1
|
Miraglia F, Pappalettera C, Guglielmi V, Cacciotti A, Manenti R, Judica E, Vecchio F, Rossini PM. The combination of hyperventilation test and graph theory parameters to characterize EEG changes in mild cognitive impairment (MCI) condition. GeroScience 2023:10.1007/s11357-023-00733-5. [PMID: 36692591 PMCID: PMC10400506 DOI: 10.1007/s11357-023-00733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Hyperventilation (HV) is a voluntary activity that causes changes in the neuronal firing characteristics noticeable in the electroencephalogram (EEG) signals. HV-related changes have been scribed to modulation of pO2/pCO2 blood contents. Therefore, an HV test is routinely used for highlighting brain abnormalities including those depending to neurobiological mechanisms at the basis of neurodegenerative disorders. The main aim of the present paper is to study the effectiveness of HV test in modifying the functional connectivity from the EEG signals that can be typical of a prodromal state of Alzheimer's disease (AD), the Mild Cognitive Impairment prodromal to Alzheimer condition. MCI subjects and a group of age-matched healthy elderly (Ctrl) were enrolled and subjected to EEG recording during HV, eyes-closed (EC), and eyes-open (EO) conditions. Since the cognitive decline in MCI seems to be a progressive disconnection syndrome, the approach we used in the present study is the graph theory, which allows to describe brain networks with a series of different parameters. Small world (SW), modularity (M), and global efficiency (GE) indexes were computed among the EC, EO, and HV conditions comparing the MCI group to the Ctrl one. All the three graph parameters, computed in the typical EEG frequency bands, showed significant changes among the three conditions, and more interestingly, a significant difference in the GE values between the MCI group and the Ctrl one was obtained, suggesting that the combination of HV test and graph theory parameters should be a powerful tool for the detection of possible cerebral dysfunction and alteration.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy.
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Valeria Guglielmi
- Dipartimento Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa di Cura IGEA, Milano, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
2
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Burma JS, Macaulay A, Copeland P, Khatra O, Bouliane KJ, Smirl JD. Comparison of cerebrovascular reactivity recovery following high-intensity interval training and moderate-intensity continuous training. Physiol Rep 2020; 8:e14467. [PMID: 32506845 PMCID: PMC7276190 DOI: 10.14814/phy2.14467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022] Open
Abstract
A common inclusion criterion when assessing cerebrovascular (CVR) metrics is for individuals to abstain from exercise for 12-24 hr prior to data collections. While several studies have examined CVR during exercise, the literature describing CVR throughout post-exercise recovery is sparse. The current investigation examined CVR measurements in nine participants (seven male) before and for 8 hr following three conditions: 45-min moderate-continuous exercise (at ~50% heart-rate reserve), 25-min high-intensity intervals (ten, one-minute intervals at ~85% heart-rate reserve), and a control day (30-min quiet rest). The hypercapnic (40-60 mmHg) and hypocapnic (25-40 mmHg) slopes were assessed via a modified rebreathing technique and controlled stepwise hyperventilation, respectively. All testing was initiated at 8:00a.m. with transcranial Doppler ultrasound measurements to index cerebral blood velocity performed prior to the condition (pre) with serial follow-ups at zero, one, two, four, six, and eight hours within the middle and posterior cerebral artery (MCA, PCA). Absolute and relative MCA and PCA hypercapnic slopes were attenuated following high-intensity intervals at hours zero and one (all p < .02). No alterations were observed in either hypocapnic or hypercapnic slopes following the control or moderate-continuous exercise (all p > .13), aside from a reduced relative hypercapnic MCA slope at hours zero and one following moderate-continuous exercise (all p < .005). The current findings indicate the common inclusion criteria of a 12-24 hr time restriction on exercise can be reduced to two hours when performing CVR measures. Furthermore, the consistent nature of the CVR indices throughout the control day indicate reproducible testing sessions can be made between 8:00a.m. and 7:00p.m.
Collapse
Affiliation(s)
- Joel S. Burma
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
| | - Alannah Macaulay
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Paige Copeland
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Omeet Khatra
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Kevin J. Bouliane
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Jonathan D. Smirl
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular InstituteUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
4
|
Dericioglu N, Khasiyev F, Arsava EM, Topcuoglu MA. Frontal Intermittent Rhythmic Delta Activity (FIRDA) in the Neurological Intensive Care: Prevalence, Determinants, and Clinical Significance. Clin EEG Neurosci 2018; 49:272-277. [PMID: 28118746 DOI: 10.1177/1550059416688108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Frontal intermittent rhythmic delta activity (FIRDA), a transient rhythmic slow wave pattern over the anterior EEG leads, has been reported in a wide variety of cerebral lesions and different metabolic disturbances. Few authors have analyzed the frequency and clinical significance of FIRDA in the critical care setting. We aimed to better understand these issues in our intensive care cohort and if possible, try to delineate its underlying mechanisms. METHODS Video-EEG reports of consecutive adult patients in the neurological intensive care unit (NICU) since 2009 were retrospectively reviewed to identify cases with FIRDA. Demographic, clinical, and laboratory data were obtained from EEG reports and patient charts. Age- and sex-matched patients with acute stroke, hospitalized in NICU and no FIRDA on video-EEG monitoring served as the control group. RESULTS Among 162 patients who underwent video-EEG monitoring, FIRDA was documented in 17%. Female prevalence was 50% and age ranged from 23 to 82 years. Twenty-three (82%) of patients with FIRDA had a diagnosis of stroke. Comparison of demographic characteristics, EEG findings, metabolic disturbances and prognoses revealed no differences between stroke cases with and without FIRDA, except for higher frequency of acute and chronic isolated posterior circulation infarcts in patients with FIRDA. CONCLUSION FIRDA is more commonly encountered in the neurocritical care setting as compared with outpatient EEG clinics. Our findings in stroke patients indicate that involved vascular territories may be related to the generation of FIRDA.
Collapse
Affiliation(s)
- Nese Dericioglu
- 1 Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Farid Khasiyev
- 1 Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - E Murat Arsava
- 1 Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M Akif Topcuoglu
- 1 Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Lin FH, Chu YH, Hsu YC, Lin JFL, Tsai KWK, Tsai SY, Kuo WJ. Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Reproducibility of hypocapnic cerebrovascular reactivity measurements using BOLD fMRI in combination with a paced deep breathing task. Neuroimage 2014; 98:31-41. [DOI: 10.1016/j.neuroimage.2014.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022] Open
|
7
|
Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2012; 66:71-9. [PMID: 23099101 DOI: 10.1016/j.neuroimage.2012.10.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/21/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022] Open
Abstract
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p<0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Collapse
Affiliation(s)
- F Scholkmann
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland; Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Gerber
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland
| | - M Wolf
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Wolf
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
8
|
Motomura E, Inui K, Ohoyama K, Nishimura Y, Nakagawa M, Maeda M, Matsushima N, Ushiro K, Suzuki D, Kakigi R, Okada M. Electroencephalographic dipole source modeling of frontal intermittent rhythmic delta activity. Neuropsychobiology 2012; 65:103-8. [PMID: 22261644 DOI: 10.1159/000330011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/10/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Frontal intermittent rhythmic delta activity (FIRDA) on electroencephalography (EEG) consists of a run of rhythmic delta waves with frontal predominance. Although FIRDA is a relatively common abnormal EEG finding, the underlying mechanisms that produce FIRDA remain unclear. The aim of this study was to investigate the cortical source of FIRDA using dipole source modeling. METHODS We selected EEG epochs, including typical FIRDAs, from EEG recordings obtained using 25 scalp electrodes on 5 subjects. We averaged these epochs by arranging the negative peaks of the delta waves at the Fp electrodes and estimated dipoles for nine averaged waveforms. RESULTS Averaged waveforms were explained by a single-dipole model in seven FIRDAs and by a two-dipole model in the remaining two FIRDAs with high reliability. Estimated dipoles had a radial orientation with respect to the frontal pole and were located in the medial frontal region. The anterior cingulate cortex was the most common dipole location. CONCLUSIONS This is the first study to approach the fundamental FIRDA mechanism by dipole source modeling and to clarify that FIRDA may be generated from the medial frontal region, particularly from the anterior cingulate cortex.
Collapse
Affiliation(s)
- Eishi Motomura
- Department of Psychiatry, Division of Neuroscience, Institute of Medical Science, Mie University Graduate School of Medicine, Tsu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ponomareva NV, Goltsov AY, Kunijeva SS, Scheglova NS, Malina DD, Mitrofanov AA, Boikova TI, Rogaev EI. Age- and genotype-related neurophysiologic reactivity to oxidative stress in healthy adults. Neurobiol Aging 2011; 33:839.e11-21. [PMID: 22206848 DOI: 10.1016/j.neurobiolaging.2011.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/15/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
The epsilon4 allele of the apolipoprotein E gene (ApoE), as well as aging increase the risk of Alzheimer's and vascular diseases. Electroencephalogram (EEG) reactivity to hyperventilation (HV) depends on hypocapnia-induced cerebral vasoconstriction, which may be impaired in subjects with subclinical cerebrovascular disease. Quantitative EEG at rest and under 3-minute HV was examined in 125 healthy subjects divided into younger (age range 28-50) and older (age range 51-82) cohorts and stratified by ApoE genotype. The younger ApoE-epsilon4 carriers had excessive EEG reactivity to HV characterized by the manifestation of high-voltage delta, theta activity and sharp waves, and larger HV-induced changes in EEG relative powers than in the younger ApoE-epsilon4 noncarriers. EEG reactivity to HV decreased with aging, and in the ApoE-epsilon4 carriers the decrease was more pronounced than in the ApoE-epsilon4 noncarriers. The older ApoE-epsilon4 carriers had smaller HV-induced changes in EEG relative powers than the older ApoE-epsilon4 noncarriers. A marked decline of EEG reactivity to HV in the older ApoE-epsilon4 carriers suggests the possible impact of vascular factors on the pathogenesis of ApoE-induced Alzheimer disease.
Collapse
|
10
|
Brigo F. Intermittent rhythmic delta activity patterns. Epilepsy Behav 2011; 20:254-6. [PMID: 21276757 DOI: 10.1016/j.yebeh.2010.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Intermittent rhythmic delta activity is a typical EEG pattern that was originally described by W.A. Cobb in 1945 (J Neurol Neurosurg Psychiatr 1945;8:65-78). It may be classified into three distinct forms according to the main cortical region involved on the EEG: frontal (FIRDA), temporal (TIRDA), and occipital (OIRDA) intermittent delta activity. This article is a review of the main aspects of these patterns, with a special focus on EEG features and problems that may be encountered during interpretation of these patterns. In contrast to FIRDA and OIRDA, TIRDA is highly indicative of ipsilateral pathology. OIRDA and TIRDA are highly correlated with epilepsy, whereas FIRDA is a rather nonspecific EEG pattern.
Collapse
Affiliation(s)
- Francesco Brigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Accolla EA, Kaplan PW, Maeder-Ingvar M, Jukopila S, Rossetti AO. Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol 2011; 122:27-31. [PMID: 20673647 DOI: 10.1016/j.clinph.2010.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
|
12
|
Changes in visual-evoked potential habituation induced by hyperventilation in migraine. J Headache Pain 2010; 11:497-503. [PMID: 20625915 PMCID: PMC3476226 DOI: 10.1007/s10194-010-0239-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022] Open
Abstract
Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.
Collapse
|
13
|
Axmacher N, Lenz S, Haupt S, Elger CE, Fell J. Electrophysiological signature of working and long-term memory interaction in the human hippocampus. Eur J Neurosci 2010; 31:177-88. [DOI: 10.1111/j.1460-9568.2009.07041.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Siniatchkin M, van Baalen A, Jacobs J, Moeller F, Moehring J, Boor R, Wolff S, Jansen O, Stephani U. Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia 2007; 48:2312-21. [PMID: 17645543 DOI: 10.1111/j.1528-1167.2007.01195.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE West syndrome is a severe epileptic encephalopathy of infancy characterized by a poor developmental outcome and hypsarrhythmia. The pathogenesis of hypsarrhythmia is insufficiently understood. METHODS We investigated eight patients with infantile spasms and hypsarrhythmia (group I) and 8 children with complex partial seizures (group II) using simultaneous recordings of electroencephalogram (EEG) and functional MRI. Hemodynamic responses to epileptiform discharges and slow wave activity (EEG delta power) were analyzed separately. RESULTS In group I (mean age, 7.82 +/- 2.87 months), interictal spikes within the hypsarrhythmia were associated with positive blood oxygenation level-dependent (BOLD) changes in the cerebral cortex (especially occipital areas). This was comparable with cortical positive BOLD responses in group II (mean age, 20.75 +/- 12.52 months). Slow wave activity in group I correlated significantly with BOLD signal in voxels, which were localized in brainstem, thalamus, as well as different cortical areas. There was no association between BOLD effect and EEG delta power in group II. Moreover, as revealed by group analysis, group I differed from group II according to correlations between BOLD signal and slow wave activity in putamen and brainstem. CONCLUSIONS This study demonstrates that multifocal interictal spikes and high-amplitude slow wave activity within the hypsarrhythmia are associated with the activation of different neuronal networks. Although spikes caused a cortical activation pattern similar to that in focal epilepsies, slow wave activity produced a hypsarrhythmia-specific activation in cortex and subcortical structures such as brainstem, thalamus, and putamen.
Collapse
Affiliation(s)
- Michael Siniatchkin
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ponomareva NV, Korovaitseva GI, Rogaev EI. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging 2007; 29:819-27. [PMID: 17293007 DOI: 10.1016/j.neurobiolaging.2006.12.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 12/06/2006] [Accepted: 12/29/2006] [Indexed: 11/25/2022]
Abstract
Identification of preclinical markers is required for early diagnosis of Alzheimer's disease (AD) and cognitive dysfunction in advancing age. Quantitative EEG was examined in 145 individuals with AD, their unaffected relatives and unrelated individuals. The AD patients and their relatives were stratified by ApoE genotype. The resting EEG parameters were severely changed in AD patients, and in patients carrying the ApoE epsilon4 allele the decrease in alpha power was higher than in epsilon4 non-carriers. The resting EEG parameters were indistinguishable in AD relatives with different ApoE genotypes and similar to EEG pattern in common population. Under hyperventilation the presence of the epsilon4 allele in AD relatives was associated with the manifestation of synchronous high-voltage delta-, theta-activity and sharp-waves, pronounced decrease in alpha and increase in delta and theta relative powers. The data suggest that neurophysiological endophenotype of non-demented individuals at genetic risk for AD, characterized by increased excitability and dysfunction of deep brain and alpha rhythm-generating structures, may be revealed decades before the first clinical symptoms of presumable dementia.
Collapse
Affiliation(s)
- N V Ponomareva
- Institute of Neurology, Brain Research Department, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
16
|
Zumsteg D, Andrade DM, Del Campo JM, Wennberg R. Parietal lobe source localization and sensitivity to hyperventilation in a patient with subclinical rhythmic electrographic discharges of adults (SREDA). Clin Neurophysiol 2006; 117:2257-63. [PMID: 16931143 DOI: 10.1016/j.clinph.2006.07.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/09/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Subclinical rhythmic electrographic discharges of adults (SREDA) is currently considered a benign EEG pattern of uncertain significance. The underlying cortical sources and generating mechanisms are unknown. We performed a source localization analysis of SREDA with the aim of better understanding this unusual EEG pattern. METHODS Multiple spontaneous episodes of typical SREDA were recorded in a patient during continuous EEG monitoring. Additional SREDA episodes were induced by hyperventilation. Source localization was carried out using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). RESULTS SNPM of both time- and frequency-domain LORETA revealed a widespread biparietal cortical origin of SREDA, the anatomical distribution of which included the parietal operculum and the known vascular watershed areas between anterior, middle and posterior cerebral arteries. Vigorous deep hyperventilation induced SREDA on three of four attempts. Mean duration of the hyperventilation-induced SREDA was approximately three times longer than spontaneous events. CONCLUSIONS Investigations in this patient with typical SREDA revealed hyperventilation sensitivity and a posterior hemispheric source localization maximal in the parietal cortex bilaterally, in large part overlying the anatomical distribution of the vascular watershed areas. SIGNIFICANCE The source localization results and sensitivity to hyperventilation suggest some sort of association between cerebral vascular supply and SREDA, as originally proposed by Naquet et al. [Naquet R, Louard C, Rhodes J, Vigouroux M. A propos de certaines décharges paroxystiques du carrefour temporo-pariéto-occipital. Leur activation par l'hypoxie. Rev Neurol 1961;105:203-207.].
Collapse
Affiliation(s)
- Dominik Zumsteg
- Division of Neurology, Krembil Neuroscience Centre, University of Toronto, Toronto Western Hospital, 399 Bathurst St., Toronto, Ont., Canada M5T 2S8
| | | | | | | |
Collapse
|
17
|
Mathiak K, Fallgatter AJ. Combining Magnetoencephalography and Functional Magnetic Resonance Imaging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 68:121-48. [PMID: 16443012 DOI: 10.1016/s0074-7742(05)68005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Klaus Mathiak
- Department of Psychiatry, RWTH Aachen University D-52074 Aachen, Germany
| | | |
Collapse
|