1
|
Panela RA, Copelli F, Herrmann B. Reliability and generalizability of neural speech tracking in younger and older adults. Neurobiol Aging 2024; 134:165-180. [PMID: 38103477 DOI: 10.1016/j.neurobiolaging.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Neural tracking of spoken speech is considered a potential clinical biomarker for speech-processing difficulties, but the reliability of neural speech tracking is unclear. Here, younger and older adults listened to stories in two sessions while electroencephalography was recorded to investigate the reliability and generalizability of neural speech tracking. Speech tracking amplitude was larger for older than younger adults, consistent with an age-related loss of inhibition. The reliability of neural speech tracking was moderate (ICC ∼0.5-0.75) and tended to be higher for older adults. However, reliability was lower for speech tracking than for neural responses to noise bursts (ICC >0.8), which we used as a benchmark for maximum reliability. Neural speech tracking generalized moderately across different stories (ICC ∼0.5-0.6), which appeared greatest for audiobook-like stories spoken by the same person. Hence, a variety of stories could possibly be used for clinical assessments. Overall, the current data are important for developing a biomarker of speech processing but suggest that further work is needed to increase the reliability to meet clinical standards.
Collapse
Affiliation(s)
- Ryan A Panela
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Francesca Copelli
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada.
| |
Collapse
|
2
|
Bianco R, Hall ET, Pearce MT, Chait M. Implicit auditory memory in older listeners: From encoding to 6-month retention. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100115. [PMID: 38020808 PMCID: PMC10663129 DOI: 10.1016/j.crneur.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Any listening task, from sound recognition to sound-based communication, rests on auditory memory which is known to decline in healthy ageing. However, how this decline maps onto multiple components and stages of auditory memory remains poorly characterised. In an online unsupervised longitudinal study, we tested ageing effects on implicit auditory memory for rapid tone patterns. The test required participants (younger, aged 20-30, and older adults aged 60-70) to quickly respond to rapid regularly repeating patterns emerging from random sequences. Patterns were novel in most trials (REGn), but unbeknownst to the participants, a few distinct patterns reoccurred identically throughout the sessions (REGr). After correcting for processing speed, the response times (RT) to REGn should reflect the information held in echoic and short-term memory before detecting the pattern; long-term memory formation and retention should be reflected by the RT advantage (RTA) to REGr vs REGn which is expected to grow with exposure. Older participants were slower than younger adults in detecting REGn and exhibited a smaller RTA to REGr. Computational simulations using a model of auditory sequence memory indicated that these effects reflect age-related limitations both in early and long-term memory stages. In contrast to ageing-related accelerated forgetting of verbal material, here older adults maintained stable memory traces for REGr patterns up to 6 months after the first exposure. The results demonstrate that ageing is associated with reduced short-term memory and long-term memory formation for tone patterns, but not with forgetting, even over surprisingly long timescales.
Collapse
Affiliation(s)
- Roberta Bianco
- Ear Institute, University College London, WC1X 8EE, London, United Kingdom
- Neuroscience of Perception and Action Laboratory, Italian Institute of Technology, 00161, Rome, Italy
| | - Edward T.R. Hall
- School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, London, United Kingdom
| | - Marcus T. Pearce
- School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, London, United Kingdom
- Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Maria Chait
- Ear Institute, University College London, WC1X 8EE, London, United Kingdom
| |
Collapse
|
3
|
Kang H, Auksztulewicz R, Chan CH, Cappotto D, Rajendran VG, Schnupp JWH. Cross-modal implicit learning of random time patterns. Hear Res 2023; 438:108857. [PMID: 37639922 DOI: 10.1016/j.heares.2023.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Perception is sensitive to statistical regularities in the environment, including temporal characteristics of sensory inputs. Interestingly, implicit learning of temporal patterns in one modality can also improve their processing in another modality. However, it is unclear how cross-modal learning transfer affects neural responses to sensory stimuli. Here, we recorded neural activity of human volunteers using electroencephalography (EEG), while participants were exposed to brief sequences of randomly timed auditory or visual pulses. Some trials consisted of a repetition of the temporal pattern within the sequence, and subjects were tasked with detecting these trials. Unknown to the participants, some trials reappeared throughout the experiment across both modalities (Transfer) or only within a modality (Control), enabling implicit learning in one modality and its transfer. Using a novel method of analysis of single-trial EEG responses, we showed that learning temporal structures within and across modalities is reflected in neural learning curves. These putative neural correlates of learning transfer were similar both when temporal information learned in audition was transferred to visual stimuli and vice versa. The modality-specific mechanisms for learning of temporal information and general mechanisms which mediate learning transfer across modalities had distinct physiological signatures: temporal learning within modalities relied on modality-specific brain regions while learning transfer affected beta-band activity in frontal regions.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryszard Auksztulewicz
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Center for Cognitive Neuroscience Berlin, Free University Berlin, Berlin, Germany
| | - Chi Hong Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R
| | - Drew Cappotto
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; UCL Ear Institute, University College London, London, United Kingdom
| | - Vani G Rajendran
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R; Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, NM
| | - Jan W H Schnupp
- Department of Neuroscience, City University of Hong Kong, Hong Kong S.A.R.
| |
Collapse
|
4
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
5
|
Herrmann B, Maess B, Henry MJ, Obleser J, Johnsrude IS. Neural signatures of task-related fluctuations in auditory attention and age-related changes. Neuroimage 2023; 268:119883. [PMID: 36657693 DOI: 10.1016/j.neuroimage.2023.119883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Listening in everyday life requires attention to be deployed dynamically - when listening is expected to be difficult and when relevant information is expected to occur - to conserve mental resources. Conserving mental resources may be particularly important for older adults who often experience difficulties understanding speech. In the current study, we use electro- and magnetoencephalography to investigate the neural and behavioral mechanics of attention regulation during listening and the effects that aging has on these. We first show in younger adults (17-31 years) that neural alpha oscillatory activity indicates when in time attention is deployed (Experiment 1) and that deployment depends on listening difficulty (Experiment 2). Experiment 3 investigated age-related changes in auditory attention regulation. Middle-aged and older adults (54-72 years) show successful attention regulation but appear to utilize timing information differently compared to younger adults (20-33 years). We show a notable age-group dissociation in recruited brain regions. In younger adults, superior parietal cortex underlies alpha power during attention regulation, whereas, in middle-aged and older adults, alpha power emerges from more ventro-lateral areas (posterior temporal cortex). This difference in the sources of alpha activity between age groups only occurred during task performance and was absent during rest (Experiment S1). In sum, our study suggests that middle-aged and older adults employ different neural control strategies compared to younger adults to regulate attention in time under listening challenges.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Burkhard Maess
- Brain Networks Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Molly J Henry
- Max Planck Research Group "Neural and Environmental Rhythms", Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Ingrid S Johnsrude
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Chen YP, Schmidt F, Keitel A, Rösch S, Hauswald A, Weisz N. Speech intelligibility changes the temporal evolution of neural speech tracking. Neuroimage 2023; 268:119894. [PMID: 36693596 DOI: 10.1016/j.neuroimage.2023.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Listening to speech with poor signal quality is challenging. Neural speech tracking of degraded speech has been used to advance the understanding of how brain processes and speech intelligibility are interrelated. However, the temporal dynamics of neural speech tracking and their relation to speech intelligibility are not clear. In the present MEG study, we exploited temporal response functions (TRFs), which has been used to describe the time course of speech tracking on a gradient from intelligible to unintelligible degraded speech. In addition, we used inter-related facets of neural speech tracking (e.g., speech envelope reconstruction, speech-brain coherence, and components of broadband coherence spectra) to endorse our findings in TRFs. Our TRF analysis yielded marked temporally differential effects of vocoding: ∼50-110 ms (M50TRF), ∼175-230 ms (M200TRF), and ∼315-380 ms (M350TRF). Reduction of intelligibility went along with large increases of early peak responses M50TRF, but strongly reduced responses in M200TRF. In the late responses M350TRF, the maximum response occurred for degraded speech that was still comprehensible then declined with reduced intelligibility. Furthermore, we related the TRF components to our other neural "tracking" measures and found that M50TRF and M200TRF play a differential role in the shifting center frequency of the broadband coherence spectra. Overall, our study highlights the importance of time-resolved computation of neural speech tracking and decomposition of coherence spectra and provides a better understanding of degraded speech processing.
Collapse
Affiliation(s)
- Ya-Ping Chen
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria; Department of Psychology, University of Salzburg, 5020 Salzburg, Austria.
| | - Fabian Schmidt
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria; Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Anne Keitel
- Psychology, School of Social Sciences, University of Dundee, DD1 4HN Dundee, UK
| | - Sebastian Rösch
- Department of Otorhinolaryngology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anne Hauswald
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria; Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria; Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
7
|
Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hear Res 2023; 428:108677. [PMID: 36580732 DOI: 10.1016/j.heares.2022.108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21-33 years) and older adults (53-73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, North York, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Unit, Leipzig 04103, Germany
| | - Ingrid S Johnsrude
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Bianco R, Chait M. No Link Between Speech-in-Noise Perception and Auditory Sensory Memory - Evidence From a Large Cohort of Older and Younger Listeners. Trends Hear 2023; 27:23312165231190688. [PMID: 37828868 PMCID: PMC10576936 DOI: 10.1177/23312165231190688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 10/14/2023] Open
Abstract
A growing literature is demonstrating a link between working memory (WM) and speech-in-noise (SiN) perception. However, the nature of this correlation and which components of WM might underlie it, are being debated. We investigated how SiN reception links with auditory sensory memory (aSM) - the low-level processes that support the short-term maintenance of temporally unfolding sounds. A large sample of old (N = 199, 60-79 yo) and young (N = 149, 20-35 yo) participants was recruited online and performed a coordinate response measure-based speech-in-babble task that taps listeners' ability to track a speech target in background noise. We used two tasks to investigate implicit and explicit aSM. Both were based on tone patterns overlapping in processing time scales with speech (presentation rate of tones 20 Hz; of patterns 2 Hz). We hypothesised that a link between SiN and aSM may be particularly apparent in older listeners due to age-related reduction in both SiN reception and aSM. We confirmed impaired SiN reception in the older cohort and demonstrated reduced aSM performance in those listeners. However, SiN and aSM did not share variability. Across the two age groups, SiN performance was predicted by a binaural processing test and age. The results suggest that previously observed links between WM and SiN may relate to the executive components and other cognitive demands of the used tasks. This finding helps to constrain the search for the perceptual and cognitive factors that explain individual variability in SiN performance.
Collapse
Affiliation(s)
- Roberta Bianco
- Ear Institute, University College London, London, UK
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Maria Chait
- Ear Institute, University College London, London, UK
| |
Collapse
|