1
|
Wu GR, Baeken C. Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety. Transl Psychiatry 2024; 14:459. [PMID: 39488540 PMCID: PMC11531544 DOI: 10.1038/s41398-024-03171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
2
|
Falgàs N, Peña‐González M, Val‐Guardiola A, Pérez‐Millan A, Guillén N, Sarto J, Esteller D, Bosch B, Fernández‐Villullas G, Tort‐Merino A, Mayà G, Augé JM, Iranzo A, Balasa M, Lladó A, Morales‐Ruiz M, Bargalló N, Muñoz‐Moreno E, Grinberg LT, Sánchez‐Valle R. Locus coeruleus integrity and neuropsychiatric symptoms in a cohort of early- and late-onset Alzheimer's disease. Alzheimers Dement 2024; 20:6351-6364. [PMID: 39051173 PMCID: PMC11497680 DOI: 10.1002/alz.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Early-onset Alzheimer's disease (EOAD) shows a higher burden of neuropsychiatric symptoms than late-onset Alzheimer's disease (LOAD). We aim to determine the differences in the severity of neuropsychiatric symptoms and locus coeruleus (LC) integrity between EOAD and LOAD accounting for disease stage. METHODS One hundred four subjects with AD diagnosis and 32 healthy controls were included. Participants underwent magnetic resonance imaging (MRI) to measure LC integrity, measures of noradrenaline levels in cerebrospinal fluid (CSF) and Neuropsychiatric Inventory (NPI). We analyzed LC-noradrenaline measurements and clinical and Alzheimer's disease (AD) biomarker associations. RESULTS EOAD showed higher NPI scores, lower LC integrity, and similar levels of CSF noradrenaline compared to LOAD. Notably, EOAD exhibited lower LC integrity independently of disease stage. LC integrity negatively correlated with neuropsychiatric symptoms. Noradrenaline levels were increased in AD correlating with AD biomarkers. DISCUSSION Decreased LC integrity negatively contributes to neuropsychiatric symptoms. The higher LC degeneration in EOAD compared to LOAD could explain the more severe neuropsychiatric symptoms in EOAD. HIGHLIGHTS LC degeneration is greater in early-onset AD (EOAD) compared to late-onset AD. Tau-derived LC degeneration drives a higher severity of neuropsychiatric symptoms. EOAD harbors a more profound selective vulnerability of the LC system. LC degeneration is associated with an increase of cerebrospinal fluid noradrenaline levels in AD.
Collapse
Affiliation(s)
- Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marta Peña‐González
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Andrea Val‐Guardiola
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Agnès Pérez‐Millan
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Diana Esteller
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Guadalupe Fernández‐Villullas
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Adrià Tort‐Merino
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Gerard Mayà
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Josep Maria Augé
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Alex Iranzo
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Manuel Morales‐Ruiz
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Núria Bargalló
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Emma Muñoz‐Moreno
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Lea T. Grinberg
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyMemory & Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| |
Collapse
|
3
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Bennett IJ, Langley J, Sun A, Solis K, Seitz AR, Hu XP. Locus coeruleus contrast and diffusivity metrics differentially relate to age and memory performance. Sci Rep 2024; 14:15372. [PMID: 38965363 PMCID: PMC11224383 DOI: 10.1038/s41598-024-66238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Neurocognitive aging researchers are increasingly focused on the locus coeruleus, a neuromodulatory brainstem structure that degrades with age. With this rapid growth, the field will benefit from consensus regarding which magnetic resonance imaging (MRI) metrics of locus coeruleus structure are most sensitive to age and cognition. To address this need, the current study acquired magnetization transfer- and diffusion-weighted MRI images in younger and older adults who also completed a free recall memory task. Results revealed significantly larger differences between younger and older adults for maximum than average magnetization transfer-weighted contrast (MTC), axial than mean or radial single-tensor diffusivity (DTI), and free than restricted multi-compartment diffusion (NODDI) metrics in the locus coeruleus; with maximum MTC being the best predictor of age group. Age effects for all imaging modalities interacted with sex, with larger age group differences in males than females for MTC and NODDI metrics. Age group differences also varied across locus coeruleus subdivision for DTI and NODDI metrics, and across locus coeruleus hemispheres for MTC. Within older adults, however, there were no significant effects of age on MTC or DTI metrics, only an interaction between age and sex for free diffusion. Finally, independent of age and sex, higher restricted diffusion in the locus coeruleus was significantly related to better (lower) recall variability, but not mean recall. Whereas MTC has been widely used in the literature, our comparison between the average and maximum MTC metrics, inclusion of DTI and NODDI metrics, and breakdowns by locus coeruleus subdivision and hemisphere make important and novel contributions to our understanding of the aging of locus coeruleus structure.
Collapse
Affiliation(s)
- Ilana J Bennett
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA.
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Andrew Sun
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Kitzia Solis
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
| | - Aaron R Seitz
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
5
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Plini ERG, Melnychuk MC, Harkin A, Dahl MJ, McAuslan M, Kühn S, Boyle RT, Whelan R, Andrews R, Düzel S, Drewelies J, Wagner GG, Lindenberger U, Norman K, Robertson IH, Dockree PM. Dietary Tyrosine Intake (FFQ) Is Associated with Locus Coeruleus, Attention and Grey Matter Maintenance: An MRI Structural Study on 398 Healthy Individuals of the Berlin Aging Study-II. J Nutr Health Aging 2023; 27:1174-1187. [PMID: 38151868 DOI: 10.1007/s12603-023-2005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE It is documented that low protein and amino-acid dietary intake is related to poorer cognitive health and increased risk of dementia. Degradation of the neuromodulatory pathways, (comprising the cholinergic, dopaminergic, serotoninergic and noradrenergic systems) is observed in neurodegenerative diseases and impairs the proper biosynthesis of key neuromodulators from micro-nutrients and amino acids. How these micro-nutrients are linked to neuromodulatory pathways in healthy adults is less studied. The Locus Coeruleus-Noradrenergic System (LC-NA) is the earliest subcortical structure affected in Alzheimer's disease, showing marked neurodegeneration, but is also sensitive for age-related changes. The LC-NA system is critical for supporting attention and cognitive control, functions that are enhanced both by tyrosine administration and chronic tyrosine intake. The purpose of this study was to 1) investigate whether the dietary intake of tyrosine, the key precursor for noradrenaline (NA), is related to LC signal intensity 2) whether LC mediates the reported association between tyrosine intake and higher cognitive performance (measured with Trail Making Test - TMT), and 3) whether LC signal intensity relates to an objective measure of brain maintenance (BrainPAD). METHODS The analyses included 398 3T MRIs of healthy participants from the Berlin Aging Study II to investigate the relationship between LC signal intensity and habitual dietary tyrosine intake-daily average (HD-Tyr-IDA - measured with Food Frequency Questionnaire - FFQ). As a control procedure, the same analyses were repeated on other main seeds of the neuromodulators' subcortical system (Dorsal and Medial Raphe, Ventral Tegmental Area and Nucleus Basalis of Meynert). In the same way, the relationships between the five nuclei and BrainPAD were tested. RESULTS Results show that HD-Tyr-IDA is positively associated with LC signal intensity. Similarly, LC disproportionally relates to better brain maintenance (BrainPAD). Mediation analyses reveal that only LC, relative to the other nuclei tested, mediates the relationship between HD-Tyr-IDA I and performance in the TMT and between HD-Tyr-IDA and BrainPAD. CONCLUSIONS These findings provide the first evidence linking tyrosine intake with LC-NA system signal intensity and its correlation with neuropsychological performance. This study strengthens the role of diet for maintaining brain and cognitive health and supports the noradrenergic theory of cognitive reserve. Within this framework, adequate tyrosine intake might increase the resilience of LC-NA system functioning, by preventing degeneration and supporting noradrenergic metabolism required for LC function and neuropsychological performance.
Collapse
Affiliation(s)
- E R G Plini
- Emanuele RG Plini, Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|