1
|
Kong Y, Maschio CA, Shi X, Xie F, Zuo C, Konietzko U, Shi K, Rominger A, Xiao J, Huang Q, Nitsch RM, Guan Y, Ni R. Relationship Between Reactive Astrocytes, by [ 18F]SMBT-1 Imaging, with Amyloid-Beta, Tau, Glucose Metabolism, and TSPO in Mouse Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:8387-8401. [PMID: 38502413 DOI: 10.1007/s12035-024-04106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Reactive astrocytes play an important role in the development of Alzheimer's disease (AD). Here, we aimed to investigate the temporospatial relationships among monoamine oxidase-B, tau and amyloid-β (Aβ), translocator protein, and glucose metabolism by using multitracer imaging in AD transgenic mouse models. Positron emission tomography (PET) imaging with [18F]SMBT-1 (monoamine oxidase-B), [18F]florbetapir (Aβ), [18F]PM-PBB3 (tau), [18F]fluorodeoxyglucose (FDG), and [18F]DPA-714 (translocator protein) was carried out in 5- and 10-month-old APP/PS1, 11-month-old 3×Tg mice, and aged-matched wild-type mice. The brain regional referenced standard uptake value (SUVR) was computed with the cerebellum as the reference region. Immunofluorescence staining was performed on mouse brain tissue slices. [18F]SMBT-1 and [18F]florbetapir SUVRs were greater in the cortex and hippocampus of 10-month-old APP/PS1 mice than in those of 5-month-old APP/PS1 mice and wild-type mice. No significant difference in the regional [18F]FDG or [18F]DPA-714 SUVRs was observed in the brains of 5- or 10-month-old APP/PS1 mice or wild-type mice. No significant difference in the SUVRs of any tracer was observed between 11-month-old 3×Tg mice and age-matched wild-type mice. A positive correlation between the SUVRs of [18F]florbetapir and [18F]DPA-714 in the cortex and hippocampus was observed among the transgenic mice. Immunostaining validated the distribution of MAO-B and limited Aβ and tau pathology in 11-month-old 3×Tg mice; and Aβ deposits in brain tissue from 10-month-old APP/PS1 mice. In summary, these findings provide in vivo evidence that an increase in astrocyte [18F]SMBT-1 accompanies Aβ accumulation in APP/PS1 models of AD amyloidosis.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Zentrum (ZNZ), Zurich, Switzerland
| | - Xuefeng Shi
- Qinghai Provincial People's Hospital, Xining, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Zentrum (ZNZ), Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer 's disease and the challenges: A topical advancement. Ageing Res Rev 2024; 94:102199. [PMID: 38232903 DOI: 10.1016/j.arr.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-β (Aβ) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aβ, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aβ, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Ni R. Magnetic Resonance Imaging in Tauopathy Animal Models. Front Aging Neurosci 2022; 13:791679. [PMID: 35145392 PMCID: PMC8821905 DOI: 10.3389/fnagi.2021.791679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The microtubule-associated protein tau plays an important role in tauopathic diseases such as Alzheimer's disease and primary tauopathies such as progressive supranuclear palsy and corticobasal degeneration. Tauopathy animal models, such as transgenic, knock-in mouse and rat models, recapitulating tauopathy have facilitated the understanding of disease mechanisms. Aberrant accumulation of hyperphosphorylated tau contributes to synaptic deficits, neuroinflammation, and neurodegeneration, leading to cognitive impairment in animal models. Recent advances in molecular imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided valuable insights into the time course of disease pathophysiology in tauopathy animal models. High-field MRI has been applied for in vivo imaging in animal models of tauopathy, including diffusion tensor imaging for white matter integrity, arterial spin labeling for cerebral blood flow, resting-state functional MRI for functional connectivity, volumetric MRI for neurodegeneration, and MR spectroscopy. In addition, MR contrast agents for non-invasive imaging of tau have been developed recently. Many preclinical MRI indicators offer excellent translational value and provide a blueprint for clinical MRI in the brains of patients with tauopathies. In this review, we summarized the recent advances in using MRI to visualize the pathophysiology of tauopathy in small animals. We discussed the outstanding challenges in brain imaging using MRI in small animals and propose a future outlook for visualizing tau-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Sexton CE, Anstey KJ, Baldacci F, Barnum CJ, Barron AM, Blennow K, Brodaty H, Burnham S, Elahi FM, Götz J, Jeon YH, Koronyo-Hamaoui M, Landau SM, Lautenschlager NT, Laws SM, Lipnicki DM, Lu H, Masters CL, Moyle W, Nakamura A, Pasinetti GM, Rao N, Rowe C, Sachdev PS, Schofield PR, Sigurdsson EM, Smith K, Srikanth V, Szoeke C, Tansey MG, Whitmer R, Wilcock D, Wong TY, Bain LJ, Carrillo MC. Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney. Alzheimers Dement 2022; 18:178-190. [PMID: 34058063 PMCID: PMC9396711 DOI: 10.1002/alz.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
Collapse
Affiliation(s)
| | - Kaarin J. Anstey
- University of New South Wales and Neuroscience Research, Sydney, NSW, Australia
| | - Filippo Baldacci
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Anna M. Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Samantha Burnham
- CSIRO Health & Biosecurity, The Australian e-Health Research Centre, Parkville, VIC, Australia
| | - Fanny M. Elahi
- Memory and Aging Center, Weill Institute for NeurosciencesUniversity of California San Francisco, San Francisco, California, USA
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD, Australia
| | - Yun-Hee Jeon
- The University of Sydney, Sydney, NSW, Australia
| | - Maya Koronyo-Hamaoui
- Departments of Neurosurgery and Biomedical Sciences, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Susan M. Landau
- University of California Berkeley, Berkeley, California, USA
| | - Nicola T. Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- North Western Mental Health, Royal Melbourne Hospital, Melbourne, Australia
| | - Simon M. Laws
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, WA, Australia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wendy Moyle
- Menzies Health Institute Queensland, Griffith University, Griffith, QLD, Australia
| | - Akinori Nakamura
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISSMS), New York, New York, USA
| | - Naren Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging, Austin Health, Melbourne, VIC, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney and School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Einar M. Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Kate Smith
- Centre for Aboriginal Medical and Dental Health, University of Western Australia, Crawley, WA, Australia
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Malú G. Tansey
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Normal Fixel Center for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel Whitmer
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Donna Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Tien Y. Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | | |
Collapse
|
7
|
Yamagishi S, Iga Y, Ikegaya S, Kakiuchi T, Ohba H, Nishiyama S, Fukomoto D, Kanazawa M, Harada N, Tsukada H, Sato K, Ouchi Y. In vivo alterations of mitochondrial activity and amyloidosis in early-stage senescence-accelerated mice: a positron emission tomography study. J Neuroinflammation 2021; 18:288. [PMID: 34893067 PMCID: PMC8665644 DOI: 10.1186/s12974-021-02343-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose While marked reductions in neural activity and mitochondrial function have been reported in Alzheimer’s disease (AD), the degree of mitochondrial activity in mild cognitive impairment (MCI) or early-stage AD remains unexplored. Here, we used positron emission tomography (PET) to examine the direct relationship between mitochondrial activity (18F-BCPP-EF) and β-amyloid (Aβ) deposition (11C-PiB) in the same brains of senescence-accelerated mouse prone 10 (SAMP10) mice, an Aβ-developing neuroinflammatory animal model showing accelerated senescence with deterioration in cognitive functioning similar to that in MCI. Methods Five- to 25-week-old SAMP10 and control SAMR1 mice, were used in the experiments. PET was used to measure the binding levels (standard uptake value ratios; SUVRs) of [18F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (18F-BCPP-EF) for mitochondrial complex 1 availability, and 11C-PiB for Aβ deposition, in the same animals, and immunohistochemistry for ATPB (an ATP synthase on the mitochondrial inner membrane) was also performed, to determine changes in mitochondrial activity in relation to amyloid burden during the early stage of cognitive impairment. Results The SUVR of 18F-BCPP-EF was significantly lower and that of 11C-PiB was higher in the 15-week-old SAMP10 mice than in the control and 5-week-old SAMP10 mice. The two parameters were found to negatively correlate with each other. The immunohistochemical analysis demonstrated temporal upregulation of ATPB levels at 15-week-old, but decreased at 25 week-old SAMP10 mice. Conclusion The present results provide in vivo evidence of a decrease in mitochondrial energy production and elevated amyloidosis at an early stage in SAMP10 mice. The inverse correlation between these two phenomena suggests a concurrent change in neuronal energy failure by Aβ-induced elevation of neuroinflammatory responses. Comparison of PET data with histological findings suggests that temporal increase of ATPB level may not be neurofunctionally implicated during neuropathological processes, including Aβ pathology, in an animal model of early-phase AD spectrum disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02343-4.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yurika Iga
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shunsuke Ikegaya
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Daisuke Fukomoto
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | | | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
8
|
Jiang S, Maphis NM, Binder J, Chisholm D, Weston L, Duran W, Peterson C, Zimmerman A, Mandell MA, Jett SD, Bigio E, Geula C, Mellios N, Weick JP, Rosenberg GA, Latz E, Heneka MT, Bhaskar K. Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 2021; 36:109720. [PMID: 34551296 PMCID: PMC8491766 DOI: 10.1016/j.celrep.2021.109720] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1β (IL-1β), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1β. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1β signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1β activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1β expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1β activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1β and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1β via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nicole M Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jessica Binder
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lea Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter Duran
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Crina Peterson
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amber Zimmerman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Stephen D Jett
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Eileen Bigio
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Michael T Heneka
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn 53127, Germany
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
9
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
10
|
Terada T, Therriault J, Kang MSP, Savard M, Pascoal TA, Lussier F, Tissot C, Wang YT, Benedet A, Matsudaira T, Bunai T, Obi T, Tsukada H, Ouchi Y, Rosa-Neto P. Mitochondrial complex I abnormalities is associated with tau and clinical symptoms in mild Alzheimer's disease. Mol Neurodegener 2021; 16:28. [PMID: 33902654 PMCID: PMC8074456 DOI: 10.1186/s13024-021-00448-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial electron transport chain abnormalities have been reported in postmortem pathological specimens of Alzheimer’s disease (AD). However, it remains unclear how amyloid and tau are associated with mitochondrial dysfunction in vivo. The purpose of this study is to assess the local relationships between mitochondrial dysfunction and AD pathophysiology in mild AD using the novel mitochondrial complex I PET imaging agent [18F]BCPP-EF. Methods Thirty-two amyloid and tau positive mild stage AD dementia patients (mean age ± SD: 71.1 ± 8.3 years) underwent a series of PET measurements with [18F]BCPP-EF mitochondrial function, [11C]PBB3 for tau deposition, and [11C] PiB for amyloid deposition. Age-matched normal control subjects were also recruited. Inter and intrasubject comparisons of levels of mitochondrial complex I activity, amyloid and tau deposition were performed. Results The [18F]BCPP-EF uptake was significantly lower in the medial temporal area, highlighting the importance of the mitochondrial involvement in AD pathology. [11C]PBB3 uptake was greater in the temporo-parietal regions in AD. Region of interest analysis in the Braak stage I-II region showed significant negative correlation between [18F]BCPP-EF SUVR and [11C]PBB3 BPND (R = 0.2679, p = 0.04), but not [11C] PiB SUVR. Conclusions Our results indicated that mitochondrial complex I is closely associated with tau load evaluated by [11C]PBB3, which might suffer in the presence of its off-target binding. The absence of association between mitochondrial complex I dysfunction with amyloid load suggests that mitochondrial dysfunction in the trans-entorhinal and entorhinal region is a reflection of neuronal injury occurring in the brain of mild AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00448-1.
Collapse
Affiliation(s)
- Tatsuhiro Terada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada.,Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.,Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Min Su Peter Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Tharick Ali Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Andrea Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada
| | - Takashi Matsudaira
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.,Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tomokazu Obi
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-0041, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan. .,Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-0041, Japan.
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, 6875 Boulevard LaSalle, Montreal, H4H 1R3, Canada.
| |
Collapse
|
11
|
Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation 2021; 18:76. [PMID: 33740987 PMCID: PMC7980620 DOI: 10.1186/s12974-021-02122-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background The translocator protein (TSPO) has been identified as a positron emission tomography (PET)-visible biomarker of inflammation and promising immunotherapeutic target for the treatment of Alzheimer’s disease (AD). While TSPO ligands have been shown to reduce the accumulation of the toxic Alzheimer’s beta-amyloid peptide, their effect on tau pathology has not yet been investigated. To address this, we analyzed the effects of TSPO ligand, Ro5-4864, on the progression of neuropathology in rTg4510 tau transgenic mice (TauTg). Methods Brain atrophy, tau accumulation, and neuroinflammation were assessed longitudinally using volumetric magnetic resonance imaging, tau-PET, and TSPO-PET, respectively. In vivo neuroimaging results were confirmed by immunohistochemistry for markers of neuronal survival (NeuN), tauopathy (AT8), and inflammation (TSPO, ionized calcium-binding adaptor molecule 1 or IBA-1, and complement component 1q or C1q) in brain sections from scanned mice. Results TSPO ligand treatment attenuated brain atrophy and hippocampal neuronal loss in the absence of any detected effect on tau depositions. Atrophy and neuronal loss were strongly associated with in vivo inflammatory signals measured by TSPO-PET, IBA-1, and levels of C1q, a regulator of the complement cascade. In vitro studies confirmed that the TSPO ligand Ro5-4864 reduces C1q expression in a microglial cell line in response to inflammation, reduction of which has been shown in previous studies to protect synapses and neurons in models of tauopathy. Conclusions These findings support a protective role for TSPO ligands in tauopathy, reducing neuroinflammation, neurodegeneration, and brain atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02122-1.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Naruhiko Sahara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Bin Ji
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Tetsuya Suhara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore. .,National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan.
| |
Collapse
|
12
|
Fairley LH, Wong JH, Barron AM. Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Front Immunol 2021; 12:624538. [PMID: 33717134 PMCID: PMC7947196 DOI: 10.3389/fimmu.2021.624538] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-associated terminal neurodegenerative disease with no effective treatments. Dysfunction of innate immunity is implicated in the pathogenesis of AD, with genetic studies supporting a causative role in the disease. Microglia, the effector cells of innate immunity in the brain, are highly plastic and perform a diverse range of specialist functions in AD, including phagocytosing and removing toxic aggregates of beta amyloid and tau that drive neurodegeneration. These immune functions require high energy demand, which is regulated by mitochondria. Reflecting this, microglia have been shown to be highly metabolically flexible, reprogramming their mitochondrial function upon inflammatory activation to meet their energy demands. However, AD-associated genetic risk factors and pathology impair microglial metabolic programming, and metabolic derailment has been shown to cause innate immune dysfunction in AD. These findings suggest that immunity and metabolic function are intricately linked processes, and targeting microglial metabolism offers a window of opportunity for therapeutic treatment of AD. Here, we review evidence for the role of metabolic programming in inflammatory functions in AD, and discuss mitochondrial-targeted immunotherapeutics for treatment of the disease.
Collapse
Affiliation(s)
- Lauren H Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|