of Rehabilitation Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Kim EJ, Koh SH, Ha J, Na DL, Seo SW, Kim HJ, Park KW, Lee JH, Roh JH, Kwon JC, Yoon SJ, Jung NY, Jeong JH, Jang JW, Kim HJ, Park KH, Choi SH, Kim S, Park YH, Kim BC, Kim YE, Kwon HS, Park HH, Jin JH. Increased telomere length in patients with frontotemporal dementia syndrome. J Neurol Sci 2021; 428:117565. [PMID: 34311139 DOI: 10.1016/j.jns.2021.117565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Telomeres are repetitive DNA sequences of TTAGGG at the ends of chromosomes. Many studies have shown that telomere shortening is associated with aging-related diseases, such as cardiovascular diseases, hypertension, diabetes, cancer, and various neurodegenerative diseases, including Alzheimer's disease, vascular dementia, Parkinson's disease, and dementia with Lewy bodies. However, changes in telomere length (TL) in patients with frontotemporal dementia (FTD) syndrome are unclear. Accordingly, in this study, we assessed TL in blood samples from patients with FTD syndrome. METHODS Absolute TL was measured in peripheral blood leukocytes from 53 patients with FTD syndromes (25 with behavioral variant FTD, 19 with semantic variant primary progressive aphasia [PPA], six with nonfluent/agrammatic variant PPA, and three with amyotrophic lateral sclerosis [ALS] plus) and 28 cognitively unimpaired (CU) controls using terminal restriction fragment analysis. RESULTS TL was significantly longer in the FTD group than in the CU group. All FTD subtypes had significantly longer TL than controls. There were no significant differences in TL among FTD syndromes. No significant correlations were found between TL and demographic factors in the FTD group. CONCLUSIONS Longer telomeres were associated with FTD syndrome, consistent with a recent report demonstrating that longer telomeres are related to ALS. Therefore, our results may support a shared biology between FTD and ALS. More studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Jungsoon Ha
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea; GemVax & Kael Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jay C Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulgi University Hospital, Daejeon, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea
| | - Jee H Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jeong-Hwa Jin
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
14
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
15
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
16
|
Zong Y, Tanaka M, Muramatsu M, Arai T. D-amino acid oxidase (DAO) rare genetic missense variant p.Pro103Leu and gastric cancer. Mol Clin Oncol 2021; 14:58. [PMID: 33604048 PMCID: PMC7849068 DOI: 10.3892/mco.2021.2220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer is prevalent in the Asian population. Genetic predisposition to gastric cancer is not fully understood. Recent studies have demonstrated that D-amino acid oxidase (DAO), a multifunctional enzyme, protects the mucosa of gastrointestinal (GI) tracts by generating hydrogen sulfide (H2S) in the stomach of rodents. The present study surveyed rare germline variants in the human DAO gene with regard to the incidence of gastric cancer. The consecutive autopsy cases registered in the JG-SNP database (n=2,343; mean age, 80 years) were employed and genotyped with Exome Bead-Chips. There were three non-synonymous rare variants, p.R22H, p.P103L and p.R283Q, of which the minor allele frequencies were 0.09, 0.21 and 0.02%, respectively. Carriers of these variants were surveyed, the results of which revealed that 4 out of 10 patients with the p.P103L variant had gastric cancer (Fisher's exact test, P=0.018). All 4 patients were men with drinking and smoking habits. Among the other 6 women, there was one incidence of small intestine cancer and one of colon cancer. Neither p.R22H nor p.R283Q carriers had GI cancer. DAO p.P103L is reported to be a modifier of amyotrophic lateral sclerosis (ALS) and may potentially be a hypomorphic allele. Thus, it is hypothesized that this rare variant might have affected protection against gastric mucosal damage through H2S signaling in the mucosa, which leads to high prevalence of gastric cancer. The role of rare variant DAO p.P103L warrants further investigation in larger cohorts.
Collapse
Affiliation(s)
- Yuan Zong
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masashi Tanaka
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
17
|
Sung W, Kim YE, Kim SH. Hereditary Frontotemporal Dementia Linked to the Pathogenic p.L266V Variant of the MAPT Gene in Korea. J Clin Neurol 2021; 17:478-480. [PMID: 34184459 PMCID: PMC8242314 DOI: 10.3988/jcn.2021.17.3.478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | - Young Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
18
|
A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020. [PMID: 32908482 DOI: 10.1155/2020/8078103.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. Methods We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. Results We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. Conclusions Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
|
19
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
20
|
Mol MO, van Rooij JGJ, Wong TH, Melhem S, Verkerk AJMH, Kievit AJA, van Minkelen R, Rademakers R, Pottier C, Kaat LD, Seelaar H, van Swieten JC, Dopper EGP. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol Aging 2020; 97:148.e9-148.e16. [PMID: 32843152 DOI: 10.1016/j.neurobiolaging.2020.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.
Collapse
Affiliation(s)
- Merel O Mol
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Jeroen G J van Rooij
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tsz H Wong
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rosa Rademakers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Cyril Pottier
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Laura Donker Kaat
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elise G P Dopper
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Kim M, Kim HJ, Koh W, Li L, Heo H, Cho H, Lyoo CH, Seo SW, Kim EJ, Nakanishi M, Na DL, Song J. Modeling of Frontotemporal Dementia Using iPSC Technology. Int J Mol Sci 2020; 21:ijms21155319. [PMID: 32727073 PMCID: PMC7432206 DOI: 10.3390/ijms21155319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is caused by the progressive degeneration of the frontal and temporal lobes of the brain. Behavioral variant FTD (bvFTD) is the most common clinical subtype of FTD and pathological subtypes of bvFTD are known as FTD-tau, transactive response (TAR) DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). Pathological mechanisms of bvFTD are largely unknown. In this study, we investigated the expression of pathological markers, such as p-Tau, TDP-43, and FUS, in the induced pluripotent stem-cell-derived neurons (iPSN) from two sporadic bvFTD patients and one normal subject. We also used an FTD-patient-derived iPSC-line-carrying microtubule-associated protein tau (MAPT) P301L point mutation as positive control for p-Tau expression. Staurosporine (STS) was used to induce cellular stress in order to investigate dynamic cellular responses related to the cell death pathway. As a result, the expression of active caspase-3 was highly increased in the bvFTD-iPSNs compared with control iPSNs in the STS-treated conditions. Other cell-death-related proteins, including Bcl-2-associated X protein (Bax)/Bcl-2 and cytochrome C, were also increased in the bvFTD-iPSNs. Moreover, we observed abnormal expression patterns of TDP-43 and FUS in the bvFTD-iPSNs compared with control iPSNs. We suggest that the iPSC technology might serve as a potential tool to demonstrate neurodegenerative phenotypes of bvFTD, which will be useful for studying pathological mechanisms for FTD as well as related drug screening in the future.
Collapse
Affiliation(s)
- Minchul Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea; (M.K.); (W.K.); (L.L.); (H.H.)
| | - Hee Jin Kim
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.J.K.); (S.W.S.)
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Wonyoung Koh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea; (M.K.); (W.K.); (L.L.); (H.H.)
| | - Ling Li
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea; (M.K.); (W.K.); (L.L.); (H.H.)
| | - Hyohoon Heo
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea; (M.K.); (W.K.); (L.L.); (H.H.)
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.C.); (C.H.L.)
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.C.); (C.H.L.)
| | - Sang Won Seo
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.J.K.); (S.W.S.)
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan 49241, Korea;
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan;
| | - Duk L. Na
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.J.K.); (S.W.S.)
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: (D.L.N.); (J.S.); Tel.: +82-2-3410-0052 (D.L.N.); +82-31-881-7140 (J.S.)
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea; (M.K.); (W.K.); (L.L.); (H.H.)
- iPS Bio, Inc., Rm 302-8, 26 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13522, Korea
- Correspondence: (D.L.N.); (J.S.); Tel.: +82-2-3410-0052 (D.L.N.); +82-31-881-7140 (J.S.)
| |
Collapse
|
22
|
Sellami L, Saracino D, Le Ber I. Genetic forms of frontotemporal lobar degeneration: Current diagnostic approach and new directions in therapeutic strategies. Rev Neurol (Paris) 2020; 176:571-581. [PMID: 32312500 DOI: 10.1016/j.neurol.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in the genetics of neurodegenerative diseases have substantially improved our knowledge about the genetic causes of frontotemporal lobar degeneration (FTLD). Three major genes, namely progranulin (GRN), C9orf72 and MAPT, as well as several less common genes, are responsible for the majority of familial cases and for a significant proportion of sporadic forms, including FTLD with or without associated amyotrophic lateral sclerosis and some rarer clinical presentations. Plasma progranulin dosage and next-generation sequencing are currently available tools which allow the detection of a genetic cause in a more rapid and efficient way. This has important consequences for clinical practice and genetic counseling for patients and families. The ongoing investigations on some therapeutic candidates targeting different biological pathways involved in the most frequent genetic forms of FTLD, as well as a better understanding of the early pathophysiological modifications occurring during the presymptomatic phase of the disease could hopefully contribute to develop effective disease-modifying therapies. The identification of a causal mutation in a family is of outmost importance indeed to propose to presymptomatic carriers their inclusion in clinical trials with the aim to prevent or delay the onset of disease.
Collapse
Affiliation(s)
- L Sellami
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - D Saracino
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - I Le Ber
- Inserm U1127, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), Sorbonne université, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Département de neurologie, centre de référence des démences rares ou précoces, IM2A, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Institut du cerveau et de la moelle épinière (ICM), FrontLab, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, CS21414, 75646 Paris cedex, France.
| |
Collapse
|
23
|
Lanza G, Calì F, Vinci M, Cosentino FII, Tripodi M, Spada RS, Cantone M, Bella R, Mattina T, Ferri R. A Customized Next-Generation Sequencing-Based Panel to Identify Novel Genetic Variants in Dementing Disorders: A Pilot Study. Neural Plast 2020; 2020:8078103. [PMID: 32908482 PMCID: PMC7450320 DOI: 10.1155/2020/8078103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The advancements in the next-generation sequencing (NGS) techniques have allowed for rapid, efficient, and cost-time-effective genetic variant detection. However, in both clinical practice and research setting, sequencing is still often limited to the use of gene panels clinically targeted on the genes underlying the disease of interest. METHODS We performed a neurogenetic study through an ad hoc NGS-based custom sequencing gene panel in order to screen 16 genes in 8 patients with different types of degenerative cognitive disorders (Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, and dementia associated with Parkinson's disease). The study protocol was based on previous evidence showing a high sensitivity and specificity of the technique even when the panel is limited to some hotspot exons. RESULTS We found variants of the TREM2 and APP genes in three patients; these have been previously identified as pathogenic or likely pathogenic and, therefore, considered "disease causing." In the remaining subjects, the pathogenicity was evaluated according to the guidelines of the American College of Medical Genetics (ACMG). In one patient, the p.R205W variant in the CHMP2B gene was found to be likely pathogenic of the disease. A variant in the CSF1R and SERPINI1 genes found in two patients was classified as benign, whereas the other two (in the GRN and APP genes) were classified as likely pathogenic according to the ACMG. CONCLUSIONS Notwithstanding the preliminary value of this study, some rare genetic variants with a probable disease association were detected. Although future application of NGS-based sensors and further replication of these experimental data are needed, this approach seems to offer promising translational perspectives in the diagnosis and management of a wide range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- 1Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- 2Oasi Research Institute–IRCCS, Troina, Italy
| | | | | | | | | | | | - Mariagiovanna Cantone
- 3Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Rita Bella
- 4Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Teresa Mattina
- 5Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
24
|
Srivastava S, Butala A, Mahida S, Richter J, Mu W, Poretti A, Vernon H, VanGerpen J, Atwal PS, Middlebrooks EH, Zee DS, Naidu S. Expansion of the clinical spectrum associated with AARS2-related disorders. Am J Med Genet A 2019; 179:1556-1564. [PMID: 31099476 DOI: 10.1002/ajmg.a.61188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Biallelic pathogenic variants in AARS2, a gene encoding the mitochondrial alanyl-tRNA synthetase, result in a spectrum of findings ranging from infantile cardiomyopathy to adult-onset progressive leukoencephalopathy. In this article, we present three unrelated individuals with novel compound heterozygous pathogenic AARS2 variants underlying diverse clinical presentations. Patient 1 is a 51-year-old man with adult-onset progressive cognitive, psychiatric, and motor decline and leukodystrophy. Patient 2 is a 34-year-old man with childhood-onset progressive tremor followed by the development of polyneuropathy, ataxia, and mild cognitive and psychiatric decline without leukodystrophy on imaging. Patient 3 is a 57-year-old woman with childhood-onset tremor and nystagmus which preceded dystonia, chorea, ataxia, depression, and cognitive decline marked by cerebellar atrophy and white matter disease. These cases expand the clinical heterogeneity of AARS2-related disorders, given that the first and third case represent some of the oldest known survivors of this disease, the second is adult-onset AARS2-related neurological decline without leukodystrophy, and the third is biallelic AARS2-related disorder involving a partial gene deletion.
Collapse
Affiliation(s)
| | - Ankur Butala
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Sonal Mahida
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - John Richter
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Weiyi Mu
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Andrea Poretti
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Hilary Vernon
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Jay VanGerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | | | - Erik H Middlebrooks
- Department of Radiology and Neurosurgery, Mayo Clinic, Jacksonville, Florida
| | - David S Zee
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland.,Department of Ophthalmology, Otolaryngology, Head and Neck Surgery and Neuroscience, The Johns Hopkins Hospital, Baltimore, Maryland
| | - SakkuBai Naidu
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
25
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
26
|
Abstract
Purpose of review In this review we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3). Recent findings Over the past five years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies. Summary Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system and neuroinflammation, and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.
Collapse
|