1
|
Daini E, Vandini E, Bodria M, Liao W, Baraldi C, Secco V, Ottani A, Zoli M, Giuliani D, Vilella A. Melanocortin receptor agonist NDP-α-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front Immunol 2023; 13:1082036. [PMID: 36703981 PMCID: PMC9871936 DOI: 10.3389/fimmu.2022.1082036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most frequent cause of dementia and still lacks effective therapy. Clinical signs of AD include low levels of endogenous melanocortins (MCs) and previous studies have shown that treatment with MC analogs induces neuroprotection in the early stages of AD. Methods We investigated the neuroprotective role of MCs in two transgenic mouse models of severe AD using 5 and 7 month-old (mo) 5XFAD mice and 9 and 12 mo 3xTg mice. These mice were subjected to a chronic stimulation of MC receptors (MCRs) with MC analogue Nle4-D-Phe7-α-melanocyte stimulating hormone (NDP-α-MSH, 340 μg/kg, i.p.). Mouse behavior and ex-vivo histological and biochemical analyses were performed after 50 days of treatment. Results Our analysis demonstrated an improvement in cognitive abilities of AD mice at late stage of AD progression. We also showed that these protective effects are associated with decreased levels of hyperphosphorylated Tau but not with Aβ burden, that was unaffected in the hippocampus and in the cortex of AD mice. In addition, an age-dependent NDP effect on glial reactivity was observed only in 3xTg mice whereas a global downregulation of p38 mitogen-activated protein kinase was selectively observed in 7 mo 5XFAD and 14 mo 3xTg mice. Conclusion Our results suggest that MCR stimulation by NDP-α-MSH could represent a promising therapeutic strategy in managing cognitive decline also at late stage of AD, whereas the effects on neuroinflammation may be restricted to specific stages of AD progression.
Collapse
Affiliation(s)
- Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Wenjie Liao
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Ottani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy,*Correspondence: Antonietta Vilella,
| |
Collapse
|
2
|
Wang Q, Duan L, Li X, Wang Y, Guo W, Guan F, Ma S. Glucose Metabolism, Neural Cell Senescence and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23084351. [PMID: 35457168 PMCID: PMC9030802 DOI: 10.3390/ijms23084351] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), an elderly neurodegenerative disorder with a high incidence and progressive memory decline, is one of the most expensive, lethal, and burdening diseases. To date, the pathogenesis of AD has not been fully illustrated. Emerging studies have revealed that cellular senescence and abnormal glucose metabolism in the brain are the early hallmarks of AD. Moreover, cellular senescence and glucose metabolism disturbance in the brain of AD patients may precede amyloid-β deposition or Tau protein phosphorylation. Thus, metabolic reprogramming targeting senescent microglia and astrocytes may be a novel strategy for AD intervention and treatment. Here, we recapitulate the relationships between neural cell senescence and abnormal glucose metabolism (e.g., insulin signaling, glucose and lactate metabolism) in AD. We then discuss the potential perspective of metabolic reprogramming towards an AD intervention, providing a theoretical basis for the further exploration of the pathogenesis of and therapeutic approach toward AD.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Yifu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|