1
|
Tasnády KR, Jehoul R, de Ravé MG, Gijbels MJ, Brône B, Dewachter I, Melotte V, Boesmans W. Gastrointestinal Dysfunction and Low-Grade Inflammation Associate With Enteric Neuronal Amyloid-β in a Model for Amyloid Pathology. Neurogastroenterol Motil 2025; 37:e15016. [PMID: 40051115 PMCID: PMC11996054 DOI: 10.1111/nmo.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Patients suffering from Alzheimer's disease, a progressive neurodegenerative disorder involving cognitive decline and memory impairment, often present with gastrointestinal comorbidities. Accumulating data also indicate that alterations in the gut can modulate Alzheimer's disease pathology, highlighting the need to better understand the link between gastrointestinal abnormalities and neurodegeneration in the brain. METHODS To disentangle the pathophysiology of gastrointestinal dysfunction in Alzheimer's disease, we conducted a detailed pathological characterization of the gastrointestinal tract of 5xFAD mice by performing histological analyses, gene expression studies, immunofluorescence labeling and gut function assays. RESULTS We found that 5xFAD mice have elevated levels of intestinal amyloid precursor protein and accumulate amyloid-β in enteric neurons. Histopathology revealed that this is associated with mild intestinal inflammation and fibrosis and accompanied by increased expression of proinflammatory cytokines. While overall enteric nervous system composition and organization appeared unaffected, 5xFAD mice have faster gastrointestinal transit. CONCLUSION Our findings indicate that amyloid-β accumulation in enteric neurons is associated with low-grade intestinal inflammation and altered motility and suggest that peripheral pathology may cause gastrointestinal dysfunction in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Kinga Réka Tasnády
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | | | - Marion J. Gijbels
- Department of Pathology, NUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Infection and Immunity, Amsterdam Cardiovascular SciencesAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Bert Brône
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Ilse Dewachter
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Veerle Melotte
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamthe Netherlands
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| |
Collapse
|
2
|
Moore JL, Kennedy J, Hassan AA. Automated home cage monitoring of an aging colony of mice-Implications for welfare monitoring and experimentation. Front Neurosci 2024; 18:1489308. [PMID: 39534023 PMCID: PMC11554610 DOI: 10.3389/fnins.2024.1489308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Our understanding of laboratory animal behavior and the implications of husbandry activities on their wellbeing remains incomplete. This is especially relevant with an aging colony as their activity patterns may change as they mature. Home Cage Monitoring (HCM) provides valuable insights into mouse activity within the animal's own environment and can shed light on acclimatization periods and responses to husbandry activities such as cage changing. The aim of this study was to monitor and explore changes in the activity and rest disturbance (RDI) patterns of an aging colony of male and female C57/BL6 mice. Methods The mice were housed in the Digitally Ventilated Cage® system, for up to 18 months of age. Data was then downloaded to investigate how the activity patterns and RDI of the mice changed over time. Habituation, aging and cage change assessments were conducted using linear mixed models, while cage separation and stereotypic behavior investigations were conducted by visual inspection of the data. Results As expected during the study, mice were less active during the light phase compared to the dark phase. However, on arrival mice displayed heightened activity and RDI during the light phase and reduced activity and RDI during the dark phase, taking several days to adjust to baseline "acclimatized" patterns. With age, overall activity significantly decreased from 5 months until 14 months of age, after which it increased back toward baseline levels. We also observed activity spikes during our monitoring of this colony. Prolonged housing can lead to alarming stereotypic behaviors in animals. Cages of mice flagged for potential stereotypy displayed sustained activity spikes in the light and dark phases. Spikes in activity during the dark phase were much more pronounced than in the light phase. Cage changing led to an increase in the light phase activity and RDI compared to the previous day, with no observed difference in the dark phase post-cage change. This effect remained consistent as the animals aged. Discussion This study explores changes in the activity patterns of an aging colony of male and female C57/BL6 mice housed in the Digitally Ventilated Cage® system. We identified distinct aging phases concerning activity and RDI differences and a potential new welfare application for the DVC®, specifically for early detection of stereotypy. In conclusion, the adoption of HCM systems should be considered for long-term animal housing from both a welfare and behavioral perspective.
Collapse
Affiliation(s)
- Joanna L. Moore
- Biological Services, University of Glasgow, Glasgow, United Kingdom
| | - James Kennedy
- Research Statistics, GlaxoSmithKline, Stevenage, United Kingdom
| | - Abdul-Azim Hassan
- Respiratory Immunology Biology Unit, GlaxoSmithKline, Stevenage, United Kingdom
| |
Collapse
|
3
|
Huang F, Liu X, Guo Q, Mahaman YAR, Zhang B, Wang JZ, Luo H, Liu R, Wang X. Social isolation impairs cognition via Aβ-mediated synaptic dysfunction. Transl Psychiatry 2024; 14:380. [PMID: 39294141 PMCID: PMC11410967 DOI: 10.1038/s41398-024-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Social isolation (SI) is a common phenomenon in the modern world, especially during the coronavirus disease 2019 pandemic, and causes lasting cognitive impairments and mental disorders. However, it is still unclear how SI alters molecules in the brain and induces behavioural dysfunctions. Here, we report that SI impairs cognitive function and induces depressive-like behaviours in C57BL/6 J mice, in addition to impairing synaptic plasticity and increasing the levels of APP cleavage-related enzymes, thereby promoting Aβ production. Moreover, we show that in APP/PS1 transgenic mice, SI accelerates pathological changes and behavioural deficits. Interestingly, downregulation of the expression of the BACE1 attenuates SI-induced Aβ toxicity and synaptic dysfunction. Furthermore, early intervention with BACE1 shRNA blocks SI-induced cognitive impairments. Together, our data strongly suggest that SI-induced upregulation of BACE1 expression mediates Aβ toxicity and induces behavioural deficits. Down-regulation of BACE1 may be a promising strategy for preventing SI-induced cognitive impairments.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xinghua Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Hongbin Luo
- Medical College, Hubei University for Nationalities, Enshi, 445000, HB, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
4
|
Lu J, Li CJ, Wang J, Wang Y. Neuropathology and neuroinflammation in Alzheimer's disease via bidirectional lung-brain axis. Front Aging Neurosci 2024; 16:1449575. [PMID: 39280699 PMCID: PMC11392776 DOI: 10.3389/fnagi.2024.1449575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia worldwide. Although the neuropathology of AD is clear, its pathogenesis remains unclear. Recently, conceptualising AD as brain-centred has reoriented many scientists because the close functional relationship between the peripheral and central nerves is increasingly recognised. Recently, various studies have focused on the crosstalk between peripherals and centrals. A new hotspot of research and new therapeutic strategies have emerged from this great progress. This mini-review is an overview of the potential molecular mechanism in AD via the bidirectional lung-brain axis, providing a new perspective for the systemic understanding of AD onset.
Collapse
Affiliation(s)
- Jie Lu
- Department of Respiratory and Critical Care Medicine, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang, China
| | - Cheng-Jun Li
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| | - Jing Wang
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| | - Yang Wang
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| |
Collapse
|
5
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
He J, Liu Y, Li J, Zhao Y, Jiang H, Luo S, He G. Intestinal changes in permeability, tight junction and mucin synthesis in a mouse model of Alzheimer's disease. Int J Mol Med 2023; 52:113. [PMID: 37830152 PMCID: PMC10599350 DOI: 10.3892/ijmm.2023.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid‑β (Aβ) in the brain. The gut/brain axis may serve a role in AD pathogenesis. The present study investigated deposition of Aβ in the intestinal epithelium and its potential effects on intestinal barrier function in a transgenic mouse model of AD. To investigate alterations in the structure and functionality of the intestinal mucosal barrier in AD model mice, hematoxylin and eosin staining for Paneth cell count, Alcian blue‑periodic acid Schiff staining for goblet cells, immunohistochemistry and immunofluorescence for mucin (MUC)2 and wheat germ agglutin expression, transmission electron microscopy for mucosal ultrastructure, FITC‑labeled dextran assay for intestinal permeability, quantitative PCR for goblet cell precursor expression and western blot analysis for tight junction proteins, MUC2 and inflammatory cytokine detection were performed. The results showed that AD model mice exhibited excessive Aβ deposition in the intestinal epithelium, which was accompanied by increased intestinal permeability, inflammatory changes and decreased expression of tight junction proteins. These alterations in the intestinal barrier led to an increased proliferation of goblet and Paneth cells and increased mucus synthesis. Dysfunction of gut barrier occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Jing He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Junhua Li
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Luo
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| |
Collapse
|
7
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Salkovic-Petrisic M. Exploratory Study of Gastrointestinal Redox Biomarkers in the Presymptomatic and Symptomatic Tg2576 Mouse Model of Familial Alzheimer's Disease: Phenotypic Correlates and Effects of Chronic Oral d-Galactose. ACS Chem Neurosci 2023; 14:4013-4025. [PMID: 37932005 PMCID: PMC10655039 DOI: 10.1021/acschemneuro.3c00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The gut might play an important role in the etiopathogenesis of Alzheimer's disease (AD) as gastrointestinal alterations often precede the development of neuropathological changes in the brain and correlate with disease progression in animal models. The gut has an immense capacity to generate free radicals whose role in the etiopathogenesis of AD is well-known; however, it remains to be clarified whether gastrointestinal redox homeostasis is associated with the development of AD. The aim was to (i) examine gastrointestinal redox homeostasis in the presymptomatic and symptomatic Tg2576 mouse model of AD; (ii) investigate the effects of oral d-galactose previously shown to alleviate cognitive deficits and metabolic changes in animal models of AD and reduce gastrointestinal oxidative stress; and (iii) investigate the association between gastrointestinal redox biomarkers and behavioral alterations in Tg2576 mice. In the presymptomatic stage, Tg2576 mice displayed an increased gastrointestinal electrophilic tone, characterized by higher lipid peroxidation and elevated Mn/Fe-SOD activity. In the symptomatic stage, these alterations are rectified, but the total antioxidant capacity is decreased. Chronic oral d-galactose increased the antioxidant capacity and reduced lipid peroxidation in the Tg2576 but had the opposite effects in the wild-type animals. The total antioxidant capacity of the gastrointestinal tract was associated with greater spatial memory. Gut redox homeostasis might be involved in the development and progression of AD pathophysiology and should be further explored in this context.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen 72076, Germany
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
8
|
Liu G, Yu Q, Zhu H, Tan B, Yu H, Li X, Lu Y, Li H. Amyloid-β mediates intestinal dysfunction and enteric neurons loss in Alzheimer's disease transgenic mouse. Cell Mol Life Sci 2023; 80:351. [PMID: 37930455 PMCID: PMC11072809 DOI: 10.1007/s00018-023-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is traditionally considered as a brain disorder featured by amyloid-β (Aβ) deposition. The current study on whether pathological changes of AD extend to the enteric nervous system (ENS) is still in its infancy. In this study, we found enteric Aβ deposition, intestinal dysfunction, and colonic inflammation in the young APP/PS1 mice. Moreover, these mice exhibited cholinergic and nitrergic signaling pathways damages and enteric neuronal loss. Our data show that Aβ42 treatment remarkably affected the gene expression of cultured myenteric neurons and the spontaneous contraction of intestinal smooth muscles. The intra-colon administration of Aβ42 induced ENS dysfunction, brain gliosis, and β-amyloidosis-like changes in the wild-type mice. Our results suggest that ENS mirrors the neuropathology observed in AD brains, and intestinal pathological changes may represent the prodromal events, which contribute to brain pathology in AD. In summary, our findings provide new opportunities for AD early diagnosis and prevention.
Collapse
Affiliation(s)
- Guoqiang Liu
- Medical College, Hubei University for Nationalities, Enshi, 445000, Hubei, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Li
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Sahu B, Johnson LM, Sohrabi M, Usatii AA, Craig RMJ, Kaelberer JB, Chandrasekaran SP, Kaur H, Nookala S, Combs CK. Effects of Probiotics on Colitis-Induced Exacerbation of Alzheimer's Disease in AppNL-G-F Mice. Int J Mol Sci 2023; 24:11551. [PMID: 37511312 PMCID: PMC10381012 DOI: 10.3390/ijms241411551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline and is a leading cause of death in the United States. Neuroinflammation has been implicated in the progression of AD, and several recent studies suggest that peripheral immune dysfunction may influence the disease. Continuing evidence indicates that intestinal dysbiosis is an attribute of AD, and inflammatory bowel disease (IBD) has been shown to aggravate cognitive impairment. Previously, we separately demonstrated that an IBD-like condition exacerbates AD-related changes in the brains of the AppNL-G-F mouse model of AD, while probiotic intervention has an attenuating effect. In this study, we investigated the combination of a dietary probiotic and an IBD-like condition for effects on the brains of mice. Male C57BL/6 wild type (WT) and AppNL-G-F mice were randomly divided into four groups: vehicle control, oral probiotic, dextran sulfate sodium (DSS), and DSS given with probiotics. As anticipated, probiotic treatment attenuated the DSS-induced colitis disease activity index in WT and AppNL-G-F mice. Although probiotic feeding significantly attenuated the DSS-mediated increase in WT colonic lipocalin levels, it was less protective in the AppNL-G-F DSS-treated group. In parallel with the intestinal changes, combined probiotic and DSS treatment increased microglial, neutrophil elastase, and 5hmC immunoreactivity while decreasing c-Fos staining compared to DSS treatment alone in the brains of WT mice. Although less abundant, probiotic combined with DSS treatment demonstrated a few similar changes in AppNL-G-F brains with increased microglial and decreased c-Fos immunoreactivity in addition to a slight increase in Aβ plaque staining. Both probiotic and DSS treatment also altered the levels of several cytokines in WT and AppNL-G-F brains, with a unique increase in the levels of TNFα and IL-2 being observed in only AppNL-G-F mice following combined DSS and probiotic treatment. Our data indicate that, while dietary probiotic intervention provides protection against the colitis-like condition, it also influences numerous glial, cytokine, and neuronal changes in the brain that may regulate brain function and the progression of AD.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Lauren M. Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Anastasia A. Usatii
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Rachel M. J. Craig
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Joshua B. Kaelberer
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Sathiya Priya Chandrasekaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | | | - Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| | - Colin K. Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.S.); (L.M.J.); (M.S.); (A.A.U.); (R.M.J.C.); (J.B.K.); (S.P.C.); (S.N.)
| |
Collapse
|
10
|
Septyaningtrias DE, Zulfa HA, Ramadhani MF, Sumaryati, Sulistyawati D, Paramita DK, Sumiwi YAA, Susilowati R. Colonic Myenteric Plexus Neurodegeneration and Minor Colon Inflammation in Trimethyltin-induced Rat Model of Neurodegeneration. J Histochem Cytochem 2023; 71:333-344. [PMID: 37322890 PMCID: PMC10315991 DOI: 10.1369/00221554231182195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Gastrointestinal symptoms are common health problems found during aging and neurodegenerative diseases. Trimethyltin-induced rat is known as an animal model of hippocampal degeneration with no data on enteric neurodegeneration. This study aimed to investigate the effect of trimethyltin (TMT) induction on the gastrointestinal tract. A 28-day animal study with male Sprague-Dawley rats (3 months old, 150-200 g) given a single TMT injection (8 mg/kg body weight, intraperitoneal) was conducted. The number of neurons in the colonic myenteric plexus was measured using stereological estimation. Histological scoring of colon inflammation, immunohistochemistry of tumor necrosis factor-α (TNF-α), and quantitative PCR were conducted. This study showed neuronal loss in the colonic myenteric plexus of TMT-induced rat model of neurodegeneration. Minor colon inflammation characterized by inflammatory cell infiltration and slightly higher expression of TNF-α in the colon mucosa were observed in the TMT-induced rat. However, the gut microbiota composition of the TMT-induced rat was not different from that of the control rats. This study demonstrates that TMT induces colonic myenteric plexus neurodegeneration and minor colon inflammation, which suggests the potential of this animal model to elucidate the communication between the gastrointestinal tract and central nervous system in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hilizza Awalina Zulfa
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mahayu Firsty Ramadhani
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sumaryati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Sulistyawati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yustina Andwi Ari Sumiwi
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
12
|
Namakin K, Moghaddam MH, Sadeghzadeh S, Mehranpour M, Vakili K, Fathi M, Golshan A, Bayat AH, Tajik AH, Eskandari N, Mohammadzadeh I, Benisi SZ, Aliaghaei A, Abdollahifar MA. Elderberry diet improves gut-brain axis dysfunction, neuroinflammation, and cognitive impairment in the rat model of irritable bowel syndrome. Metab Brain Dis 2023; 38:1555-1572. [PMID: 36877342 DOI: 10.1007/s11011-023-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Irritable bowel syndrome (IBS) is related to a problem in the gut-brain axis. This experimental research aimed to shed light on the potential therapeutic application of elderberry (EB), which can work on the axis and get better the IBS symptoms. There were three groups (36 Sprague-Dawley rats) in this experiment, including control, IBS, and IBS with EB diet (IBS + EB). Making use of intracolonic instillation of 1 ml of 4% acetic acid for 30 s, IBS was induced. 7 days later, the EB extract (2%) was added to the diets of all animals for 8 weeks. Some histological, behavioral, and stereological techniques were used to detect the effects of EB on the gut and brain tissues. The findings showed that the EB diet improved locomotion and decreased anxiety-like behavior in the rat models of IBS. Moreover, the diet dropped the expression of TNF-α and increased mucosal layer thickness and the number of goblet and mast cells in colon tissue samples. In the hippocampal samples, administration of EB prevented astrogliosis and astrocyte reactivity. Although hippocampal and cortical neurons decreased markedly in the IBS group, EB prevented the drop in the number of neurons. Although lots of research is needed to elucidate the effectiveness of EB in IBS and its exact molecular mechanism, the result of this study showed that EB as an antioxidant and immune-modulatory agent could be a promising research target to prevent the impairment in the gut-brain axis, and could ameliorative classic IBS symptoms.
Collapse
Affiliation(s)
- Kosar Namakin
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Sadeghzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Golshan
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir-Hossein Tajik
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, 1385/768, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Broadbelt T, Mutlu-Smith M, Carnicero-Senabre D, Saido TC, Saito T, Wang SH. Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer's disease. Sci Rep 2022; 12:22298. [PMID: 36566248 PMCID: PMC9789965 DOI: 10.1038/s41598-022-26113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive impairments and age-dependent memory deficits which have been studied using genetic models of AD. Whether the processes for modulating memory persistence are more vulnerable to the influence of amyloid pathology than the encoding and consolidation of the memory remains unclear. Here, we investigated whether early amyloid pathology would affect peri-learning novelty in promoting memory, through a process called behavioral tagging and capture (BTC). AppNL-G-F/NL-G-F mice and wild-type littermates were trained in an appetitive delayed matching-to-place (ADMP) task which allows for the assessment of peri-learning novelty in facilitating memory. The results show that novelty enabled intermediate-term memory in wild-type mice, but not in AppNL-G-F/NL-G-F mice in adulthood. This effect preceded spatial memory impairment in the ADMP task seen in middle age. Other memory tests in the Barnes maze, Y-maze, novel object or location recognition tasks remained intact. Together, memory modulation through BTC is impaired before apparent deficits in learning and memory. Relevant biological mechanisms underlying BTC and the implication in AD are discussed.
Collapse
Affiliation(s)
- Tabitha Broadbelt
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Menekse Mutlu-Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Daniel Carnicero-Senabre
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,grid.5515.40000000119578126Present Address: Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Takaomi C. Saido
- grid.474690.8Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198 Japan
| | - Takashi Saito
- grid.260433.00000 0001 0728 1069Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601 Japan
| | - Szu-Han Wang
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| |
Collapse
|
15
|
Al-Nakkash L, Mason D, Ismail N, Bowman T, Ahlert J, Rubin M, Smith E, Rosander A, Broderick TL. Exercise Training Prevents the Loss of Wall Thickness and Lowers Expression of Alzheimer's Related Proteins in 3xTg Mouse Jejunum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14164. [PMID: 36361051 PMCID: PMC9653708 DOI: 10.3390/ijerph192114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Growing evidence has demonstrated the benefits of regular exercise on cardiovascular, neural, and cognitive function in humans with Alzheimer's disease (AD). However, the consequences of AD on gastrointestinal morphology and the effects of regular exercise, which plays an important role against the development of certain gastrointestinal-related diseases, are still poorly understood. Therefore, to assess the changes in intestinal structure in a mouse model of AD and the impact of exercise, 2-month-old 3xTg-AD male mice were subjected to treadmill running 5 days per week for a period of 5 months. Jejunum from 3xTg-AD mice analyzed by histochemical methods revealed significant alterations in morphology. Compared to age-matched wild-type (WT) mice, villi length and crypt depth were increased, and collagen content of jejunum was elevated in 3xTg-AD mice. Jejunum wall dimensions, expressed as total wall thickness, outer longitudinal thickness, and inner circular thickness were decreased in 3xTg-AD compared to WT. Smooth muscle actin expression in jejunal wall was decreased in 3xTg-AD. Most of these aberrations were improved with exercise. Western blot expression of cyclin dependent kinase 5 (CDK5, involved in neural cell death and hyperphosphorylation of tau), was elevated in 3xTg-AD jejunum. This was associated with a 4-fold increase in tau5 expression. Exercise prevented the increase in expression of CDK5 and tau5. Expression of caspase 3 (an apoptotic marker) was elevated in 3xTg-AD jejunum and exercise prevented this. The results of our study indicate that the abnormalities in jejunum of the 3xTg mouse model of AD were prevented with exercise training.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Daniel Mason
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Niamatullah Ismail
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Taylor Bowman
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - John Ahlert
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Maxwell Rubin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Emma Smith
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Abigail Rosander
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Tom L. Broderick
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
16
|
Yu F, Hou ZS, Luo HR, Cui XF, Xiao J, Kim YB, Li JL, Feng WR, Tang YK, Li HX, Su SY, Song CY, Wang MY, Xu P. Zinc alters behavioral phenotypes, neurotransmitter signatures, and immune homeostasis in male zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154099. [PMID: 35240190 DOI: 10.1016/j.scitotenv.2022.154099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities discharge zinc into aquatic ecosystems, and the effects of long-term and low-concentration zinc exposure on fish behavior are unclear. We evaluated the behavior and physiology of male zebrafish (Danio rerio) after a 6-week exposure to 1.0 or 1.5 ppm (mg/L) zinc chloride. The exposure caused anxiety-like behaviors and altered the social preferences in both exposure groups. Analysis of transcriptional changes suggested that in the brain, zinc exerted heterogenetic effects on immune and neurotransmitter functions. Exposure to 1.0 ppm zinc chloride resulted in constitutive immune dyshomeostasis, while exposure to 1.5 ppm zinc chloride impaired the neurotransmitter glutamate. In the intestine, zinc dysregulated self-renewal of intestinal cells, a potential loss of defense function. Moreover, exposure to 1.5 ppm zinc chloride suppressed intestinal immune functions and dysregulated tyrosine metabolism. These behavioral alterations suggested that the underlying mechanisms were distinct and concentration-specific. Overall, environmental levels of zinc can alter male zebrafish behaviors by dysregulating neurotransmitter and immunomodulation signatures.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Hong-Rui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xue-Fan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jian-Lin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yong-Kai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sheng-Yan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chang-You Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mei-Yao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
17
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
18
|
Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A, Combs CK. Gastrointestinal Changes and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:335-350. [PMID: 35718965 PMCID: PMC10497313 DOI: 10.2174/1567205019666220617121255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Atish Prakash
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
19
|
Kaur H, Nookala S, Singh S, Mukundan S, Nagamoto-Combs K, Combs CK. Sex-Dependent Effects of Intestinal Microbiome Manipulation in a Mouse Model of Alzheimer's Disease. Cells 2021; 10:2370. [PMID: 34572019 PMCID: PMC8469717 DOI: 10.3390/cells10092370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanisms linking intestinal bacteria and neurodegenerative diseases such as Alzheimer's disease (AD) are still unclear. We hypothesized that intestinal dysbiosis might potentiate AD, and manipulating the microbiome to promote intestinal eubiosis and immune homeostasis may improve AD-related brain changes. This study assessed sex differences in the effects of oral probiotic, antibiotics, and synbiotic treatments in the AppNL-G-F mouse model of AD. The fecal microbiome demonstrated significant correlations between bacterial genera in AppNL-G-F mice and Aβ plaque load, gliosis, and memory performance. Female and not male AppNL-G-F mice fed probiotic but not synbiotic exhibited a decrease in Aβ plaques, microgliosis, brain TNF-α, and memory improvement compared to no treatment controls. Although antibiotics treatment did not produce these multiple changes in brain cytokines, memory, or gliosis, it did decrease Aβ plaque load and colon cytokines in AppNL-G-F males. The intestinal cytokine milieu and splenocyte phenotype of female but not male AppNL-G-F mice indicated a modest proinflammatory innate response following probiotic treatment compared to controls, with an adaptive response following antibiotics treatment in male AppNL-G-F mice. Overall, these results demonstrate the beneficial effects of probiotic only in AppNL-G-F females, with minimal benefits of antibiotics or synbiotic feeding in male or female mice.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA; (S.N.); (S.M.); (K.N.-C.)
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA; (S.N.); (S.M.); (K.N.-C.)
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
| | - Santhosh Mukundan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA; (S.N.); (S.M.); (K.N.-C.)
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA; (S.N.); (S.M.); (K.N.-C.)
| | - Colin Kelly Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA; (S.N.); (S.M.); (K.N.-C.)
| |
Collapse
|
20
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Sakakibara Y, Hirota Y, Ibaraki K, Takei K, Chikamatsu S, Tsubokawa Y, Saito T, Saido TC, Sekiya M, Iijima KM. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 2021; 82:1513-1530. [PMID: 34180416 PMCID: PMC8461671 DOI: 10.3233/jad-210385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The locus coeruleus (LC), a brainstem nucleus comprising noradrenergic neurons, is one of the earliest regions affected by Alzheimer's disease (AD). Amyloid-β (Aβ) pathology in the cortex in AD is thought to exacerbate the age-related loss of LC neurons, which may lead to cortical tau pathology. However, mechanisms underlying LC neurodegeneration remain elusive. OBJECTIVE Here, we aimed to examine how noradrenergic neurons are affected by cortical Aβ pathology in AppNL-G-F/NL-G-F knock-in mice. METHODS The density of noradrenergic axons in LC-innervated regions and the LC neuron number were analyzed by an immunohistochemical method. To explore the potential mechanisms for LC degeneration, we also examined the occurrence of tau pathology in LC neurons, the association of reactive gliosis with LC neurons, and impaired trophic support in the brains of AppNL-G-F/NL-G-F mice. RESULTS We observed a significant reduction in the density of noradrenergic axons from the LC in aged AppNL-G-F/NL-G-F mice without neuron loss or tau pathology, which was not limited to areas near Aβ plaques. However, none of the factors known to be related to the maintenance of LC neurons (i.e., somatostatin/somatostatin receptor 2, brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) were significantly reduced in AppNL-G-F/NL-G-F mice. CONCLUSION This study demonstrates that cortical Aβ pathology induces noradrenergic neurodegeneration, and further elucidation of the underlying mechanisms will reveal effective therapeutics to halt AD progression.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kyoko Ibaraki
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
23
|
Kaur H, Seeger D, Golovko S, Golovko M, Combs CK. Liver Bile Acid Changes in Mouse Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147451. [PMID: 34299071 PMCID: PMC8303891 DOI: 10.3390/ijms22147451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. It is hypothesized to develop due to the dysfunction of two major proteins, amyloid-β (Aβ) and microtubule-associated protein, tau. Evidence supports the involvement of cholesterol changes in both the generation and deposition of Aβ. This study was performed to better understand the role of liver cholesterol and bile acid metabolism in the pathophysiology of AD. We used male and female wild-type control (C57BL/6J) mice to compare to two well-characterized amyloidosis models of AD, APP/PS1, and AppNL-G-F. Both conjugated and unconjugated primary and secondary bile acids were quantified using UPLC-MS/MS from livers of control and AD mice. We also measured cholesterol and its metabolites and identified changes in levels of proteins associated with bile acid synthesis and signaling. We observed sex differences in liver cholesterol levels accompanied by differences in levels of synthesis intermediates and conjugated and unconjugated liver primary bile acids in both APP/PS1 and AppNL-G-F mice when compared to controls. Our data revealed fundamental deficiencies in cholesterol metabolism and bile acid synthesis in the livers of two different AD mouse lines. These findings strengthen the involvement of liver metabolism in the pathophysiology of AD.
Collapse
|
24
|
Chiocchetti R, Hitrec T, Giancola F, Sadeghinezhad J, Squarcio F, Galiazzo G, Piscitiello E, De Silva M, Cerri M, Amici R, Luppi M. Phosphorylated Tau protein in the myenteric plexus of the ileum and colon of normothermic rats and during synthetic torpor. Cell Tissue Res 2021; 384:287-299. [PMID: 33511469 PMCID: PMC8141491 DOI: 10.1007/s00441-020-03328-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Tau protein is of primary importance for neuronal homeostasis and when hyperphosphorylated (PP-Tau), it tends to aggregate in neurofibrillary tangles, as is the case with tauopathies, a class of neurodegenerative disorders. Reversible PP-Tau accumulation occurs in the brain of hibernating rodents and it was recently observed in rats (a non-hibernator) during synthetic torpor (ST), a pharmacological-induced torpor-like condition. To date, the expression of PP-Tau in the rat enteric nervous system (ENS) is still unknown. The present study immunohistochemically investigates the PP-Tau expression in the myenteric plexus of the ileum and colon of normothermic rats (CTRL) and during ST, focusing on the two major subclasses of enteric neurons, i.e., cholinergic and nitrergic.Results showed that both groups of rats expressed PP-Tau, with a significantly increased percentage of PP-Tau immunoreactive (IR) neurons in ST vs. CTRL. In all rats, the majority of PP-Tau-IR neurons were cholinergic. In ST rats, the percentage of PP-Tau-IR neurons expressing a nitrergic phenotype increased, although with no significant differences between groups. In addition, the ileum of ST rats showed a significant decrease in the percentage of nitrergic neurons. In conclusion, our findings suggest an adaptive response of ENS to very low core body temperatures, with changes involving PP-tau expression in enteric neurons, especially the ileal nitrergic subpopulation. In addition, the high presence of PP-Tau in cholinergic neurons, specifically, is very interesting and deserves further investigation. Altogether, these data strengthen the hypothesis of a common cellular mechanism triggered by ST, natural hibernation and tauopathies occurring in ENS neurons.
Collapse
Affiliation(s)
- R Chiocchetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - T Hitrec
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F Giancola
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - J Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - F Squarcio
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - G Galiazzo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - E Piscitiello
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M De Silva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M Cerri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - R Amici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M Luppi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Shukla PK, Delotterie DF, Xiao J, Pierre JF, Rao R, McDonald MP, Khan MM. Alterations in the Gut-Microbial-Inflammasome-Brain Axis in a Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10040779. [PMID: 33916001 PMCID: PMC8067249 DOI: 10.3390/cells10040779] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive decline, is a major cause of death and disability among the older population. Despite decades of scientific research, the underlying etiological triggers are unknown. Recent studies suggested that gut microbiota can influence AD progression; however, potential mechanisms linking the gut microbiota with AD pathogenesis remain obscure. In the present study, we provided a potential mechanistic link between dysbiotic gut microbiota and neuroinflammation associated with AD progression. Using a mouse model of AD, we discovered that unfavorable gut microbiota are correlated with abnormally elevated expression of gut NLRP3 and lead to peripheral inflammasome activation, which in turn exacerbates AD-associated neuroinflammation. To this end, we observe significantly altered gut microbiota compositions in young and old 5xFAD mice compared to age-matched non-transgenic mice. Moreover, 5xFAD mice demonstrated compromised gut barrier function as evident from the loss of tight junction and adherens junction proteins compared to non-transgenic mice. Concurrently, we observed increased expression of NLRP3 inflammasome and IL-1β production in the 5xFAD gut. Consistent with our hypothesis, increased gut–microbial–inflammasome activation is positively correlated with enhanced astrogliosis and microglial activation, along with higher expression of NLRP3 inflammasome and IL-1β production in the brains of 5xFAD mice. These data indicate that the elevated expression of gut–microbial–inflammasome components may be an important trigger for subsequent downstream activation of inflammatory and potentially cytotoxic mediators, and gastrointestinal NLRP3 may promote NLRP3 inflammasome-mediated neuroinflammation. Thus, modulation of the gut microbiota may be a potential strategy for the treatment of AD-related neurological disorders in genetically susceptible hosts.
Collapse
Affiliation(s)
- Pradeep K. Shukla
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Correspondence: (P.K.S.); (M.M.K.); Tel.: 1-901-448-3180; Fax: 1-901-448-1662 (M.M.K.)
| | - David F. Delotterie
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.F.D.); (J.X.); (M.P.M.)
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.F.D.); (J.X.); (M.P.M.)
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - RadhaKrishna Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Michael P. McDonald
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.F.D.); (J.X.); (M.P.M.)
- Department of Anatomy & Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.F.D.); (J.X.); (M.P.M.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism, and Neuropathology, Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (P.K.S.); (M.M.K.); Tel.: 1-901-448-3180; Fax: 1-901-448-1662 (M.M.K.)
| |
Collapse
|
26
|
Floden AM, Sohrabi M, Nookala S, Cao JJ, Combs CK. Salivary Aβ Secretion and Altered Oral Microbiome in Mouse Models of AD. Curr Alzheimer Res 2021; 17:1133-1144. [PMID: 33463464 PMCID: PMC8122496 DOI: 10.2174/1567205018666210119151952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/24/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Beta amyloid (Aβ) peptide containing plaque aggregations in the brain are a hallmark of Alzheimer's Disease (AD). However, Aβ is produced by cell types outside of the brain suggesting that the peptide may serve a broad physiologic purpose. OBJECTIVE Based upon our prior work documenting expression of amyloid β precursor protein (APP) in intestinal epithelium we hypothesized that salivary epithelium might also express APP and be a source of Aβ. METHODS To begin testing this idea, we compared human age-matched control and AD salivary glands to C57BL/6 wild type, AppNL-G-F , and APP/PS1 mice. RESULTS Both male and female AD, AppNL-G-F , and APP/PS1 glands demonstrated robust APP and Aβ immunoreactivity. Female AppNL-G-F mice had significantly higher levels of pilocarpine stimulated Aβ 1-42 compared to both wild type and APP/PS1 mice. No differences in male salivary Aβ levels were detected. No significant differences in total pilocarpine stimulated saliva volumes were observed in any group. Both male and female AppNL-G-F but not APP/PS1 mice demonstrated significant differences in oral microbiome phylum and genus abundance compared to wild type mice. Male, but not female, APP/PS1 and AppNL-G-F mice had significantly thinner molar enamel compared to their wild type counterparts. CONCLUSION These data support the idea that oral microbiome changes exist during AD in addition to changes in salivary Aβ and oral health.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| |
Collapse
|
27
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
28
|
Liu L, Cao J, Huang C, Yuan E, Ren J. Analysis the alteration of systemic inflammation in old and young APP/PS1 mouse. Exp Gerontol 2021; 147:111274. [PMID: 33561502 DOI: 10.1016/j.exger.2021.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
The impairment of cognitive function was considered as a major clinic feature in Alzheimer's disease (AD) patients. Thus, a number of researches related to AD were focused on the changes in brain. However, as a neurodegenerative disorder with systemic inflammation, the periphery organs may also play a key role in AD pathology. Here, we pose the hypothesis that histopathology and inflammatory response of periphery organs may alter with aging in APP/PS1 mouse model. Therefore, we performed immunohistochemical staining technology to double label Aβ plaques and microglia cells in brain. The H&E staining was performed in periphery tissues and the mRNA expression of inflammatory factors IL-6, IL-10 and TNF-α were also determined. Next, the index of oxidative stress was measured. Consequently, the level of inflammatory factors was significantly increased in 24 months APP/PS1 mice. Furthermore, the enzyme activity of SOD, CAT and GSH were significantly decreased in colon and other organs. Our results demonstrated the increased inflammation response and declined antioxidative capacity of periphery organs in aged APP/PS1 mice, which suggesting that a more comprehensive perspective to study AD were necessary.
Collapse
Affiliation(s)
- Liangyun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Jianing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Chujun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
29
|
Sohrabi M, Pecoraro HL, Combs CK. Gut Inflammation Induced by Dextran Sulfate Sodium Exacerbates Amyloid-β Plaque Deposition in the AppNL-G-F Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1235-1255. [PMID: 33427741 PMCID: PMC8122495 DOI: 10.3233/jad-201099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although it is known that the brain communicates with the gastrointestinal (GI) tract via the well-established gut-brain axis, the influence exerted by chronic intestinal inflammation on brain changes in Alzheimer's disease (AD) is not fully understood. We hypothesized that increased gut inflammation would alter brain pathology of a mouse model of AD. OBJECTIVE Determine whether colitis exacerbates AD-related brain changes. METHODS To test this idea, 2% dextran sulfate sodium (DSS) was dissolved in the drinking water and fed ad libitum to male C57BL/6 wild type and AppNL-G-F mice at 6-10 months of age for two cycles of three days each. DSS is a negatively charged sulfated polysaccharide which results in bloody diarrhea and weight loss, changes similar to human inflammatory bowel disease (IBD). RESULTS Both wild type and AppNL-G-F mice developed an IBD-like condition. Brain histologic and biochemical assessments demonstrated increased insoluble Aβ1-40/42 levels along with the decreased microglial CD68 immunoreactivity in DSS treated AppNL-G-F mice compared to vehicle treated AppNL-G-F mice. CONCLUSION These data demonstrate that intestinal dysfunction is capable of altering plaque deposition and glial immunoreactivity in the brain. This study increases our knowledge of the impact of peripheral inflammation on Aβ deposition via an IBD-like model system.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo ND
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| |
Collapse
|
30
|
Pellegrini C, Daniele S, Antonioli L, Benvenuti L, D’Antongiovanni V, Piccarducci R, Pietrobono D, Citi V, Piragine E, Flori L, Ippolito C, Segnani C, Palazon-Riquelme P, Lopez-Castejon G, Martelli A, Colucci R, Bernardini N, Trincavelli ML, Calderone V, Martini C, Blandizzi C, Fornai M. Prodromal Intestinal Events in Alzheimer's Disease (AD): Colonic Dysmotility and Inflammation Are Associated with Enteric AD-Related Protein Deposition. Int J Mol Sci 2020; 21:ijms21103523. [PMID: 32429301 PMCID: PMC7278916 DOI: 10.3390/ijms21103523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that intestinal dysfunctions may represent early events in Alzheimer’s disease and contribute to brain pathology. This study examined the relationship between onset of cognitive impairment and colonic dysfunctions in a spontaneous AD model before the full development of brain pathology. SAMP8 mice underwent Morris water maze and assessment of faecal output at four, six and eight months of age. In vitro colonic motility was examined. Faecal and colonic Aβ, tau proteins, α-synuclein and IL-1β were assessed by ELISA. Colonic citrate synthase activity was assessed by spectrophotometry. Colonic NLRP3, caspase-1 and ASC expression were evaluated by Western blotting. Colonic eosinophil density and claudin-1 expression were evaluated by immunohistochemistry. The effect of Aβ on NLRP3 signalling and mitochondrial function was tested in cultured cells. Cognitive impairment and decreased faecal output occurred in SAMP8 mice from six months. When compared with SAMR1, SAMP8 animals displayed: (1) impaired in vitro colonic contractions; (2) increased enteric AD-related proteins, IL-1β, active-caspase-1 expression and eosinophil density; and (3) decreased citrate synthase activity and claudin-1 expression. In THP-1 cells, Aβ promoted IL-1β release, which was abrogated upon incubation with caspase-1 inhibitor or in ASC-/- cells. Aβ decreased mitochondrial function in THP-1 cells. In SAMP8, enteric AD-related proteins deposition, inflammation and impaired colonic excitatory neurotransmission, occurring before the full brain pathology development, could contribute to bowel dysmotility and represent prodromal events in AD.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Vanessa D’Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Deborah Pietrobono
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
| | - Pablo Palazon-Riquelme
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK; (P.P.-R.); (G.L.-C.)
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PL, UK; (P.P.-R.); (G.L.-C.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (C.S.); (N.B.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56126 Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.P.); (S.D.); (R.P.); (D.P.); (V.C.); (E.P.); (L.F.); (A.M.); (M.L.T.); (V.C.)
- Correspondence: (C.M.); (C.B.); Tel.: +39-050-221-2115 (C.M.); +39-050-221-8753 (C.B.)
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
- Correspondence: (C.M.); (C.B.); Tel.: +39-050-221-2115 (C.M.); +39-050-221-8753 (C.B.)
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (L.B.); (V.D.); (M.F.)
| |
Collapse
|
31
|
Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer's disease. Neurobiol Aging 2020; 92:114-134. [PMID: 32417748 DOI: 10.1016/j.neurobiolaging.2020.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Evidence suggests that changes in intestinal microbiota may affect the central nervous system. However, it is unclear whether alteration of intestinal microbiota affects progression of Alzheimer's disease (AD). To understand this, wild-type control (C57BL/6) mice were compared with the AppNL-G-F model of disease. We used probiotic supplementation to manipulate the gut microbiota. Fecal samples were collected for microbiota profiling. To study brain and intestinal inflammation, biochemical and histological analyses were performed. Altered metabolic pathways were examined by quantifying eicosanoid and bile acid profiles in the brain and serum using ultraperformance liquid chromatography-tandem mass spectrometry. We observed that brain pathology was associated with intestinal dysbiosis and increased intestinal inflammation and leakiness in AppNL-G-F mice. Probiotic supplementation significantly decreased intestinal inflammation and gut permeability with minimal effect on amyloid-β, cytokine, or gliosis levels in the brain. Concentrations of several bile acids and prostaglandins were altered in the serum and brain because of AD or probiotic supplementation. Our study characterizes intestinal dysfunction in an AD mouse model and the potential of probiotic intervention to ameliorate this condition.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Kumi Nagamoto-Combs
- Department of Pathology, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Svetlana Golovko
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Marilyn G Klug
- Department of Population Health, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Colin Kelly Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
32
|
Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in App NL-G-F/NL-G-F knock-in mice. Neuropharmacology 2020; 168:108026. [PMID: 32130977 DOI: 10.1016/j.neuropharm.2020.108026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the presence of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Reduced antioxidants and increased oxidative stress and inflammation are responsible for the pathological features characteristic of an AD brain. We observed decreased levels of the reduced form of glutathione (GSH), the most abundant brain antioxidant, and decreased GSH/glutathione disulfide (GSSG) ratios in AppNL-G-F/NL-G-F knock-in (NL-G-F) mouse brains. Repeated oral GSH administration for 3 weeks dose-dependently increased GSH levels and restored the GSH/GSSH ratio. Consistent with the restoration of GSH levels, the levels of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress, were significantly decreased in the hippocampus of NL-G-F mice. Additionally, inflammatory responses, such as microgliosis and increased mRNA expression of inflammatory cytokines, were also inhibited. Moreover, behavioral deficits including cognitive decline, depressive-like behaviors, and anxiety-related behaviors observed in NL-G-F mice were significantly improved by oral and chronic GSH administration. Taken together, our data suggest that oral GSH administration is an attractive therapeutic strategy to reduce the excessive oxidative stress and inflammatory responses in the AD brain.
Collapse
|