1
|
Yang M, Liu Y, Yue Z, Yang G, Jiang X, Cai Y, Zhang Y, Yang X, Li D, Chen L. Transcranial photobiomodulation on the left inferior frontal gyrus enhances Mandarin Chinese L1 and L2 complex sentence processing performances. BRAIN AND LANGUAGE 2024; 256:105458. [PMID: 39197357 DOI: 10.1016/j.bandl.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the causal enhancing effect of transcranial photobiomodulation (tPBM) over the left inferior frontal gyrus (LIFG) on syntactically complex Mandarin Chinese first language (L1) and second language (L2) sentence processing performances. Two (L1 and L2) groups of participants (thirty per group) were recruited to receive the double-blind, sham-controlled tPBM intervention via LIFG, followed by the sentence processing, the verbal working memory (WM), and the visual WM tasks. Results revealed a consistent pattern for both groups: (a) tPBM enhanced sentence processing performance but not verbal WM for linear processing of unstructured sequences and visual WM performances; (b) Participants with lower sentence processing performances under sham tPBM benefited more from active tPBM. Taken together, the current study substantiated that tPBM enhanced L1 and L2 sentence processing, and would serve as a promising and cost-effective noninvasive brain stimulation (NIBS) tool for future applications on upregulating the human language faculty.
Collapse
Affiliation(s)
- Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Zhaoqian Yue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guang Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Xu Jiang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yuqi Zhang
- School of Chinese as a Second Language, Peking University, Beijing 100871, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Educational System Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Obrig H, Regenbrecht F, Pino D, Krause CD. Verbal short term memory contribution to sentence comprehension decreases with increasing syntactic complexity in people with aphasia. Neuroimage 2024; 297:120730. [PMID: 39009249 DOI: 10.1016/j.neuroimage.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Sentence comprehension requires the integration of linguistic units presented in a temporal sequence based on a non-linear underlying syntactic structure. While it is uncontroversial that storage is mandatory for this process, there are opposing views regarding the relevance of general short-term-/working-memory capacities (STM/WM) versus language specific resources. Here we report results from 43 participants with an acquired brain lesion in the extended left hemispheric language network and resulting language deficits, who performed a sentence-to-picture matching task and an experimental task assessing phonological short-term memory. The sentence task systematically varied syntactic complexity (embedding depth and argument order) while lengths, number of propositions and plausibility were kept constant. Clinical data including digit-/ block-spans and lesion size and site were additionally used in the analyses. Correlational analyses confirm that performance on STM/WM-tasks (experimental task and digit-span) are the only two relevant predictors for correct sentence-picture-matching, while reaction times only depended on age and lesion size. Notably increasing syntactic complexity reduced the correlational strength speaking for the additional recruitment of language specific resources independent of more general verbal STM/WM capacities, when resolving complex syntactic structure. The complementary lesion-behaviour analysis yielded different lesion volumes correlating with either the sentence-task or the STM-task. Factoring out STM measures lesions in the anterior temporal lobe correlated with a larger decrease in accuracy with increasing syntactic complexity. We conclude that overall sentence comprehension depends on STM/WM capacity, while increases in syntactic complexity tax another independent cognitive resource.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Frank Regenbrecht
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany(#)
| |
Collapse
|
3
|
Park H, Baik J, Park HJ. Involvement of the anterior insula and frontal operculum during wh-question comprehension of wh-in-situ Korean language. PLoS One 2024; 19:e0298740. [PMID: 38669282 PMCID: PMC11051625 DOI: 10.1371/journal.pone.0298740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
In this research, we employed functional magnetic resonance imaging (fMRI) to examine the neurological basis for understanding wh-questions in wh-in-situ languages such as Korean, where wh-elements maintain their original positions instead of moving explicitly within the sentence. Our hypothesis centered on the role of the salience and attention network in comprehending wh-questions in wh-in-situ languages, such as the discernment of wh-elements, the demarcation between interrogative types, and the allocation of cognitive resources towards essential constituents vis-à-vis subordinate elements in order to capture the speaker's communicative intent. We explored subject and object wh-questions and scrambled wh-questions, contrasting them with yes/no questions in Korean. Increased activation was observed in the left anterior insula and bilateral frontal operculum, irrespective of the wh-position or scrambling of wh-element. These results suggest the interaction between the salience and attentional system and the syntactic linguistic system, particularly the left anterior insula and bilateral frontal operculum, in comprehending wh-questions in wh-in-situ languages.
Collapse
Affiliation(s)
- Haeil Park
- Department of English Language and Literature, Kyung Hee University, Seoul, Republic of Korea
| | - Jiseon Baik
- Department of English Language and Literature, Kyung Hee University, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Agmon G, Pradhan S, Ash S, Nevler N, Liberman M, Grossman M, Cho S. Automated Measures of Syntactic Complexity in Natural Speech Production: Older and Younger Adults as a Case Study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:545-561. [PMID: 38215342 DOI: 10.1044/2023_jslhr-23-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
PURPOSE Multiple methods have been suggested for quantifying syntactic complexity in speech. We compared eight automated syntactic complexity metrics to determine which best captured verified syntactic differences between old and young adults. METHOD We used natural speech samples produced in a picture description task by younger (n = 76, ages 18-22 years) and older (n = 36, ages 53-89 years) healthy participants, manually transcribed and segmented into sentences. We manually verified that older participants produced fewer complex structures. We developed a metric of syntactic complexity using automatically extracted syntactic structures as features in a multidimensional metric. We compared our metric to seven other metrics: Yngve score, Frazier score, Frazier-Roark score, developmental level, syntactic frequency, mean dependency distance, and sentence length. We examined the success of each metric in identifying the age group using logistic regression models. We repeated the analysis with automatic transcription and segmentation using an automatic speech recognition (ASR) system. RESULTS Our multidimensional metric was successful in predicting age group (area under the curve [AUC] = 0.87), and it performed better than the other metrics. High AUCs were also achieved by the Yngve score (0.84) and sentence length (0.84). However, in a fully automated pipeline with ASR, the performance of these two metrics dropped (to 0.73 and 0.46, respectively), while the performance of the multidimensional metric remained relatively high (0.81). CONCLUSIONS Syntactic complexity in spontaneous speech can be quantified by directly assessing syntactic structures and considering them in a multivariable manner. It can be derived automatically, saving considerable time and effort compared to manually analyzing large-scale corpora, while maintaining high face validity and robustness. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24964179.
Collapse
Affiliation(s)
- Galit Agmon
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sameer Pradhan
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| | - Sharon Ash
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Naomi Nevler
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mark Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia
| |
Collapse
|
5
|
Kulik V, Reyes LD, Sherwood CC. Coevolution of language and tools in the human brain: An ALE meta-analysis of neural activation during syntactic processing and tool use. PROGRESS IN BRAIN RESEARCH 2023; 275:93-115. [PMID: 36841572 DOI: 10.1016/bs.pbr.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Language and complex tool use are often cited as behaviors unique to humans and may be evolutionarily linked owing to the underlying cognitive processes they have in common. We executed a quantitative activation likelihood estimation (ALE) meta-analysis (GingerALE 2.3) on published, whole-brain neuroimaging studies to identify areas associated with syntactic processing and/or tool use in humans. Significant clusters related to syntactic processing were identified in areas known to be related to language production and comprehension, including bilateral Broca's area in the inferior frontal gyrus. Tool use activation clusters were all in the left hemisphere and included the primary motor cortex and premotor cortex, in addition to other areas involved with sensorimotor transformation. Activation shared by syntactic processing and tool use was only significant at one cluster, located in the pars opercularis of the left inferior frontal gyrus. This minimal overlap between syntactic processing and tool use activation from our meta-analysis of neuroimaging studies indicates that there is not a widespread common neural network between the two. Broca's area may serve as an important hub that was initially recruited in early human evolution in the context of simple tool use, but was eventually co-opted for linguistic purposes, including the sequential and hierarchical ordering processes that characterize syntax. In the future, meta-analyses of additional components of language may allow for a more comprehensive examination of the functional networks that underlie the coevolution of human language and complex tool use.
Collapse
Affiliation(s)
- Veronika Kulik
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
6
|
Krause CD, Fengler A, Pino D, Sehm B, Friederici AD, Obrig H. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study. Neuropsychologia 2023; 180:108465. [PMID: 36586718 DOI: 10.1016/j.neuropsychologia.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Syntactic competence relies on a left-lateralized network converging on hubs in inferior-frontal and posterior-temporal cortices. We address the question whether anodal transcranial direct current stimulation (a-tDCS) over these hubs can modulate comprehension of sentences, whose syntactic complexity systematically varied along the factors embedding depths and canonicity. Semantic content and length of the sentences were kept identical and forced choice picture matching was required after the full sentence had been presented. METHODS We used a single-blind, within-subject, sham-controlled design, applying a-tDCS targeting left posterior tempo-parietal (TP) and left inferior frontal cortex (FC). Stimulation sites were determined by individual neuro-navigation. 20 participants were included of whom 19 entered the analysis. Results were analysed using (generalized) mixed models. In a pilot-experiment in another group of 20 participants we validated the manipulation of syntactic complexity by the two factors embedding depth and argument-order. RESULTS Reaction times increased and accuracy decreased with higher embedding depth and non-canonical argument order in both experiments. Notably a-tDCS over TP enhanced sentence-to-picture matching, while FC-stimulation showed no consistent effect. Moreover, the analysis disclosed a session effect, indicating improvements of task performance especially regarding speed. CONCLUSIONS We conclude that the posterior 'hub' of the neuronal network affording syntactic analysis represents a 'bottleneck', likely due to working-memory capacity and the challenges of mapping semantic to syntactic information allowing for role assignment. While this does not challenge the role of left inferior-frontal cortex for syntax processing and novel-grammar learning, the application of highly established syntactic rules during sentence comprehension may be considered optimized, thus not augmentable by a-tDCS in the uncompromised network. SIGNIFICANCE STATEMENT Anodal transcranial direct current stimulation (a-tDCS) over left temporo-parietal cortex enhances comprehension of complex sentences in uncompromised young speakers. Since a-tDCS over left frontal cortex did not elicit any change, the 'bottleneck' for the understanding of complex sentences seems to be the posterior, temporo-parietal rather than the anterior inferior-frontal 'hub' of language processing. Regarding the attested role of inferior-frontal cortex in syntax processing, we suggest that its function is optimized in competent young speakers, preventing further enhancement by (facilitatory) tDCS. Results shed light on the functional anatomy of syntax processing during sentence comprehension; moreover, they open perspectives for research in the lesioned language network of people with syntactic deficits due to aphasia.
Collapse
Affiliation(s)
- Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Anja Fengler
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, Department of Special and Inclusive Education, Speech and Language Pedagogy and Pathology, 06110 Halle, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Neurology, University Medicine Halle, 06120, Halle (Saale), Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Barattieri di San Pietro C, Barbieri E, Marelli M, de Girolamo G, Luzzatti C. Processing Argument Structure and Syntactic Complexity in People with Schizophrenia Spectrum Disorders. JOURNAL OF COMMUNICATION DISORDERS 2022; 96:106182. [PMID: 35065337 DOI: 10.1016/j.jcomdis.2022.106182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Deficits in language comprehension and production have been repeatedly observed in Schizophrenia Spectrum Disorders (SSD). However, the characterization of the language profile of this population is far from complete, and the relationship between language deficits, impaired thinking and cognitive functions is widely debated. OBJECTIVE The aims of the present study were to assess production and comprehension of verbs with different argument structures, as well as production and comprehension of sentences with canonical and non-canonical word order in people with SSD. In addition, the study investigated the relationship between language deficits and cognitive functions. METHODS Thirty-four participants with a diagnosis of SSD and a group of healthy control participants (HC) were recruited and evaluated using the Italian version of the Northwestern Assessment of Verbs and Sentences (NAVS, Cho-Reyes & Thompson, 2012; Barbieri et al., 2019). RESULTS Results showed that participants with SSD were impaired - compared to HC - on both verb and sentence production, as well as on comprehension of syntactically complex (but not simple) sentences. While verb production was equally affected by verb-argument structure complexity in both SSD and HC, sentence comprehension was disproportionately more affected by syntactic complexity in SSD than in HC. In addition, in the SSD group, verb production deficits were predicted by performance on a measure of visual attention, while sentence production and comprehension deficits were explained by performance on measures of executive functions and working memory, respectively. DISCUSSION Our findings support the hypothesis that language deficits in SSD may be one aspect of a more generalized, multi-domain, cognitive impairment, and are consistent with previous findings pointing to reduced inter- and intra-hemispheric connectivity as a possible substrate for such deficits. The study provides a systematic characterization of lexical and syntactic deficits in SSD and demonstrates that psycholinguistically-based assessment tools may be able to capture language deficits in this population.
Collapse
Affiliation(s)
| | - Elena Barbieri
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Marco Marelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| | - Giovanni de Girolamo
- Psychiatric Epidemiology and Evaluation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Luzzatti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| |
Collapse
|
8
|
Grodzinsky Y, Pieperhoff P, Thompson C. Stable brain loci for the processing of complex syntax: A review of the current neuroimaging evidence. Cortex 2021; 142:252-271. [PMID: 34303116 DOI: 10.1016/j.cortex.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/10/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
We conducted a retrospective review of fMRI studies of complex syntax, in order to study the stability of the neural bases of mechanisms engaged in syntactic processing. Our review set out rigorous selection criteria of studies which we discuss, including transparency and minimality of the contrasts between stimuli, and the presence of whole brain analyses corrected for multiple comparisons. Seventeen studies with 316 participants survived our sieve. We mapped the 65 resulting maxima onto JuBrain, a state-of-the-art cytoarchitectonic brain atlas (Amunts et al., 2020), and a sharp picture emerged: syntactic displacement operations (a k a MOVE) produce highly consistent results, activating left Broca's region across-the-board and unambiguously; to a somewhat lesser extent, maxima clustered in left posterior brain regions, including the STS/STG. The few studies of syntactic tree-building operations (a k a MERGE) produce a murkier picture regarding the involvement of the left IFG. We conclude that the extant data decisively point to the JuBrain-defined Broca's region as the main locus of complex receptive syntax in healthy people; the STS/STG also are involved, but to a lesser extent.
Collapse
Affiliation(s)
- Yosef Grodzinsky
- Neurolinguistics Lab, Edmond & Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Cynthia Thompson
- Aphasia and Neurolinguistics Research Laboratory, Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA; Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
German Language Adaptation of the NAVS (NAVS-G) and of the NAT (NAT-G): Testing Grammar in Aphasia. Brain Sci 2021; 11:brainsci11040474. [PMID: 33918022 PMCID: PMC8069474 DOI: 10.3390/brainsci11040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
Grammar provides the framework for understanding and producing language. In aphasia, an acquired language disorder, grammatical deficits are diversified and widespread. However, the few assessments for testing grammar in the German language do not consider current linguistic, psycholinguistic, and functional imaging data, which have been shown to be crucial for effective treatment. This study developed German language versions of the Northwestern Assessment of Verbs and Sentences (NAVS-G) and the Northwestern Anagram Test (NAT-G) to examine comprehension and production of verbs, controlling for the number and optionality of verb arguments, and sentences with increasing syntactic complexity. The NAVS-G and NAT-G were tested in 27 healthy participants, 15 right hemispheric stroke patients without aphasia, and 15 stroke patients with mild to residual aphasia. Participants without aphasia showed near-perfect performance, with the exception of (object) relative sentences, where accuracy was associated with educational level. In each patient with aphasia, deficits in more than one subtest were observed. The within and between population-groups logistic mixed regression analyses identified significant impairments in processing syntactic complexity at the verb and sentence levels. These findings indicate that the NAVS-G and NAT-G have potential for testing grammatical competence in (German) stroke patients.
Collapse
|
10
|
Sun Z, Shi Y, Guo P, Yang Y, Zhu Z. Independent syntactic representation identified in left front-temporal cortex during Chinese sentence comprehension. BRAIN AND LANGUAGE 2021; 214:104907. [PMID: 33503520 DOI: 10.1016/j.bandl.2021.104907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
It has been well established that syntactic representation is independent of semantic representation in Indo-European languages, but it is unclear whether this is the case in Chinese. The present functional magnetic resonance imaging (fMRI) study adopted a syntactic priming paradigm to investigate the neural basis of Chinese syntactic representation. A passive sentence was preceded by either a passive or an active sentence without repeating a verb or a pattern of agent-patient animacy, thus constructing primed and unprimed sentence pairs based on sentence structure. The fMRI data were collected from 22 native Chinese speakers while they were reading the sentences. Priming-related activation suppression was found in the left temporal pole, left inferior frontal gyrus and left precentral gyrus. The results are the strongest neuroimaging evidence to date that syntactic representation is independent of semantic representation in Chinese, in line with Indo-European languages.
Collapse
Affiliation(s)
- Zhenghui Sun
- School of Linguistics Sciences and Arts, Jiangsu Normal University, Xuzhou, China; School of Liberal Arts, Nanjing Normal University, Nanjing, China
| | - Yajiao Shi
- School of Linguistics Sciences and Arts, Jiangsu Normal University, Xuzhou, China; Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Peng Guo
- School of Linguistics Sciences and Arts, Jiangsu Normal University, Xuzhou, China
| | - Yiming Yang
- School of Linguistics Sciences and Arts, Jiangsu Normal University, Xuzhou, China; Jiangsu Key Laboratory of Language and Cognitive Neuroscience, Xuzhou, China; Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China
| | - Zude Zhu
- School of Linguistics Sciences and Arts, Jiangsu Normal University, Xuzhou, China; Jiangsu Key Laboratory of Language and Cognitive Neuroscience, Xuzhou, China; Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
11
|
Lukic S, Thompson CK, Barbieri E, Chiappetta B, Bonakdarpour B, Kiran S, Rapp B, Parrish TB, Caplan D. Common and distinct neural substrates of sentence production and comprehension. Neuroimage 2021; 224:117374. [PMID: 32949711 PMCID: PMC10134242 DOI: 10.1016/j.neuroimage.2020.117374] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging and lesion-symptom mapping investigations implicate a left frontal-temporal-parietal network for sentence processing. The majority of studies have focused on sentence comprehension, with fewer in the domain of sentence production, which have not fully elucidated overlapping and/or unique brain structures associated with the two domains, particularly for sentences with noncanonical word order. Using voxel-based lesion symptom mapping (VLSM) we examined the relationship between lesions within the left hemisphere language network and both sentence comprehension and production of simple and complex syntactic structures in 76 participants with chronic stroke-induced aphasia. Results revealed shared regions across domains in the anterior and posterior superior temporal gyri (aSTG, pSTG), and the temporal pole (adjusted for verb production/comprehension). Additionally, comprehension was associated with lesions in the anterior and posterior middle temporal gyri (aMTG, pMTG), the MTG temporooccipital regions, SMG/AG, central and parietal operculum, and the insula. Subsequent VLSM analyses (production versus comprehension) revealed critical regions associated with each domain: anterior temporal lesions were associated with production; posterior temporo-parietal lesions were associated with comprehension, implicating important roles for regions within the ventral and dorsal stream processing routes, respectively. Processing of syntactically complex, noncanonical (adjusted for canonical), sentences was associated with damage to the pSTG across domains, with additional damage to the pMTG and IPL associated with impaired sentence comprehension, suggesting that the pSTG is crucial for computing noncanonical sentences across domains and that the pMTG, and IPL are necessary for re-analysis of thematic roles as required for resolution of long-distance dependencies. These findings converge with previous studies and extend our knowledge of the neural mechanisms of sentence comprehension to production, highlighting critical regions associated with both domains, and further address the mechanism engaged for syntactic computation, controlled for the contribution of verb processing.
Collapse
|
12
|
Iwabuchi T, Makuuchi M. When a sentence loses semantics: Selective involvement of a left anterior temporal subregion in semantic processing. Eur J Neurosci 2020; 53:929-942. [PMID: 33103315 DOI: 10.1111/ejn.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
Abstract
Although the left anterior temporal lobe (ATL) has been associated with semantic processing, the role of this region in syntactic structure building of sentences remains a subject of debate. Functional neuroimaging studies contrasting well-formed sentences with word lists lacking syntactic structure have produced mixed results. The current functional magnetic resonance imaging study examined whether the left ATL is selectively involved in semantic processing or also plays a role in syntactic structure building by manipulating syntactic complexity and meaningfulness in a novel way. To deprive semantic/pragmatic information from a sentence, we replaced all content words with pronounceable meaningless placeholders. We conducted an experiment with a 2 × 2 factorial design with factors of SEMANTICS (natural sentences [NAT]; sentences with placeholders [SPH]) and SYNTAX (the basic Japanese Subject-Object-Verb [SOV] word order; a changed Object-Subject-Verb [OSV] word order). A main effect of SEMANTICS (NAT > SPH) was found in the left ATL, as well as in the ventral occipitotemporal regions. The opposite contrast (SPH > NAT) revealed activation in the dorsal regions encompassing Brodmann area 44, the premotor area, and the parietal cortex in the left hemisphere. We found no main effect of SYNTAX (OSV > SOV) in a subregion of the left ATL that was more responsive to natural sentences than meaningless sentences. These results indicate selective involvement of a subregion of the left ATL in semantic/pragmatic processing.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
13
|
Matchin W, Wood E. Syntax-Sensitive Regions of the Posterior Inferior Frontal Gyrus and the Posterior Temporal Lobe Are Differentially Recruited by Production and Perception. Cereb Cortex Commun 2020; 1:tgaa029. [PMID: 34296103 PMCID: PMC8152856 DOI: 10.1093/texcom/tgaa029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Matchin and Hickok (2020) proposed that the left posterior inferior frontal gyrus (PIFG) and the left posterior temporal lobe (PTL) both play a role in syntactic processing, broadly construed, attributing distinct functions to these regions with respect to production and perception. Consistent with this hypothesis, functional dissociations between these regions have been demonstrated with respect to lesion-symptom mapping in aphasia. However, neuroimaging studies of syntactic comprehension typically show similar activations in these regions. In order to identify whether these regions show distinct activation patterns with respect to syntactic perception and production, we performed an fMRI study contrasting the subvocal articulation and perception of structured jabberwocky phrases (syntactic), sequences of real words (lexical), and sequences of pseudowords (phonological). We defined two sets of language-selective regions of interest (ROIs) in individual subjects for the PIFG and the PTL using the contrasts [syntactic > lexical] and [syntactic > phonological]. We found robust significant interactions of comprehension and production between these 2 regions at the syntactic level, for both sets of language-selective ROIs. This suggests a core difference in the function of these regions with respect to production and perception, consistent with the lesion literature.
Collapse
Affiliation(s)
- William Matchin
- Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Wood
- Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Xu K, Wu DH, Duann JR. Dynamic brain connectivity attuned to the complexity of relative clause sentences revealed by a single-trial analysis. Neuroimage 2020; 217:116920. [PMID: 32422404 DOI: 10.1016/j.neuroimage.2020.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022] Open
Abstract
To explore the issue of how the human brain processes sentences with different levels of complexity, we sought to compare the neural substrates underlying the processing of Chinese subject-extracted relative clause (SRC) and object-extracted relative clause (ORC) sentences in a trial-by-trial fashion. Previous neuroimaging studies have demonstrated that the involvement of the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) is critical for the processing of relative clause (RC) sentences. In this study, we employed independent component analysis (ICA) to decompose brain activity into a set of independent components. Then, the independent component maps were spatially normalized using a surface-based approach in order to further spatially correlate and match the equivalent components from individual participants. The selected equivalent components indicated that the LIFG and the LSTG were consistently engaged in sentence processing among the participants. Subsequently, we observed alterations in the functional coupling between the LIFG and the LSTG in response to SRCs and ORCs using a Granger causality analysis. Specifically, comprehending Chinese ORCs with a canonical word order only involved a unidirectional connection from the LIFG to the LSTG for the integration of lexical-syntactic information. On the other hand, comprehending Chinese SRCs required bi-directional connectivity between the LIFG and the LSTG to fulfill increased integration demands in reconstructing the argument hierarchy due to a non-canonical word order. Furthermore, through a single-trial analysis, the strength of the connectivity from the LIFG to the LSTG was found to be significantly correlated with the complexity of the SRC sentences as quantified by eye-tracking measures. These findings indicated that the effective connectivity from the LIFG to the LSTG played an important role in the comprehension of complex sentences and that enhanced strength of this connectivity might reflect increased integration demands and restructuring attempts during sentence processing. Taken together, the results of the present study reveal that interregional interaction in the brain network for sentence processing can be dynamically engaged in response to different levels of complexity and also shed some light on the interpretation of neuroimaging and behavioral evidence when accounting for the nature of sentence complexity during reading.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute of Modern Languages and Linguistics, Fudan University, Shanghai, 200433, China
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093, USA; Institute of Education, National Chiao Tung University, Hsinchu, 30010, Taiwan.
| |
Collapse
|
15
|
Takashima A, Konopka A, Meyer A, Hagoort P, Weber K. Speaking in the Brain: The Interaction between Words and Syntax in Sentence Production. J Cogn Neurosci 2020; 32:1466-1483. [PMID: 32319867 DOI: 10.1162/jocn_a_01563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporal gyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical-syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia.
Collapse
Affiliation(s)
- Atsuko Takashima
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | | - Antje Meyer
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | - Kirsten Weber
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Xu K, Duann JR. Brain connectivity in the left frontotemporal network dynamically modulated by processing difficulty: Evidence from Chinese relative clauses. PLoS One 2020; 15:e0230666. [PMID: 32271773 PMCID: PMC7144993 DOI: 10.1371/journal.pone.0230666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
Although the connection between the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) has been found to be essential for the comprehension of relative clause (RC) sentences, it remains unclear how the LIFG and the LSTG interact with each other, especially during the processing of Chinese RC sentences with different processing difficulty. This study thus conducted a 2 × 2 (modifying position × extraction position) factorial analyses to examine how these two factors influences regional brain activation. The results showed that, regardless of the modifying position, greater activation in the LIFG was consistently elicited in Chinese subject-extracted relative clauses (SRCs) with non-canonical word order than object-extracted relative clauses (ORCs) with canonical word order, implying that the LIFG subserving the ordering process primarily contributes to the processing of information with increased integration demands due to the non-canonical sequence. Moreover, the directional connection between the LIFG and the LSTG appeared to be modulated by different modifying positions. When the RC was at the subject-modifying position, the effective connectivity from the LIFG to the LSTG was dominantly activated for sentence comprehension; whereas when the RC was at the object-modifying position thus being more difficult, it might be the feedback mechanism from the LSTG back to the LIFG that took place in sentence processing. These findings reveal that brain activation in between the LIFG and the LSTG may be dynamically modulated by different processing difficulty and suggest the relative specialization but extensive collaboration involved in the LIFG and the LSTG for sentence comprehension.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pant R, Kanjlia S, Bedny M. A sensitive period in the neural phenotype of language in blind individuals. Dev Cogn Neurosci 2020; 41:100744. [PMID: 31999565 PMCID: PMC6994632 DOI: 10.1016/j.dcn.2019.100744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023] Open
Abstract
Congenital blindness modifies the neural basis of language: "visual" cortices respond to linguistic information, and fronto-temporal language networks are less left-lateralized. We tested the hypothesis that this plasticity follows a sensitive period by comparing the neural basis of sentence processing between adult-onset blind (AB, n = 16), congenitally blind (CB, n = 22) and blindfolded sighted adults (n = 18). In Experiment 1, participants made semantic judgments for spoken sentences and, in a control condition, solved math equations. In Experiment 2, participants answered "who did what to whom" yes/no questions for grammatically complex (with syntactic movement) and simpler sentences. In a control condition, participants performed a memory task with non-words. In both experiments, visual cortices of CB and AB but not sighted participants responded more to sentences than control conditions, but the effect was much larger in the CB group. Only the "visual" cortex of CB participants responded to grammatical complexity. Unlike the CB group, the AB group showed no reduction in left-lateralization of fronto-temporal language network, relative to the sighted. These results suggest that congenital blindness modifies the neural basis of language differently from adult-onset blindness, consistent with a developmental sensitive period hypothesis.
Collapse
Affiliation(s)
- Rashi Pant
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA; Biological Psychology and Neuropsychology, University of Hamburg, Germany.
| | - Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
18
|
Vogelzang M, Thiel CM, Rosemann S, Rieger JW, Ruigendijk E. Neural Mechanisms Underlying the Processing of Complex Sentences: An fMRI Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:226-248. [PMID: 37213656 PMCID: PMC10158620 DOI: 10.1162/nol_a_00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/01/2020] [Indexed: 05/23/2023]
Abstract
Previous research has shown effects of syntactic complexity on sentence processing. In linguistics, syntactic complexity (caused by different word orders) is traditionally explained by distinct linguistic operations. This study investigates whether different complex word orders indeed result in distinct patterns of neural activity, as would be expected when distinct linguistic operations are applied. Twenty-two older adults performed an auditory sentence processing paradigm in German with and without increased cognitive load. The results show that without increased cognitive load, complex sentences show distinct activation patterns compared with less complex, canonical sentences: complex object-initial sentences show increased activity in the left inferior frontal and temporal regions, whereas complex adjunct-initial sentences show increased activity in occipital and right superior frontal regions. Increased cognitive load seems to affect the processing of different sentence structures differently, increasing neural activity for canonical sentences, but leaving complex sentences relatively unaffected. We discuss these results in the context of the idea that linguistic operations required for processing sentence structures with higher levels of complexity involve distinct brain operations.
Collapse
Affiliation(s)
| | - Christiane M. Thiel
- Cluster of Excellence “Hearing4all,” University of Oldenburg, Oldenburg, Germany
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stephanie Rosemann
- Cluster of Excellence “Hearing4all,” University of Oldenburg, Oldenburg, Germany
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Jochem W. Rieger
- Cluster of Excellence “Hearing4all,” University of Oldenburg, Oldenburg, Germany
- Applied Neurocognitive Psychology, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Esther Ruigendijk
- Institute of Dutch Studies, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all,” University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
19
|
Xu K, Wu DH, Duann JR. Enhanced left inferior frontal to left superior temporal effective connectivity for complex sentence comprehension: fMRI evidence from Chinese relative clause processing. BRAIN AND LANGUAGE 2020; 200:104712. [PMID: 31704517 DOI: 10.1016/j.bandl.2019.104712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Previous studies investigating the processing of complex sentences have demonstrated the involvement of the left inferior frontal gyrus (LIFG) and left superior temporal gyrus (LSTG), which might subserve ordering and storage of linguistic components, respectively, for sentence comprehension. However, how these brain regions are interconnected, especially during the processing of Chinese sentences, need to be further explored. In this study, the neural network supporting the comprehension of Chinese relative clause was identified. Both the LIFG and LSTG exhibited higher activation in processing subject-extracted relative clauses (SRCs) than object-extracted relative clauses (ORCs). Moreover, a Granger causality analysis revealed that the effective connectivity from the LIFG to LSTG was significant only when participants read Chinese SRCs, which were argued to be more difficult than ORCs. Contrary to the observations of an SRC advantage in most other languages, the present results provide clear neuroimaging evidence for an ORC advantage in Chinese.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Farnia F, Geva E. Late-Emerging Developmental Language Disorders in English-Speaking Monolinguals and English-Language Learners: A Longitudinal Perspective. JOURNAL OF LEARNING DISABILITIES 2019; 52:468-479. [PMID: 31387462 DOI: 10.1177/0022219419866645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Research involving monolinguals has demonstrated that language impairment can be noticed in the early years and tends to persist into adolescence. More recently, research has begun to address the challenges of identifying and treating Developmental Language Disorders (DLD) in English Language Learners (ELLs). Developmental patterns of DLD are not necessarily consistent over time, and we hypothesized that some monolinguals and ELLs go "under the radar" in lower grades but their language difficulties become more pronounced in later years, as syntactic demands increase, hence "late-emerging DLD". This longitudinal study examined (a) the existence of late-emerging DLD in Grades 4-6 in English-speaking monolinguals and ELLs, and (b) the Grade 1 and 3 cognitive and language profiles that predict late-emerging DLD. This study involved monolinguals (n = 149), and ELLs (n = 402) coming from diverse home language backgrounds. Cognitive (working memory, phonological short-term memory, processing speed), language (vocabulary and syntax), and word reading skills were assessed annually from grades 1 to 6. Separate parallel analyses in the monolingual and ELL samples confirmed that late-emerging DLD exists in both groups. In comparison with their typically developing peers, late-emerging DLD can be identified as early as Grade 1 based on poorer performance on phonological awareness, naming speed, and working memory.
Collapse
|
21
|
Barbieri E, Mack J, Chiappetta B, Europa E, Thompson CK. Recovery of offline and online sentence processing in aphasia: Language and domain-general network neuroplasticity. Cortex 2019; 120:394-418. [PMID: 31419597 DOI: 10.1016/j.cortex.2019.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/09/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
This paper examined the effects of treatment on both offline and online sentence processing and associated neuroplasticity within sentence processing and dorsal attention networks in chronic stroke-induced agrammatic aphasia. Twenty-three neurotypical adults and 19 individuals with aphasia served as participants. Aphasic individuals were randomly assigned to receive a 12-week course of linguistically-based treatment of passive sentence production and comprehension (N = 14, treatment group) or to serve as control participants (N = 5, natural history group). Both aphasic groups performed two offline tasks at baseline and three months following (at post-testing) to assess production and comprehension of trained passive structures and untrained syntactically related and unrelated structures. The aphasic participants and a healthy age-matched group also performed an online eyetracking comprehension task and a picture-verification fMRI task, which were repeated at post-testing for the aphasic groups. Results showed that individuals in the treatment, but not in the natural history, group improved on production and comprehension of both trained structures and untrained syntactically related structures. Treatment also resulted in a shift toward more normal-like eye movements and a significant increase in neural activation from baseline to post-testing. Upregulation encompassed right hemisphere regions homologs of left hemisphere regions involved in both sentence processing and domain-general functions and was positively correlated with treatment gains, as measured by offline comprehension accuracy, and with changes in processing strategies during sentence comprehension, as measured by eyetracking. These findings provide compelling evidence in favor of the contribution of both networks within the right hemisphere to the restoration of normal-like sentence processing patterns in chronic aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.
| | - Jennifer Mack
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Brianne Chiappetta
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Eduardo Europa
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, USA; Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Iwabuchi T, Nakajima Y, Makuuchi M. Neural architecture of human language: Hierarchical structure building is independent from working memory. Neuropsychologia 2019; 132:107137. [PMID: 31288026 DOI: 10.1016/j.neuropsychologia.2019.107137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Using functional magnetic resonance imaging (fMRI), we show that the neural substrate of language does not overlap with that for verbal working memory when we carefully define verbal working memory in sentence processing. Object-Subject-Verb (OSV) sentences in Japanese were contrasted with canonical Subject-Object-Verb (SOV) sentences, which had less hierarchy in linguistic structure. This contrast revealed the posterior part of Broca's area and the left posterior middle temporal gyrus (pMTG) as the neural bases for hierarchical structure building. Furthermore, we changed verbal working memory load in OSV sentences by adding modifiers to the subject or object noun phrases; this resulted in the activation in the op9, which is situated in the frontal operculum and is adjacent to, but not situated in, Broca's area. The neuroanatomical segregation of language processing from verbal working memory suggests independence of the faculty of language from the verbal working memory system, providing evidence for the domain-specificity of language in human cognition.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan
| | - Yasoichi Nakajima
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama-ken, 359-8555, Japan.
| |
Collapse
|
23
|
Barbieri E, Brambilla I, Thompson CK, Luzzatti C. Verb and sentence processing patterns in healthy Italian participants: Insight from the Northwestern Assessment of Verbs and Sentences (NAVS). JOURNAL OF COMMUNICATION DISORDERS 2019; 79:58-75. [PMID: 30884288 PMCID: PMC6902639 DOI: 10.1016/j.jcomdis.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
We developed an Italian version of the Northwestern Assessment of Verbs and Sentences (NAVS, Thompson, 2011), a test assessing verb and sentence deficits typically found in aphasia, by focusing on verb-argument structure and syntactic complexity effects, rarely captured by standard language tests. Twenty-one young healthy individuals underwent a computerized experimental version of the NAVS, including three subtests assessing production/comprehension of verbs with different number (one, two, three) and type (obligatory or optional) of arguments, and two investigating production/comprehension of sentences with canonical/non-canonical word order. The number of verb arguments affected participants' reaction times (RTs) in verb naming and comprehension. Furthermore, verbs with optional arguments were processed faster than verbs with only obligatory arguments. Comprehension accuracy was lower for object-cleft vs. subject-cleft sentences. Object clefts and object relatives also elicited longer RTs than subject clefts and subject relatives, respectively. The study shows that the NAVS is sensitive to linguistic aspects of verb/sentence processing in Italian as in the English language. The study also highlights some differences between languages in the verb/sentence processing patterns of healthy individuals. Finally, the study contributes to the understanding of how information about verb-argument structure is represented and processed in healthy individuals, with reference to current models of verb processing.
Collapse
Affiliation(s)
- Elena Barbieri
- Center for the Neurobiology of Language Recovery, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, United States.
| | - Irene Brambilla
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, United States; Mesulam Cognitive neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, United States; Department of Neurology, Northwestern University, Chicago, IL, United States.
| | - Claudio Luzzatti
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milano, Italy; Milan Center for Neuroscience, Milano, Italy.
| |
Collapse
|
24
|
Linguistic networks associated with lexical, semantic and syntactic predictability in reading: A fixation-related fMRI study. Neuroimage 2019; 189:224-240. [DOI: 10.1016/j.neuroimage.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/11/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022] Open
|
25
|
Europa E, Gitelman DR, Kiran S, Thompson CK. Neural Connectivity in Syntactic Movement Processing. Front Hum Neurosci 2019; 13:27. [PMID: 30814941 PMCID: PMC6381040 DOI: 10.3389/fnhum.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 01/15/2023] Open
Abstract
Linguistic theory suggests non-canonical sentences subvert the dominant agent-verb-theme order in English via displacement of sentence constituents to argument (NP-movement) or non-argument positions (wh-movement). Both processes have been associated with the left inferior frontal gyrus and posterior superior temporal gyrus, but differences in neural activity and connectivity between movement types have not been investigated. In the current study, functional magnetic resonance imaging data were acquired from 21 adult participants during an auditory sentence-picture verification task using passive and active sentences contrasted to isolate NP-movement, and object- and subject-cleft sentences contrasted to isolate wh-movement. Then, functional magnetic resonance imaging data from regions common to both movement types were entered into a dynamic causal modeling analysis to examine effective connectivity for wh-movement and NP-movement. Results showed greater left inferior frontal gyrus activation for Wh > NP-movement, but no activation for NP > Wh-movement. Both types of movement elicited activity in the opercular part of the left inferior frontal gyrus, left posterior superior temporal gyrus, and left medial superior frontal gyrus. The dynamic causal modeling analyses indicated that neither movement type significantly modulated the connection from the left inferior frontal gyrus to the left posterior superior temporal gyrus, nor vice-versa, suggesting no connectivity differences between wh- and NP-movement. These findings support the idea that increased complexity of wh-structures, compared to sentences with NP-movement, requires greater engagement of cognitive resources via increased neural activity in the left inferior frontal gyrus, but both movement types engage similar neural networks.
Collapse
Affiliation(s)
- Eduardo Europa
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Darren R Gitelman
- Advocate Lutheran General Hospital, Park Ridge, IL, United States.,Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,The Ken and Ruth Davee Department of Neurology Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Swathi Kiran
- College of Health & Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Cynthia K Thompson
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,The Ken and Ruth Davee Department of Neurology Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Mesulam Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
26
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
27
|
Progovac L, Rakhlin N, Angell W, Liddane R, Tang L, Ofen N. Neural Correlates of Syntax and Proto-Syntax: Evolutionary Dimension. Front Psychol 2018; 9:2415. [PMID: 30618908 PMCID: PMC6302005 DOI: 10.3389/fpsyg.2018.02415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
The present fMRI study tested predictions of the evolution-of-syntax framework which analyzes certain structures as remnants ("fossils") of a non-hierarchical (non-recursive) proto-syntactic stage in the evolution of language (Progovac, 2015, 2016). We hypothesized that processing of these structures, in comparison to more modern hierarchical structures, will show less activation in the brain regions that are part of the syntactic network, including Broca's area (BA 44 and 45) and the basal ganglia, i.e., the network bolstered in the line of descent of humans through genetic mutations that contributed to present-day dense neuronal connectivity among these regions. Fourteen healthy native English-speaking adults viewed written stimuli consisting of: (1) full sentences (FullS; e.g., The case is closed); (2) Small Clauses (SC; e.g., Case closed); (3) Complex hierarchical compounds (e.g., joy-killer); and (4) Simple flat compounds (e.g., kill-joy). SC (compared to FullS) resulted in reduced activation in the left BA 44 and right basal ganglia. Simple (relative to complex) compounds resulted in increased activation in the inferior temporal gyrus and the fusiform gyrus (BA 37/19), areas implicated in visual and semantic processing. We discuss our findings in the context of current theories regarding the co-evolution of language and the brain.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - Natalia Rakhlin
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Department of English, Wayne State University, Detroit, MI, United States
| | - William Angell
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Ryan Liddane
- Linguistics Program, Wayne State University, Detroit, MI, United States
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Lingfei Tang
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Lifespan Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, United States
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
28
|
Bartha‐Doering L, Kollndorfer K, Kasprian G, Novak A, Schuler A, Fischmeister FPS, Alexopoulos J, Gaillard WD, Prayer D, Seidl R, Berl MM. Weaker semantic language lateralization associated with better semantic language performance in healthy right-handed children. Brain Behav 2018; 8:e01072. [PMID: 30298640 PMCID: PMC6236252 DOI: 10.1002/brb3.1072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The relationship between language abilities and language lateralization in the developing brain is important for our understanding of the neural architecture of language development. METHODS We investigated 35 right-handed children and adolescents aged 7-16 years with a functional magnetic resonance imaging language paradigm and a comprehensive language and verbal memory examination. RESULTS We found that less lateralized language was significantly correlated with better language performance across areas of the brain and across different language tasks. Less lateralized language in the overall brain was associated with better in-scanner task accuracy on a semantic language decision task and out-of-scanner vocabulary and verbal fluency. Specifically, less lateralized frontal lobe language dominance was associated with better in-scanner task accuracy and out-of-scanner verbal fluency. Furthermore, less lateralized parietal language was associated with better out-of-scanner verbal memory across learning, short- and long-delay trials. In contrast, we did not find any relationship between temporal lobe language laterality and verbal performance. CONCLUSIONS This study suggests that semantic language performance is better with some involvement of the nondominant hemisphere.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Kathrin Kollndorfer
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Astrid Novak
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Anna‐Lisa Schuler
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | | | - Johanna Alexopoulos
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - William Davis Gaillard
- Center for Neuroscience and Behavioral HealthChildren's National Health System (CNHS)WashingtonDCUSA
| | - Daniela Prayer
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Madison M. Berl
- Center for Neuroscience and Behavioral HealthChildren's National Health System (CNHS)WashingtonDCUSA
| |
Collapse
|
29
|
Momenian M, Nilipour R, Samar RG, Cappa SF, Golestani N. Morpho-syntactic complexity modulates brain activation in Persian-English bilinguals: An fMRI study. BRAIN AND LANGUAGE 2018; 185:9-18. [PMID: 29990719 DOI: 10.1016/j.bandl.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The Persian language can be considered to have a relatively more complex and combinatorial morpho-syntax than languages like Chinese and English. For example, the Persian verbal system is largely constituted of light verb constructions, in which light verbs are combined with specific items coming from other grammatical classes to generate entirely new verbal entities. This study was designed to examine the mediating effect of language-inherent properties related to morpho-syntax on activation of the left inferior frontal gyrus (LIFG), a brain area involved in morpho-syntactic processing. To this end, 20 late Persian-English bilinguals were required to covertly generate verbs and nouns from object and action pictures, within a cued grammatical context. Consistent with predictions, the results of an ROI analysis revealed an interaction between task and language in BA 44 of the LIFG and its right homologue, with greater activation of this region during the production of Persian compared to English verbs. In contrast, there was greater activation of the BA 44 during the production of English compared to Persian nouns, consistent with the more effortful processing of their less proficient second language (English). The findings suggest that language-specific properties such as morpho-syntactic complexity can modulate the recruitment of Broca's area, over and above the more well-documented effects of language proficiency.
Collapse
Affiliation(s)
- Mohammad Momenian
- Laboratory for Communication Science, Division of Speech and Hearing Sciences, Faculty of Education, University of Hong Kong, Hong Kong; Department of Applied Linguistics, Tarbiat Modares University, Tehran, Iran.
| | - Reza Nilipour
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Ghafar Samar
- Department of Applied Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Stefano F Cappa
- Institute for Advanced Studies (IUSS), Pavia, Italy; IRCCS S. Giovanni di Dio, Brescia, Italy
| | - Narly Golestani
- Brain and Language Lab, Faculty of Psychology and Education Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe. Psychon Bull Rev 2018; 25:2309-2322. [DOI: 10.3758/s13423-018-1469-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Prado J. The relationship between deductive reasoning and the syntax of language in Broca’s area: A review of the neuroimaging literature. ANNEE PSYCHOLOGIQUE 2018. [DOI: 10.3917/anpsy1.183.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
32
|
Bulut T, Hung YH, Tzeng O, Wu DH. Neural correlates of processing sentences and compound words in Chinese. PLoS One 2017; 12:e0188526. [PMID: 29194453 PMCID: PMC5711016 DOI: 10.1371/journal.pone.0188526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Sentence reading involves multiple linguistic operations including processing of lexical and compositional semantics, and determining structural and grammatical relationships among words. Previous studies on Indo-European languages have associated left anterior temporal lobe (aTL) and left interior frontal gyrus (IFG) with reading sentences compared to reading unstructured word lists. To examine whether these brain regions are also involved in reading a typologically distinct language with limited morphosyntax and lack of agreement between sentential arguments, an FMRI study was conducted to compare passive reading of Chinese sentences, unstructured word lists and disconnected character lists that are created by only changing the order of an identical set of characters. Similar to previous findings from other languages, stronger activation was found in mainly left-lateralized anterior temporal regions (including aTL) for reading sentences compared to unstructured word and character lists. On the other hand, stronger activation was identified in left posterior temporal sulcus for reading unstructured words compared to unstructured characters. Furthermore, reading unstructured word lists compared to sentences evoked stronger activation in left IFG and left inferior parietal lobule. Consistent with the literature on Indo-European languages, the present results suggest that left anterior temporal regions subserve sentence-level integration, while left IFG supports restoration of sentence structure. In addition, left posterior temporal sulcus is associated with morphological compounding. Taken together, reading Chinese sentences engages a common network as reading other languages, with particular reliance on integration of semantic constituents.
Collapse
Affiliation(s)
- Talat Bulut
- Institute of Cognitive Neuroscience, National Central University, Zhongli, Taiwan
- Department of Speech and Language Therapy, Istanbul Medipol University, Istanbul, Turkey
| | - Yi-Hui Hung
- Haskins Laboratories, Yale University, New Haven, Connecticut, United States of America
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Ovid Tzeng
- The Institute of Linguistics, Academia Sinica, Taipei, Taiwan
| | - Denise H. Wu
- Institute of Cognitive Neuroscience, National Central University, Zhongli, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Rogalsky C, LaCroix AN, Chen KH, Anderson SW, Damasio H, Love T, Hickok G. The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study. J Cogn Neurosci 2017; 30:234-255. [PMID: 29064339 DOI: 10.1162/jocn_a_01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of "agrammatic comprehension" in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern-for example, their performance was >80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion-symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.
Collapse
Affiliation(s)
| | | | - Kuan-Hua Chen
- University of Iowa.,University of California, Berkeley
| | | | | | | | | |
Collapse
|
34
|
Blank IA, Kiran S, Fedorenko E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn Neuropsychol 2017; 34:377-393. [PMID: 29188746 PMCID: PMC6157596 DOI: 10.1080/02643294.2017.1402756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuroimaging studies of individuals with brain damage seek to link brain structure and activity to cognitive impairments, spontaneous recovery, or treatment outcomes. To date, such studies have relied on the critical assumption that a given anatomical landmark corresponds to the same functional unit(s) across individuals. However, this assumption is fallacious even across neurologically healthy individuals. Here, we discuss the severe implications of this issue, and argue for an approach that circumvents it, whereby: (i) functional brain regions are defined separately for each subject using fMRI, allowing for inter-individual variability in their precise location; (ii) the response profile of these subject-specific regions are characterized using various other tasks; and (iii) the results are averaged across individuals, guaranteeing generalizabliity. This method harnesses the complementary strengths of single-case studies and group studies, and it eliminates the need for post hoc "reverse inference" from anatomical landmarks back to cognitive operations, thus improving data interpretability.
Collapse
Affiliation(s)
- Idan A Blank
- a McGovern Institute for Brain Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Swathi Kiran
- b Department of Speech Language and Hearing Sciences, Aphasia Research Laboratory , Sargent College, Boston University , Boston , MA , USA
| | - Evelina Fedorenko
- c Department of Psychiatry , Massachusetts General Hospital , Charlestown , MA , USA
- d Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
35
|
Ohta S, Koizumi M, Sakai KL. Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya. Front Psychol 2017; 8:748. [PMID: 28536551 PMCID: PMC5422526 DOI: 10.3389/fpsyg.2017.00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Some natural languages grammatically allow different types of changing word orders, such as object scrambling and topicalization. Scrambling and topicalization are more related to syntax and semantics/phonology, respectively. Here we hypothesized that scrambling should activate the left frontal regions, while topicalization would affect the bilateral temporal regions. To examine such distinct effects in our functional magnetic resonance imaging study, we targeted the Kaqchikel Maya language, a Mayan language spoken in Guatemala. In Kaqchikel, the syntactically canonical word order is verb-object-subject (VOS), but at least three non-canonical word orders (i.e., SVO, VSO, and OVS) are also grammatically allowed. We used a sentence-picture matching task, in which the participants listened to a short Kaqchikel sentence and judged whether a picture matched the meaning of the sentence. The advantage of applying this experimental paradigm to an understudied language such as Kaqchikel is that it will allow us to validate the universality of linguistic computation in the brain. We found that the conditions with scrambled sentences [+scrambling] elicited significant activation in the left inferior frontal gyrus and lateral premotor cortex, both of which have been proposed as grammar centers, indicating the effects of syntactic loads. In contrast, the conditions without topicalization [-topicalization] resulted in significant activation in bilateral Heschl's gyrus and superior temporal gyrus, demonstrating that the syntactic and phonological processes were clearly dissociated within the language areas. Moreover, the pre-supplementary motor area and left superior/middle temporal gyri were activated under relatively demanding conditions, suggesting their supportive roles in syntactic or semantic processing. To exclude any semantic/phonological effects of the object-subject word orders, we performed direct comparisons while making the factor of topicalization constant, and observed localized activations in the left inferior frontal gyrus and lateral premotor cortex. These results establish that the types of scrambling and topicalization have different impacts on the specified language areas. These findings further indicate that the functional roles of these left frontal and temporal regions involve linguistic aspects themselves, namely syntax versus semantics/phonology, rather than output/input aspects of speech processing.
Collapse
Affiliation(s)
- Shinri Ohta
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Masatoshi Koizumi
- Department of Linguistics, Graduate School of Arts and Letters, Tohoku UniversitySendai, Japan
| | - Kuniyoshi L. Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
36
|
Neurophysiological dynamics of phrase-structure building during sentence processing. Proc Natl Acad Sci U S A 2017; 114:E3669-E3678. [PMID: 28416691 DOI: 10.1073/pnas.1701590114] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although sentences unfold sequentially, one word at a time, most linguistic theories propose that their underlying syntactic structure involves a tree of nested phrases rather than a linear sequence of words. Whether and how the brain builds such structures, however, remains largely unknown. Here, we used human intracranial recordings and visual word-by-word presentation of sentences and word lists to investigate how left-hemispheric brain activity varies during the formation of phrase structures. In a broad set of language-related areas, comprising multiple superior temporal and inferior frontal sites, high-gamma power increased with each successive word in a sentence but decreased suddenly whenever words could be merged into a phrase. Regression analyses showed that each additional word or multiword phrase contributed a similar amount of additional brain activity, providing evidence for a merge operation that applies equally to linguistic objects of arbitrary complexity. More superficial models of language, based solely on sequential transition probability over lexical and syntactic categories, only captured activity in the posterior middle temporal gyrus. Formal model comparison indicated that the model of multiword phrase construction provided a better fit than probability-based models at most sites in superior temporal and inferior frontal cortices. Activity in those regions was consistent with a neural implementation of a bottom-up or left-corner parser of the incoming language stream. Our results provide initial intracranial evidence for the neurophysiological reality of the merge operation postulated by linguists and suggest that the brain compresses syntactically well-formed sequences of words into a hierarchy of nested phrases.
Collapse
|
37
|
Hubers F, Snijders TM, de Hoop H. How the brain processes violations of the grammatical norm: An fMRI study. BRAIN AND LANGUAGE 2016; 163:22-31. [PMID: 27639117 DOI: 10.1016/j.bandl.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
Native speakers of Dutch do not always adhere to prescriptive grammar rules in their daily speech. These grammatical norm violations can elicit emotional reactions in language purists, mostly high-educated people, who claim that for them these constructions are truly ungrammatical. However, linguists generally assume that grammatical norm violations are in fact truly grammatical, especially when they occur frequently in a language. In an fMRI study we investigated the processing of grammatical norm violations in the brains of language purists, and compared them with truly grammatical and truly ungrammatical sentences. Grammatical norm violations were found to be unique in that their processing resembled not only the processing of truly grammatical sentences (in left medial Superior Frontal Gyrus and Angular Gyrus), but also that of truly ungrammatical sentences (in Inferior Frontal Gyrus), despite what theories of grammar would usually lead us to believe.
Collapse
Affiliation(s)
- Ferdy Hubers
- Centre for Language Studies, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands.
| | - Tineke M Snijders
- Centre for Language Studies, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Helen de Hoop
- Centre for Language Studies, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Piñango MM, Finn E, Lacadie C, Constable RT. The Localization of Long-Distance Dependency Components: Integrating the Focal-lesion and Neuroimaging Record. Front Psychol 2016; 7:1434. [PMID: 27746748 PMCID: PMC5043422 DOI: 10.3389/fpsyg.2016.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
In the sentence “The captain who the sailor greeted is tall,” the connection between the relative pronoun and the object position of greeted represents a long-distance dependency (LDD), necessary for the interpretation of “the captain” as the individual being greeted. Whereas the lesion-based record shows preferential involvement of only the left inferior frontal (LIF) cortex, associated with Broca's aphasia, during real-time comprehension of LDDs, the neuroimaging record shows additional involvement of the left posterior superior temporal (LPST) and lower parietal cortices, which are associated with Wernicke's aphasia. We test the hypothesis that this localization incongruence emerges from an interaction of memory and linguistic constraints involved in the real-time implementation of these dependencies and which had not been previously isolated. Capitalizing on a long-standing psycholinguistic understanding of LDDs as the workings of an active filler, we distinguish two linguistically defined mechanisms: GAP-search, triggered by the retrieval of the relative pronoun, and GAP-completion, triggered by the retrieval of the embedded verb. Each mechanism is hypothesized to have distinct memory demands and given their distinct linguistic import, potentially distinct brain correlates. Using fMRI, we isolate the two mechanisms by analyzing their relevant sentential segments as separate events. We manipulate LDD-presence/absence and GAP-search type (direct/indirect) reflecting the absence/presence of intervening islands. Results show a direct GAP-search—LIF cortex correlation that crucially excludes the LPST cortex. Notably, indirect GAP-search recruitment is confined to supplementary-motor and lower-parietal cortex indicating that GAP presence alone is not enough to engage predictive functions in the LIF cortex. Finally, GAP-completion shows recruitment implicating the dorsal pathway including: the supplementary motor cortex, left supramarginal cortex, precuneus, and anterior/dorsal cingulate. Altogether, the results are consistent with previous findings connecting GAP-search, as we define it, to the LIF cortex. They are not consistent with an involvement of the LPST cortex in any of the two mechanisms, and therefore support the view that the LPST cortex is not crucial to LDD implementation. Finally, results support neurocognitive architectures that involve the dorsal pathway in LDD resolution and that distinguish the memory commitments of the LIF cortex as sensitive to specific language-dependent constraints beyond phrase-structure building considerations.
Collapse
Affiliation(s)
- Maria M Piñango
- Language and Brain Lab, Department of Linguistics, Yale UniversityNew Haven, CT, USA; Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale UniversityNew Haven, CT, USA
| | - Emily Finn
- Language and Brain Lab, Department of Linguistics, Yale UniversityNew Haven, CT, USA; Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale UniversityNew Haven, CT, USA
| | - Cheryl Lacadie
- Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale University New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Magnetic Resonance Research Center, Yale University New Haven, CT, USA
| |
Collapse
|
39
|
Hartwigsen G, Henseler I, Stockert A, Wawrzyniak M, Wendt C, Klingbeil J, Baumgaertner A, Saur D. Integration demands modulate effective connectivity in a fronto-temporal network for contextual sentence integration. Neuroimage 2016; 147:812-824. [PMID: 27542723 DOI: 10.1016/j.neuroimage.2016.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/23/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
Previous neuroimaging studies demonstrated that a network of left-hemispheric frontal and temporal brain regions contributes to the integration of contextual information into a sentence. However, it remains unclear how these cortical areas influence and drive each other during contextual integration. The present study used dynamic causal modeling (DCM) to investigate task-related changes in the effective connectivity within this network. We found increased neural activity in left anterior inferior frontal gyrus (aIFG), posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and anterior superior temporal sulcus/MTG (aSTS/MTG) that probably reflected increased integration demands and restructuring attempts during the processing of unexpected or semantically anomalous relative to expected endings. DCM analyses of this network revealed that unexpected endings increased the inhibitory influence of left aSTS/MTG on pSTS/MTG during contextual integration. In contrast, during the processing of semantically anomalous endings, left aIFG increased its inhibitory drive on pSTS/MTG. Probabilistic fiber tracking showed that effective connectivity between these areas is mediated by distinct ventral and dorsal white matter association tracts. Together, these results suggest that increasing integration demands require an inhibition of the left pSTS/MTG, which presumably reflects the inhibition of the dominant expected sentence ending. These results are important for a better understanding of the neural implementation of sentence comprehension on a large-scale network level and might influence future studies of language in post-stroke aphasia after focal lesions.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany; Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| | - Ilona Henseler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Anika Stockert
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany
| | - Max Wawrzyniak
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany
| | - Christin Wendt
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany
| | - Julian Klingbeil
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany
| | | | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany
| |
Collapse
|
40
|
Functional organization of the language network in three- and six-year-old children. Neuropsychologia 2016; 98:24-33. [PMID: 27542319 PMCID: PMC5407357 DOI: 10.1016/j.neuropsychologia.2016.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/02/2016] [Accepted: 08/14/2016] [Indexed: 11/08/2022]
Abstract
The organization of the language network undergoes continuous changes during development as children learn to understand sentences. In the present study, functional magnetic resonance imaging and behavioral measures were utilized to investigate functional activation and functional connectivity (FC) in three-year-old (3yo) and six-year-old (6yo) children during sentence comprehension. Transitive German sentences varying the word order (subject-initial and object-initial) with case marking were presented auditorily. We selected children who were capable of processing the subject-initial sentences above chance level accuracy from each age group to ensure that we were tapping real comprehension. Both age groups showed a main effect of word order in the left posterior superior temporal gyrus (pSTG), with greater activation for object-initial compared to subject-initial sentences. However, age differences were observed in the FC between left pSTG and the left inferior frontal gyrus (IFG). The 6yo group showed stronger FC between the left pSTG and Brodmann area (BA) 44 of the left IFG compared to the 3yo group. For the 3yo group, in turn, the FC between left pSTG and left BA 45 was stronger than with left BA 44. Our study demonstrates that while task-related activation was comparable, the small behavioral differences between age groups were reflected in the underlying functional organization revealing the ongoing development of the neural language network. We examined functional connectivity of sentence processing in 3- and 6-year-olds. Performance-matched age groups activated left pSTG for processing complex syntax. 6-year-olds had stronger connectivity between left BA44 and pSTG than 3-year-olds. 3-year-olds had greater connectivity between left BA45 and pSTG than BA44 and pSTG. Functional connectivity results could be related to behavioral performance.
Collapse
|
41
|
Poliva O. From Mimicry to Language: A Neuroanatomically Based Evolutionary Model of the Emergence of Vocal Language. Front Neurosci 2016; 10:307. [PMID: 27445676 PMCID: PMC4928493 DOI: 10.3389/fnins.2016.00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022] Open
Abstract
The auditory cortex communicates with the frontal lobe via the middle temporal gyrus (auditory ventral stream; AVS) or the inferior parietal lobule (auditory dorsal stream; ADS). Whereas the AVS is ascribed only with sound recognition, the ADS is ascribed with sound localization, voice detection, prosodic perception/production, lip-speech integration, phoneme discrimination, articulation, repetition, phonological long-term memory and working memory. Previously, I interpreted the juxtaposition of sound localization, voice detection, audio-visual integration and prosodic analysis, as evidence that the behavioral precursor to human speech is the exchange of contact calls in non-human primates. Herein, I interpret the remaining ADS functions as evidence of additional stages in language evolution. According to this model, the role of the ADS in vocal control enabled early Homo (Hominans) to name objects using monosyllabic calls, and allowed children to learn their parents' calls by imitating their lip movements. Initially, the calls were forgotten quickly but gradually were remembered for longer periods. Once the representations of the calls became permanent, mimicry was limited to infancy, and older individuals encoded in the ADS a lexicon for the names of objects (phonological lexicon). Consequently, sound recognition in the AVS was sufficient for activating the phonological representations in the ADS and mimicry became independent of lip-reading. Later, by developing inhibitory connections between acoustic-syllabic representations in the AVS and phonological representations of subsequent syllables in the ADS, Hominans became capable of concatenating the monosyllabic calls for repeating polysyllabic words (i.e., developed working memory). Finally, due to strengthening of connections between phonological representations in the ADS, Hominans became capable of encoding several syllables as a single representation (chunking). Consequently, Hominans began vocalizing and mimicking/rehearsing lists of words (sentences).
Collapse
|
42
|
Fu G, Wan NJA, Baker JM, Montgomery JW, Evans JL, Gillam RB. A Proof of Concept Study of Function-Based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared to Typically-Developing Controls. Front Behav Neurosci 2016; 10:108. [PMID: 27375448 PMCID: PMC4894897 DOI: 10.3389/fnbeh.2016.00108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100 ms increments). Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis (FDA) approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without SLI wore two, 3 × 5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. FDA was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular GLM, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the importance of these two areas for syntax comprehension. The proposed FDA was consistent with the temporal characteristics of fNIRS, thus providing an alternative methodology for fNIRS analyses.
Collapse
Affiliation(s)
- Guifang Fu
- Department of Mathematics and Statistics, Utah State University Logan, UT, USA
| | | | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University Stanford, CA, USA
| | | | - Julia L Evans
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Ronald B Gillam
- Department of Communicative Disorders and Deaf Education, Utah State University Logan, UT, USA
| |
Collapse
|
43
|
Brennan JR, Stabler EP, Van Wagenen SE, Luh WM, Hale JT. Abstract linguistic structure correlates with temporal activity during naturalistic comprehension. BRAIN AND LANGUAGE 2016; 157-158:81-94. [PMID: 27208858 PMCID: PMC4893969 DOI: 10.1016/j.bandl.2016.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/14/2016] [Accepted: 04/10/2016] [Indexed: 05/05/2023]
Abstract
Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations.
Collapse
Affiliation(s)
- Jonathan R Brennan
- Department of Linguistics, University of Michigan, Ann Arbor, MI, United States.
| | - Edward P Stabler
- Department of Linguistics, University of California, Los Angeles, CA, United States.
| | - Sarah E Van Wagenen
- Department of Linguistics, University of California, Los Angeles, CA, United States
| | - Wen-Ming Luh
- MRI Facility, Cornell University, Ithaca, NY, United States.
| | - John T Hale
- Department of Linguistics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
44
|
Language structure in the brain: A fixation-related fMRI study of syntactic surprisal in reading. Neuroimage 2016; 132:293-300. [DOI: 10.1016/j.neuroimage.2016.02.050] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/22/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
|
45
|
Zakariás L, Keresztes A, Marton K, Wartenburger I. Positive effects of a computerised working memory and executive function training on sentence comprehension in aphasia. Neuropsychol Rehabil 2016; 28:369-386. [DOI: 10.1080/09602011.2016.1159579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lilla Zakariás
- Cognitive Science, Department of Linguistics, University of Potsdam, Potsdam, Germany
- Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Keresztes
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Klára Marton
- Bárczi Gusztáv College of Special Education, Eötvös Loránd University, Budapest, Hungary
- Graduate School and University Center, City University of New York, New York, USA
| | - Isabell Wartenburger
- Cognitive Science, Department of Linguistics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
46
|
Halag-Milo T, Stoppelman N, Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M. Beyond production: Brain responses during speech perception in adults who stutter. Neuroimage Clin 2016; 11:328-338. [PMID: 27298762 PMCID: PMC4893016 DOI: 10.1016/j.nicl.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/02/2022]
Abstract
Developmental stuttering is a speech disorder that disrupts the ability to produce speech fluently. While stuttering is typically diagnosed based on one's behavior during speech production, some models suggest that it involves more central representations of language, and thus may affect language perception as well. Here we tested the hypothesis that developmental stuttering implicates neural systems involved in language perception, in a task that manipulates comprehensibility without an overt speech production component. We used functional magnetic resonance imaging to measure blood oxygenation level dependent (BOLD) signals in adults who do and do not stutter, while they were engaged in an incidental speech perception task. We found that speech perception evokes stronger activation in adults who stutter (AWS) compared to controls, specifically in the right inferior frontal gyrus (RIFG) and in left Heschl's gyrus (LHG). Significant differences were additionally found in the lateralization of response in the inferior frontal cortex: AWS showed bilateral inferior frontal activity, while controls showed a left lateralized pattern of activation. These findings suggest that developmental stuttering is associated with an imbalanced neural network for speech processing, which is not limited to speech production, but also affects cortical responses during speech perception.
Collapse
Affiliation(s)
- Tali Halag-Milo
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Cognitive Science Program, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Stoppelman
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Kronfeld-Duenias
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ruth Ezrati-Vinacour
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
47
|
Longitudinal changes in resting-state fMRI from age 5 to age 6years covary with language development. Neuroimage 2015; 128:116-124. [PMID: 26690809 PMCID: PMC4767215 DOI: 10.1016/j.neuroimage.2015.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 12/06/2015] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging is a powerful technique to study the whole-brain neural connectivity that underlies cognitive systems. The present study aimed to define the changes in neural connectivity in their relation to language development. Longitudinal resting-state functional data were acquired from a cohort of preschool children at age 5 and one year later, and changes in functional connectivity were correlated with language performance in sentence comprehension. For this, degree centrality, a voxel-based network measure, was used to assess age-related differences in connectivity at the whole-brain level. Increases in connectivity with age were found selectively in a cluster within the left posterior superior temporal gyrus and sulcus (STG/STS). In order to further specify the connection changes, a secondary seed-based functional connectivity analysis on this very cluster was performed. The correlations between resting-state functional connectivity (RSFC) and language performance revealed developmental effects with age and, importantly, also dependent on the advancement in sentence comprehension ability over time. In children with greater advancement in language abilities, the behavioral improvement was positively correlated with RSFC increase between left posterior STG/STS and other regions of the language network, i.e., left and right inferior frontal cortex. The age-related changes observed in this study provide evidence for alterations in the language network as language develops and demonstrates the viability of this approach for the investigation of normal and aberrant language development.
Collapse
|
48
|
Barkley C, Kluender R, Kutas M. Referential processing in the human brain: An Event-Related Potential (ERP) study. Brain Res 2015; 1629:143-59. [DOI: 10.1016/j.brainres.2015.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
|
49
|
Wallentin M, Gravholt CH, Skakkebæk A. Broca's region and Visual Word Form Area activation differ during a predictive Stroop task. Cortex 2015; 73:257-70. [DOI: 10.1016/j.cortex.2015.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/20/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
50
|
Zaccarella E, Friederici AD. Merge in the Human Brain: A Sub-Region Based Functional Investigation in the Left Pars Opercularis. Front Psychol 2015; 6:1818. [PMID: 26640453 PMCID: PMC4661288 DOI: 10.3389/fpsyg.2015.01818] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
Language is thought to represent one of the most complex cognitive functions in humans. Here we break down complexity of language to its most basic syntactic computation which hierarchically binds single words together to form larger phrases and sentences. So far, the neural implementation of this basic operation has only been inferred indirectly from studies investigating more complex linguistic phenomena. In the present sub-region based functional magnetic resonance imaging (fMRI) study we directly assessed the neuroanatomical nature of this process. Our results showed that syntactic phrases—compared to word-list sequences—corresponded to increased neural activity in the ventral-anterior portion of the left pars opercularis [Brodmann Area (BA) 44], whereas the adjacently located deep frontal operculum/anterior insula (FOP/aINS), a phylogenetically older and less specialized region, was found to be equally active for both conditions. Crucially, the functional activity of syntactic binding was confined to one out of five clusters proposed by a recent fine-grained sub-anatomical parcellation for BA 44, with consistency across individuals. Neuroanatomically, the present results call for a redefinition of BA 44 as a region with internal functional specializations. Neurocomputationally, they support the idea of invariance within BA 44 in the location of activation across participants for basic syntactic building processing.
Collapse
Affiliation(s)
- Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin Berlin, Germany
| |
Collapse
|