1
|
Sagehorn M, Kisker J, Johnsdorf M, Gruber T, Schöne B. A comparative analysis of face and object perception in 2D laboratory and virtual reality settings: insights from induced oscillatory responses. Exp Brain Res 2024:10.1007/s00221-024-06935-3. [PMID: 39395060 DOI: 10.1007/s00221-024-06935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
In psychophysiological research, the use of Virtual Reality (VR) for stimulus presentation allows for the investigation of how perceptual processing adapts to varying degrees of realism. Previous time-domain studies have shown that perceptual processing involves modality-specific neural mechanisms, as evidenced by distinct stimulus-locked components. Analyzing induced oscillations across different frequency bands can provide further insights into neural processes that are not strictly phase-locked to stimulus onset. This study uses a simple perceptual paradigm presenting images of faces and cars on both a standard 2D monitor and in an immersive VR environment. To investigate potential modality-dependent differences in attention, cognitive load, and task-related post-movement processing, the induced alpha, theta and beta band responses are compared between the two modalities. No evidence was found for differences in stimulus-dependent attention or task-related post-movement processing between the 2D conditions and the realistic virtual conditions in electrode space, as posterior alpha suppression and re-synchronization of centro-parietal beta did not differ between conditions. However, source analysis revealed differences in the attention networks engaged during 2D and 3D perception. Midfrontal theta was significantly stronger in laboratory conditions, indicating higher cognitive load than in the VR environment. Exploratory analysis of posterior theta showed stronger responses in VR, possibly reflecting the processing of depth information provided only by the 3D material. In addition, the theta response seems to be generated by distinct neuronal sources under realistic virtual conditions indicating enhanced involvement of semantic information processing and social cognition.
Collapse
Affiliation(s)
- Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany.
| | - Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Lise-Meitner-Str. 3, 49076, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Manippa V, Palmisano A, Ventura M, Rivolta D. The Neural Correlates of Developmental Prosopagnosia: Twenty-Five Years on. Brain Sci 2023; 13:1399. [PMID: 37891769 PMCID: PMC10605188 DOI: 10.3390/brainsci13101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Faces play a crucial role in social interactions. Developmental prosopagnosia (DP) refers to the lifelong difficulty in recognizing faces despite the absence of obvious signs of brain lesions. In recent decades, the neural substrate of this condition has been extensively investigated. While early neuroimaging studies did not reveal significant functional and structural abnormalities in the brains of individuals with developmental prosopagnosia (DPs), recent evidence identifies abnormalities at multiple levels within DPs' face-processing networks. The current work aims to provide an overview of the convergent and contrasting findings by examining twenty-five years of neuroimaging literature on the anatomo-functional correlates of DP. We included 55 original papers, including 63 studies that compared the brain structure (MRI) and activity (fMRI, EEG, MEG) of healthy control participants and DPs. Despite variations in methods, procedures, outcomes, sample selection, and study design, this scoping review suggests that morphological, functional, and electrophysiological features characterize DPs' brains, primarily within the ventral visual stream. Particularly, the functional and anatomical connectivity between the Fusiform Face Area and the other face-sensitive regions seems strongly impaired. The cognitive and clinical implications as well as the limitations of these findings are discussed in light of the available knowledge and challenges in the context of DP.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Martina Ventura
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney 2145, Australia
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| |
Collapse
|
3
|
Sagehorn M, Johnsdorf M, Kisker J, Sylvester S, Gruber T, Schöne B. Real-life relevant face perception is not captured by the N170 but reflected in later potentials: A comparison of 2D and virtual reality stimuli. Front Psychol 2023; 14:1050892. [PMID: 37057177 PMCID: PMC10086431 DOI: 10.3389/fpsyg.2023.1050892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The perception of faces is one of the most specialized visual processes in the human brain and has been investigated by means of the early event-related potential component N170. However, face perception has mostly been studied in the conventional laboratory, i.e., monitor setups, offering rather distal presentation of faces as planar 2D-images. Increasing spatial proximity through Virtual Reality (VR) allows to present 3D, real-life-sized persons at personal distance to participants, thus creating a feeling of social involvement and adding a self-relevant value to the presented faces. The present study compared the perception of persons under conventional laboratory conditions (PC) with realistic conditions in VR. Paralleling standard designs, pictures of unknown persons and standard control images were presented in a PC- and a VR-modality. To investigate how the mechanisms of face perception differ under realistic conditions from those under conventional laboratory conditions, the typical face-specific N170 and subsequent components were analyzed in both modalities. Consistent with previous laboratory research, the N170 lost discriminatory power when translated to realistic conditions, as it only discriminated faces and controls under laboratory conditions. Most interestingly, analysis of the later component [230–420 ms] revealed more differentiated face-specific processing in VR, as indicated by distinctive, stimulus-specific topographies. Complemented by source analysis, the results on later latencies show that face-specific neural mechanisms are applied only under realistic conditions (A video abstract is available in the Supplementary material and via YouTube: https://youtu.be/TF8wiPUrpSY).
Collapse
Affiliation(s)
- Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
- *Correspondence: Merle Sagehorn,
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Sophia Sylvester
- Semantic Information Systems Research Group, Institute of Computer Science, Osnabrück University, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
4
|
Palmisano A, Chiarantoni G, Bossi F, Conti A, D'Elia V, Tagliente S, Nitsche MA, Rivolta D. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network. Sci Rep 2023; 13:2035. [PMID: 36739325 PMCID: PMC9899232 DOI: 10.1038/s41598-023-29124-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pareidolia refers to the perception of ambiguous sensory patterns as carrying a specific meaning. In its most common form, pareidolia involves human-like facial features, where random objects or patterns are illusionary recognized as faces. The current study investigated the neurophysiological correlates of face pareidolia via transcranial alternating current stimulation (tACS). tACS was delivered at gamma (40 Hz) frequency over critical nodes of the "face perception" network (i.e., right lateral occipito-temporal and left prefrontal cortex) of 75 healthy participants while completing four face perception tasks ('Mooney test' for faces, 'Toast test', 'Noise pareidolia test', 'Pareidolia task') and an object perception task ('Mooney test' for objects). In this single-blind, sham-controlled between-subjects study, participants received 35 min of either Sham, Online, (40Hz-tACS_ON), or Offline (40Hz-tACS_PRE) stimulation. Results showed that face pareidolia was causally enhanced by 40Hz-tACS_PRE in the Mooney test for faces in which, as compared to sham, participants more often misperceived scrambled stimuli as faces. In addition, as compared to sham, participants receiving 40Hz-tACS_PRE showed similar reaction times (RTs) when perceiving illusory faces and correctly recognizing noise stimuli in the Toast test, thus not exhibiting hesitancy in identifying faces where there were none. Also, 40Hz-tACS_ON induced slower rejections of face pareidolia responses in the Noise pareidolia test. The current study indicates that 40 Hz tACS can enhance pareidolic illusions in healthy individuals and, thus, that high frequency (i.e., gamma band) oscillations are critical in forming coherent and meaningful visual perception.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Giulio Chiarantoni
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | | | - Alessio Conti
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Vitiana D'Elia
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Serena Tagliente
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors (IfADo), Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.,School of Psychology, University of East London (UEL), London, UK
| |
Collapse
|
5
|
Johnsdorf M, Kisker J, Gruber T, Schöne B. Comparing encoding mechanisms in realistic virtual reality and conventional 2D laboratory settings: Event-related potentials in a repetition suppression paradigm. Front Psychol 2023; 14:1051938. [PMID: 36777234 PMCID: PMC9912617 DOI: 10.3389/fpsyg.2023.1051938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Although the human brain is adapted to function within three-dimensional environments, conventional laboratory research commonly investigates cognitive mechanisms in a reductionist approach using two-dimensional stimuli. However, findings regarding mnemonic processes indicate that realistic experiences in Virtual Reality (VR) are stored in richer and more intertwined engrams than those obtained from the conventional laboratory. Our study aimed to further investigate the generalizability of laboratory findings and to differentiate whether the processes underlying memory formation differ between VR and the conventional laboratory already in early encoding stages. Therefore, we investigated the Repetition Suppression (RS) effect as a correlate of the earliest instance of mnemonic processes under conventional laboratory conditions and in a realistic virtual environment. Analyses of event-related potentials (ERPs) indicate that the ERP deflections at several electrode clusters were lower in VR compared to the PC condition. These results indicate an optimized distribution of cognitive resources in realistic contexts. The typical RS effect was replicated under both conditions at most electrode clusters for a late time window. Additionally, a specific RS effect was found in VR at anterior electrodes for a later time window, indicating more extensive encoding processes in VR compared to the laboratory. Specifically, electrotomographic results (VARETA) indicate multimodal integration involving a broad cortical network and higher cognitive processes during the encoding of realistic objects. Our data suggest that object perception under realistic conditions, in contrast to the conventional laboratory, requires multisensory integration involving an interconnected functional system, facilitating the formation of intertwined memory traces in realistic environments.
Collapse
|
6
|
Singhal S, Ghosh P, Kumar N, Banerjee A. Parametric separation of phase-locked and non-phase-locked activity. J Neurophysiol 2023; 129:199-210. [PMID: 36541609 DOI: 10.1152/jn.00467.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brain dynamics recorded via electroencephalography (EEG) is conceptualized as a sum of two components: "phase-locked" and "non-phase-locked" to the stimulus. Phase-locked activity is often implicitly studied as event-related potentials (ERPs), and the trial-averaged estimates-evoked potentials (EP) considered both time-locked and phase-locked to the stimulus. The non-phase-locked activity, on the other hand, refers to an increase in power in a narrow band or broadband frequencies in the signal emerging at variable phases from stimulus initiation. Both components are understood to stem from different neuronal mechanisms; hence, accurately characterizing them is of immense importance to neuroscientific studies. Here, we discuss the drawbacks of currently used methods to separate the phase-locked and non-phase-locked activity and propose a novel concurrent phaser method (CPM) that simultaneously decomposes the two components. First, we establish that the single-trial separation of phase-locked and non-phase-locked power is an ill-posed problem. Second, using simulations where ground truth validation is possible, we elucidate how the estimation of non-phase-locked power gets biased by phase-locked power in the state-of-the-art averaging method and ways to resolve the issue using CPM. Next, we use two experimental EEG datasets-audio oddball and auditory steady-state responses (ASSR) to show that empirical signal-to-noise estimates warrant the usage of CPM to separate phase-locked and non-phase-locked activity. Thus, using ground truth validation from simulations and demonstration in real experimental scenarios, the efficacy of the proposed CPM is established.NEW & NOTEWORTHY Parametric models for estimation of phase-locked and non-phase-locked brain signals reveals how estimation of non-phase-locked component is biased by the variability of phase-locked component and at the level of single trial becomes an ill-posed problem. Furthermore, the modeling framework delimits the boundaries where traditional averaging approach can be trusted to estimate the phase-locked and non-phase-locked components.
Collapse
Affiliation(s)
- Shubham Singhal
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Priyanka Ghosh
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Neeraj Kumar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
7
|
Sarrias-Arrabal E, Eichau S, Galvao-Carmona A, Domínguez E, Izquierdo G, Vázquez-Marrufo M. Deficits in Early Sensory and Cognitive Processing Are Related to Phase and Nonphase EEG Activity in Multiple Sclerosis Patients. Brain Sci 2021; 11:brainsci11050629. [PMID: 34068315 PMCID: PMC8153279 DOI: 10.3390/brainsci11050629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/05/2022] Open
Abstract
Currently, there is scarce knowledge about the relation between spectral bands modulations and the basis of cognitive impairment in multiple sclerosis (MS). In this sense, analyzing the evoked or phase activity can confirm results from traditional event-related potential (ERP) studies. However, studying the induced or nonphase activity may be necessary to elucidate hidden compensatory or affected cognitive mechanisms. In this study, 30 remitting-relapsing multiple sclerosis patients and 30 healthy controls (HCs) matched in sociodemographic variables performed a visual oddball task. The main goal was to analyze phase and nonphase alpha and gamma bands by applying temporal spectral evolution (TSE) and its potential relation with cognitive impairment in these patients. The behavioural results showed slower reaction time and poorer accuracy in MS patients compared to controls. In contrast, the time-frequency analysis of electroencephalography (EEG) revealed a delay in latency and lower amplitude in MS patients in evoked and induced alpha compared to controls. With respect to the gamma band, there were no differences between the groups. In summary, MS patients showed deficits in early sensorial (evoked alpha activity) and cognitive processing (induced alpha activity in longer latencies), whereas the induced gamma band supported the hypothesis of its role in translation of attentional focus (induced activity) and did not show strong activity in this paradigm (visual oddball).
Collapse
Affiliation(s)
- Esteban Sarrias-Arrabal
- Experimental Psychology Department, Faculty of Psychology, University of Seville, 41018 Seville, Spain;
- Correspondence: ; Tel.: +34-676-182-823
| | - Sara Eichau
- Unit CSUR Multiple Sclerosis, Hospital Virgen Macarena, 41009 Seville, Spain;
| | | | - Elvira Domínguez
- Unit of Multiple Sclerosis, FISEVI, Hospital Virgen Macarena, 41009 Seville, Spain;
| | | | - Manuel Vázquez-Marrufo
- Experimental Psychology Department, Faculty of Psychology, University of Seville, 41018 Seville, Spain;
| |
Collapse
|
8
|
The steady-state visual evoked potential (SSVEP) reflects the activation of cortical object representations: evidence from semantic stimulus repetition. Exp Brain Res 2020; 239:545-555. [PMID: 33315126 PMCID: PMC7936959 DOI: 10.1007/s00221-020-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
We applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.
Collapse
|
9
|
Radtke EL, Schöne B, Martens U, Gruber T. Electrophysiological correlates of gist perception: a steady-state visually evoked potentials study. Exp Brain Res 2020; 238:1399-1410. [PMID: 32363553 PMCID: PMC7286871 DOI: 10.1007/s00221-020-05819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/23/2023]
Abstract
Gist perception refers to perceiving the substance or general meaning of a scene. To investigate its neuronal mechanisms, we used the steady-state visually evoked potential (SSVEP) method—an evoked oscillatory cortical response at the same frequency as a visual stimulus flickered at this frequency. Two neighboring stimuli were flickered at different frequencies f1 and f2, for example, a drawing of a sun on the left side of the screen flickering at 8.6 Hz and the drawing of a parasol on the right side of the screen flickering at 12 Hz. SSVEPs enabled us to separate the responses to the two distinct stimuli by extracting oscillatory brain responses at f1 and f2. Additionally, it allowed to investigate intermodulation frequencies, that is, the brain’s response at a linear combination of f1 and f2 (here at f1 + f2 = 20.6 Hz) as an indicator of processing shared aspects of the input, that is, gist perception (here: a beach scene). We recorded high-density EEG of 18 participants. Results revealed clear and separable neuronal oscillations at f1 and f2. Additionally, occipital electrodes showed increased amplitudes at the intermodulation frequency in related as compared to unrelated pairs. The increase in intermodulation frequency was associated with bilateral temporal and parietal lobe activation, probably reflecting the interaction of local object representations as a basis for activating the gist network. The study demonstrates that SSVEPs are an excellent method to unravel mechanisms underlying the processing within multi-stimulus displays in the context of gist perception.
Collapse
Affiliation(s)
- Elise L Radtke
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany.
| | - Benjamin Schöne
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| | - Ulla Martens
- DRK-Norddeutsches Epilepsiezentrum für Kinder und Jugendliche, Henry-Dunant-Str. 6-10, 24223, Schwentinental, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| |
Collapse
|
10
|
Schendan HE. Memory influences visual cognition across multiple functional states of interactive cortical dynamics. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Lui M, Lui KF, Wong ACN, Rosenfeld JP. Suppression of 12-Hz SSVEPs when viewing familiar faces: An electrophysiological index to detect recognition. Int J Psychophysiol 2018; 133:159-168. [DOI: 10.1016/j.ijpsycho.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
|
12
|
Bolton TAW, Jochaut D, Giraud AL, Van De Ville D. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation. Hum Brain Mapp 2018; 39:2391-2404. [PMID: 29504186 PMCID: PMC5969252 DOI: 10.1002/hbm.24009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 01/24/2023] Open
Abstract
To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie‐driven fluctuations. Here, we detected inter‐subject functional correlation (ISFC) transients to disentangle movie‐induced functional changes from underlying resting‐state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low‐level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short‐lived episodes of long‐range functional interplays.
Collapse
Affiliation(s)
- Thomas A W Bolton
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Delphine Jochaut
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Bonhage CE, Meyer L, Gruber T, Friederici AD, Mueller JL. Oscillatory EEG dynamics underlying automatic chunking during sentence processing. Neuroimage 2017; 152:647-657. [PMID: 28288909 DOI: 10.1016/j.neuroimage.2017.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022] Open
Abstract
Sentences are easier to remember than random word sequences, likely because linguistic regularities facilitate chunking of words into meaningful groups. The present electroencephalography study investigated the neural oscillations modulated by this so-called sentence superiority effect during the encoding and maintenance of sentence fragments versus word lists. We hypothesized a chunking-related modulation of neural processing during the encoding and retention of sentences (i.e., sentence fragments) as compared to word lists. Time-frequency analysis revealed a two-fold oscillatory pattern for the memorization of sentences: Sentence encoding was accompanied by higher delta amplitude (4Hz), originating both from regions processing syntax as well as semantics (bilateral superior/middle temporal regions and fusiform gyrus). Subsequent sentence retention was reflected in decreased theta (6Hz) and beta/gamma (27-32Hz) amplitude instead. Notably, whether participants simply read or properly memorized the sentences did not impact chunking-related activity during encoding. Therefore, we argue that the sentence superiority effect is grounded in highly automatized language processing mechanisms, which generate meaningful memory chunks irrespective of task demands.
Collapse
Affiliation(s)
- Corinna E Bonhage
- Max Planck Institute for Human Cognitive and Brain Sciences, Neuropsychology Department, Leipzig, Germany; Max Planck Institute for Empirical Aesthetics, Neuroscience Department, Frankfurt a. M., Germany.
| | - Lars Meyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Neuropsychology Department, Leipzig, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrueck University, Osnabrueck, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Neuropsychology Department, Leipzig, Germany
| | - Jutta L Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Neuropsychology Department, Leipzig, Germany; Institute of Cognitive Science, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
14
|
Steady-state visually evoked potential correlates of human body perception. Exp Brain Res 2016; 234:3133-3143. [PMID: 27364143 DOI: 10.1007/s00221-016-4711-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.
Collapse
|
15
|
Malinowski P, Moore AW, Mead BR, Gruber T. Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults. Mindfulness (N Y) 2015; 8:78-94. [PMID: 28163795 PMCID: PMC5241348 DOI: 10.1007/s12671-015-0482-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging.
Collapse
Affiliation(s)
- Peter Malinowski
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Adam W. Moore
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Bethan R. Mead
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Thomas Gruber
- Institute for Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
16
|
Behroozi M, Daliri MR, Shekarchi B. EEG phase patterns reflect the representation of semantic categories of objects. Med Biol Eng Comput 2015; 54:205-21. [PMID: 26400624 DOI: 10.1007/s11517-015-1391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Oscillations of electroencephalographic signals represent the cognitive processes arose from the behavioral task and sensory representations across the mental state activity. Previous studies have shown the relation between event-related EEG and sensory-cognitive representation and revealed that categorization of presented object can be successfully recognized using recorded EEG signals when subjects view objects. Here, EEG signals in conjunction with a multivariate pattern recognition technique were used for investigating the possibility to identify conceptual representation based on the presentation of 12 semantic categories of objects (5 exemplars per category). Using multivariate stimulus decoding methods, surprisingly, we demonstrate that how objects are discriminated from phase pattern of EEG signals across the time in low-frequency band (1-4 Hz), but not from power of oscillatory brain signals in the same frequency band. In contrast, discrimination accuracy from the power of EEG signals has significantly higher than the performance from phase of EEG signal in the high-frequency band (20-30 Hz). Moreover, our results indicate that how the accuracy of prediction changes between various areas of brain continuously across the time. In particular, we find that, during the object categorization task, the inter-trial phase coherence in low-frequency band is significantly higher than other frequency in various regions of interests. This measure is associated with decoding pattern across the time. These results suggest that the mechanism underlying conceptual representation can be mediated by the phase of oscillatory neural activity.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Biomedical Engineering Department, Faculty of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Niavaran, Tehran, Iran.,Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, Faculty of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran. .,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Niavaran, Tehran, Iran.
| | - Babak Shekarchi
- Radiology Department, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Schendan HE, Ganis G. Top-down modulation of visual processing and knowledge after 250 ms supports object constancy of category decisions. Front Psychol 2015; 6:1289. [PMID: 26441701 PMCID: PMC4584963 DOI: 10.3389/fpsyg.2015.01289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
People categorize objects more slowly when visual input is highly impoverished instead of optimal. While bottom-up models may explain a decision with optimal input, perceptual hypothesis testing (PHT) theories implicate top-down processes with impoverished input. Brain mechanisms and the time course of PHT are largely unknown. This event-related potential study used a neuroimaging paradigm that implicated prefrontal cortex in top-down modulation of occipitotemporal cortex. Subjects categorized more impoverished and less impoverished real and pseudo objects. PHT theories predict larger impoverishment effects for real than pseudo objects because top-down processes modulate knowledge only for real objects, but different PHT variants predict different timing. Consistent with parietal-prefrontal PHT variants, around 250 ms, the earliest impoverished real object interaction started on an N3 complex, which reflects interactive cortical activity for object cognition. N3 impoverishment effects localized to both prefrontal and occipitotemporal cortex for real objects only. The N3 also showed knowledge effects by 230 ms that localized to occipitotemporal cortex. Later effects reflected (a) word meaning in temporal cortex during the N400, (b) internal evaluation of prior decision and memory processes and secondary higher-order memory involving anterotemporal parts of a default mode network during posterior positivity (P600), and (c) response related activity in posterior cingulate during an anterior slow wave (SW) after 700 ms. Finally, response activity in supplementary motor area during a posterior SW after 900 ms showed impoverishment effects that correlated with RTs. Convergent evidence from studies of vision, memory, and mental imagery which reflects purely top-down inputs, indicates that the N3 reflects the critical top-down processes of PHT. A hybrid multiple-state interactive, PHT and decision theory best explains the visual constancy of object cognition.
Collapse
Affiliation(s)
- Haline E. Schendan
- School of Psychology, Cognition Institute, University of PlymouthPlymouth, UK
| | - Giorgio Ganis
- School of Psychology, Cognition Institute, University of PlymouthPlymouth, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestown, MA, USA
- Department of Radiology, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
18
|
Almeida Montes LG, Prado Alcántara H, Portillo Cedeño BA, Hernández García AO, Fuentes Rojas PE. Persistent decrease in alpha current density in fully remitted subjects with major depressive disorder treated with fluoxetine: A prospective electric tomography study. Int J Psychophysiol 2015; 96:191-200. [PMID: 25835548 DOI: 10.1016/j.ijpsycho.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is recurrent, and its pathophysiology is not fully understood. Studies using electric tomography (ET) have identified abnormalities in the current density (CD) of MDD subjects in regions associated with the neurobiology of MDD, such as the anterior cingulate cortex (ACC) and medial orbitofrontal cortex (mOFC). However, little is known regarding the long-term CD changes in MDD subjects who respond to antidepressants. The aim of this study was to compare CD between healthy and MDD subjects who received 1-year open-label treatment with fluoxetine. Thirty-two-channel electroencephalograms (EEGs) were collected from 70 healthy controls and 74 MDD subjects at baseline (pre-treatment), 1 and 2weeks and 1, 2, 6, 9 and 12months. Variable-resolution ET (VARETA) was used to assess the CD between subject groups at each time point. The MDD group exhibited decreased alpha CD (αCD) in the occipital and parietal cortices, ACC, mOFC, thalamus and caudate nucleus at each time point. The αCD abnormalities persisted in the MDD subjects despite their achieving full remission. The low sub-alpha band was different between the healthy and MDD subjects. Differences in the amount of αCD between sexes and treatment outcomes were observed. Lack of a placebo arm and the loss of depressed patients to follow-up were significant limitations. The persistence of the decrease in αCD might suggest that the underlying pathophysiologic mechanisms of MDD are not corrected despite the asymptomatic state of MDD subjects, which could be significant in understanding the highly recurrent nature of MDD.
Collapse
Affiliation(s)
- Luis Guillermo Almeida Montes
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México.
| | - Hugo Prado Alcántara
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Bertha Alicia Portillo Cedeño
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Ana Olivia Hernández García
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Patricia Elisa Fuentes Rojas
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| |
Collapse
|
19
|
Quirin M, Gruber T, Kuhl J, Düsing R. Is love right? Prefrontal resting brain asymmetry is related to the affiliation motive. Front Hum Neurosci 2013; 7:902. [PMID: 24416007 PMCID: PMC3874478 DOI: 10.3389/fnhum.2013.00902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Previous research on relationships between affective-motivational traits and hemispheric asymmetries in resting frontal alpha band power as measured by electroencephalography (EEG) focused on individual differences in motivational direction (approach vs. withdrawal) or behavioral activation. The present study investigated resting frontal alpha asymmetries in 72 participants as a function of individual differences in the implicit affiliation motive as measured with the operant motive test (OMT) and explored the brain source thereof. Decreased relative right frontal activity as indexed by increased alpha band power was related to low levels of the implicit affiliation motive. No relationships were found for explicit personality measures. Intracranial current density distributions of alpha based on Variable Resolution Electromagnetic Tomography (VARETA) source estimations suggests that the source of cortical alpha distribution is located within the right ventromedial prefrontal cortex (PFC). The present results are discussed with respect to differential roles of the two hemispheres in social motivation.
Collapse
Affiliation(s)
- Markus Quirin
- *Correspondence: Markus Quirin, Institut für Psychologie, University of Osnabrueck, Room No 15/302, Seminarstraße 20, 49074 Osnabrueck, Germany e-mail:
| | | | | | | |
Collapse
|
20
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|
21
|
Glutamatergic correlates of gamma-band oscillatory activity during cognition: a concurrent ER-MRS and EEG study. Neuroimage 2013; 85 Pt 2:823-33. [PMID: 23891885 DOI: 10.1016/j.neuroimage.2013.07.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022] Open
Abstract
Frequency specific synchronisation of neuronal firing within the gamma-band (30-70 Hz) appears to be a fundamental correlate of both basic sensory and higher cognitive processing. In-vitro studies suggest that the neurochemical basis of gamma-band oscillatory activity is based on interactions between excitatory (i.e. glutamate) and inhibitory (i.e. GABA) neurotransmitter concentrations. However, the nature of the relationship between excitatory neurotransmitter concentration and changes in gamma band activity in humans remains undetermined. Here, we examine the links between dynamic glutamate concentration and the formation of functional gamma-band oscillatory networks. Using concurrently acquired event-related magnetic resonance spectroscopy and electroencephalography, during a repetition-priming paradigm, we demonstrate an interaction between stimulus type (object vs. abstract pictures) and repetition in evoked gamma-band oscillatory activity, and find that glutamate levels within the lateral occipital cortex, differ in response to these distinct stimulus categories. Importantly, we show that dynamic glutamate levels are related to the amplitude of stimulus evoked gamma-band (but not to beta, alpha or theta or ERP) activity. These results highlight the specific connection between excitatory neurotransmitter concentration and amplitude of oscillatory response, providing a novel insight into the relationship between the neurochemical and neurophysiological processes underlying cognition.
Collapse
|
22
|
Götz T, Huonker R, Kranczioch C, Reuken P, Witte OW, Günther A, Debener S. Impaired evoked and resting-state brain oscillations in patients with liver cirrhosis as revealed by magnetoencephalography. NEUROIMAGE-CLINICAL 2013; 2:873-82. [PMID: 24179838 PMCID: PMC3777687 DOI: 10.1016/j.nicl.2013.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
A number of studies suggest that the clinical manifestation of neurological deficits in hepatic encephalopathy results from pathologically synchronized neuronal oscillations and altered oscillatory coupling. In the present study spontaneous and evoked oscillatory brain activities were analyzed jointly with established behavioral measures of altered visual oscillatory processing. Critical flicker and fusion frequencies (CFF, FUF) were measured in 25 patients diagnosed with liver cirrhosis and 30 healthy controls. Magnetoencephalography (MEG) data were collected at rest and during a visual task employing repetitive stimulation. Resting MEG and evoked fields were analyzed. CFF and FUF were found to be reduced in patients, providing behavioral evidence for deficits in visual oscillatory processing. These alterations were found to be related to resting brain activity in patients, namely that the lower the dominant MEG frequency at rest, the lower the CFF and FUF. An analysis of evoked fields at sensor level indicated that in comparison to normal controls, patients were not able to dynamically adapt to flickering visual stimulation. Evoked activity was also analyzed based on independent components (ICs) derived by independent component analysis. The similarity between the shape of each IC and an artificial sine function representing the stimulation frequency was tested via magnitude squared coherence. In controls, we observed a small number of components that correlated strongly with the sine function and a high number of ICs that did not correlate with the sine function. Interestingly, patient data were characterized by a high number of moderately correlating components. Taken together, these results indicate a fundamental divergence of the cerebral resonance activity in cirrhotic patients.
Collapse
Key Words
- CFF, critical flicker frequency
- CON, control
- CSI, component similarity index
- Critical flicker and fusion frequency
- EEG, electroencephalography
- EMG, electromyogram
- ERA, event related averages
- FUF, fusion frequency
- GSI, general similarity index
- GW, Gabor wavelet
- HE, hepatic encephalopathy
- HESA, hepatic encephalopathy scoring algorithm
- ICA, independent component analysis
- Impaired neuronal oscillations
- Liver cirrhosis
- MEG, magnetoencephalography
- MELD score, model of end-stage liver disease-score
- MSC, magnitude squared coherence
- PCA, principal component analysis
- Resting frequency
- SSVEF/SSVEP/SSVER, steady state visual evoked field/potential/response
- SW, sine wave
- Visual steady state evoked fields
Collapse
Affiliation(s)
- Theresa Götz
- Biomagnetic Center, Department of Neurology, University Hospital Jena, Erlanger Allee 101, 07747 Jena, Germany ; CSCC, Center for Sepsis Control and Care, Erlanger 101, 07747 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Hassler U, Friese U, Martens U, Trujillo-Barreto N, Gruber T. Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. Eur J Neurosci 2013; 38:2425-33. [DOI: 10.1111/ejn.12244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Uwe Hassler
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | - Uwe Friese
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ulla Martens
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | | | - Thomas Gruber
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| |
Collapse
|
24
|
Chen Y, Pan F, Wang H, Xiao S, Zhao L. Electrophysiological correlates of processing own- and other-race faces. Brain Topogr 2013; 26:606-15. [PMID: 23584931 DOI: 10.1007/s10548-013-0286-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/30/2013] [Indexed: 10/27/2022]
Abstract
Most adults have more experience in identifying faces of their own race than in identifying faces from another race, and thus may be considered as own-race face experts. This effect was investigated by recording and analyzing ERPs as well as induced gamma oscillations. The race modulation occurred post the stage of structural processing revealed by N170. Larger P2 component and induced gamma activity for own-race than other-race faces could be associated with more elaborate processing on the basis of configural computation due to more experience that we have for own-race faces.
Collapse
Affiliation(s)
- Yan Chen
- School of Education Science, Nantong University, Nantong, China
| | | | | | | | | |
Collapse
|
25
|
Friese U, Köster M, Hassler U, Martens U, Trujillo-Barreto N, Gruber T. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage 2012; 66:642-7. [PMID: 23142278 DOI: 10.1016/j.neuroimage.2012.11.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Although previous studies have established that successful memory encoding is associated with increased synchronization of theta-band and gamma-band oscillations, it is unclear if there is a functional relationship between oscillations in these frequency bands. Using scalp-recorded EEG in healthy human participants, we demonstrate that cross-frequency coupling between frontal theta phase and posterior gamma power is enhanced during the encoding of visual stimuli which participants later on remember versus items which participants subsequently forget ("subsequent memory effect," SME). Conventional wavelet analyses and source localizations revealed SMEs in spectral power of theta-, alpha-, and gamma-band. Successful compared to unsuccessful encoding was reflected in increased theta-band activity in right frontal cortex as well as increased gamma-band activity in parietal-occipital regions. Moreover, decreased alpha-band activity in prefrontal and occipital cortex was also related to successful encoding. Overall, these findings support the idea that during the formation of new memories frontal cortex regions interact with cortical representations in posterior areas.
Collapse
Affiliation(s)
- Uwe Friese
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and Pathophysiology, Hamburg, Germany; Institute of Psychology, University of Osnabrueck, Germany.
| | - Moritz Köster
- Institute of Psychology, University of Osnabrueck, Germany; Institute of Cognitive Science, University of Osnabrueck, Germany
| | - Uwe Hassler
- Institute of Psychology, University of Osnabrueck, Germany
| | - Ulla Martens
- Institute of Psychology, University of Osnabrueck, Germany
| | | | - Thomas Gruber
- Institute of Psychology, University of Osnabrueck, Germany
| |
Collapse
|
26
|
|
27
|
Martens U, Gruber T. Sharpening and formation: two distinct neuronal mechanisms of repetition priming. Eur J Neurosci 2012; 36:2989-95. [DOI: 10.1111/j.1460-9568.2012.08222.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Sander MC, Lindenberger U, Werkle-Bergner M. Lifespan age differences in working memory: a two-component framework. Neurosci Biobehav Rev 2012; 36:2007-33. [PMID: 22771333 DOI: 10.1016/j.neubiorev.2012.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
We suggest that working memory (WM) performance can be conceptualized as the interplay of low-level feature binding processes and top-down control, relating to posterior and frontal brain regions and their interaction in a distributed neural network. We propose that due to age-differential trajectories of posterior and frontal brain regions top-down control processes are not fully mature until young adulthood and show marked decline with advancing age, whereas binding processes are relatively mature in children, but show senescent decline in older adults. A review of the literature spanning from middle childhood to old age shows that binding and top-down control processes undergo profound changes across the lifespan. We illustrate commonalities and dissimilarities between children, younger adults, and older adults reflecting the change in the two components' relative contribution to visual WM performance across the lifespan using results from our own lab. We conclude that an integrated account of visual WM lifespan changes combining research from behavioral neuroscience and cognitive psychology of child development as well as aging research opens avenues to advance our understanding of cognition in general.
Collapse
Affiliation(s)
- Myriam C Sander
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany.
| | | | | |
Collapse
|
29
|
Moore A, Gruber T, Derose J, Malinowski P. Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control. Front Hum Neurosci 2012; 6:18. [PMID: 22363278 PMCID: PMC3277272 DOI: 10.3389/fnhum.2012.00018] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/29/2012] [Indexed: 01/08/2023] Open
Abstract
Mindfulness-based meditation practices involve various attentional skills, including the ability to sustain and focus ones attention. During a simple mindful breathing practice, sustained attention is required to maintain focus on the breath while cognitive control is required to detect mind wandering. We thus hypothesized that regular, brief mindfulness training would result in improvements in the self-regulation of attention and foster changes in neuronal activity related to attentional control. A longitudinal randomized control group EEG study was conducted. At baseline (T1), 40 meditation naïve participants were randomized into a wait list group and a meditation group, who received three hours mindfulness meditation training. Twenty-eight participants remained in the final analysis. At T1, after eight weeks (T2) and after 16 weeks (T3), all participants performed a computerized Stroop task (a measure of attentional control) while the 64-channel EEG was recorded. Between T1 and T3 the meditators were requested to meditate daily for 10 min. Event-related potential (ERP) analysis highlighted two between group effects that developed over the course of the 16-week mindfulness training. An early effect at left and right posterior sites 160-240 ms post-stimulus indicated that meditation practice improved the focusing of attentional resources. A second effect at central posterior sites 310-380 ms post-stimulus reflects that meditation practice reduced the recruitment of resources during object recognition processes, especially for incongruent stimuli. Scalp topographies and source analyses (Variable Resolution Electromagnetic Tomography, VARETA) indicate relevant changes in neural sources, pertaining to left medial and lateral occipitotemporal areas for the early effect and right lateral occipitotemporal and inferior temporal areas for the later effect. The results suggest that mindfulness meditation may alter the efficiency of allocating cognitive resources, leading to improved self-regulation of attention.
Collapse
Affiliation(s)
- Adam Moore
- School of Natural Sciences and Psychology, Liverpool John Moores University Liverpool, UK
| | | | | | | |
Collapse
|
30
|
Perceiving the tree in the woods: segregating brain responses to stimuli constituting natural scenes. J Neurosci 2012; 31:17713-8. [PMID: 22131431 DOI: 10.1523/jneurosci.4743-11.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conventional neuroscientific methods are inadequate for separating the brain responses related to the simultaneous processing of different parts of a natural scene. In the present human electroencephalogram (EEG) study, we overcame this limitation by tagging concurrently presented backgrounds and objects with different presentation frequencies. As a result, background and object elicited different steady-state visual evoked potentials (SSVEPs), which were separately quantified in the frequency domain. We analyzed the effects of semantic consistency and inconsistency between background and object on SSVEP amplitudes, topography, and tomography [variable resolution electromagnetic tomography (VARETA)]. The results revealed that SSVEPs related to background processing showed higher amplitudes in the consistent as opposed to the inconsistent condition, whereas object-related SSVEPs showed the reversed pattern of effects. Given the SSVEPs' sensitivity to visual attention, the results indicate that semantic inconsistency leads to greater attention focused on the object. If all image parts are semantically related, attention is rather directed to the background. The attentional advantage to inconsistent objects in a scene is likely the result of a mismatch between background-based expectations and semantic object information. A clear lateralization of the consistency effect in the anterior temporal lobes indicates functional hemispheric asymmetries in processing background- and object-related semantic information. In summary, the present study is the first to demonstrate the feasibility of SSVEPs to unravel the respective contributions of concurrent neuronal processes involved in the perception of background and object.
Collapse
|
31
|
Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI. Clin Neurophysiol 2012; 123:1536-48. [PMID: 22305306 DOI: 10.1016/j.clinph.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/30/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. METHODS We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. RESULTS Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. CONCLUSIONS These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. SIGNIFICANCE Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI.
Collapse
|
32
|
Oppermann F, Hassler U, Jescheniak JD, Gruber T. The Rapid Extraction of Gist—Early Neural Correlates of High-level Visual Processing. J Cogn Neurosci 2012; 24:521-9. [DOI: 10.1162/jocn_a_00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.
Collapse
|
33
|
Friese U, Supp GG, Hipp JF, Engel AK, Gruber T. Oscillatory MEG gamma band activity dissociates perceptual and conceptual aspects of visual object processing: A combined repetition/conceptual priming study. Neuroimage 2012; 59:861-71. [PMID: 21835246 DOI: 10.1016/j.neuroimage.2011.07.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 11/18/2022] Open
Affiliation(s)
- Uwe Friese
- Institute of Psychology, University of Osnabrueck, Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
34
|
Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ. Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. Neuroimage 2011; 59:3909-21. [PMID: 22122866 PMCID: PMC3382730 DOI: 10.1016/j.neuroimage.2011.11.005] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 11/08/2022] Open
Abstract
The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to volume conduction and field spread, spurious estimates may be obtained when functional connectivity is estimated on the basis of the extra-cranial recordings directly. Connectivity estimates on the basis of reconstructed sources may similarly be affected by biases introduced by the source reconstruction approach. Here we propose an analysis framework to reliably determine functional connectivity that is based around two main ideas: (i) functional connectivity is computed for a set of atlas-based ROIs in anatomical space that covers almost the entire brain, aiding the interpretation of MEG functional connectivity/network studies, as well as the comparison with other modalities; (ii) volume conduction and similar bias effects are removed by using a functional connectivity estimator that is insensitive to these effects, namely the Phase Lag Index (PLI). Our analysis approach was applied to eyes-closed resting-state MEG data for thirteen healthy participants. We first demonstrate that functional connectivity estimates based on phase coherence, even at the source-level, are biased due to the effects of volume conduction and field spread. In contrast, functional connectivity estimates based on PLI are not affected by these biases. We then looked at mean PLI, or weighted degree, over areas and subjects and found significant mean connectivity in three (alpha, beta, gamma) of the five (including theta and delta) classical frequency bands tested. These frequency-band dependent patterns of resting-state functional connectivity were distinctive; with the alpha and beta band connectivity confined to posterior and sensorimotor areas respectively, and with a generally more dispersed pattern for the gamma band. Generally, these patterns corresponded closely to patterns of relative source power, suggesting that the most active brain regions are also the ones that are most-densely connected. Our results reveal for the first time, using an analysis framework that enables the reliable characterisation of resting-state dynamics in the human brain, how resting-state networks of functionally connected regions vary in a frequency-dependent manner across the cortex.
Collapse
Affiliation(s)
- Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Clarke A, Taylor KI, Tyler LK. The Evolution of Meaning: Spatio-temporal Dynamics of Visual Object Recognition. J Cogn Neurosci 2011; 23:1887-99. [DOI: 10.1162/jocn.2010.21544] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.
Collapse
Affiliation(s)
| | - Kirsten I. Taylor
- 1University of Cambridge, United Kingdom
- 2University Hospital Basel, Switzerland
| | | |
Collapse
|
36
|
Hassler U, Barreto NT, Gruber T. Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. Neuroimage 2011; 57:1411-21. [PMID: 21645624 DOI: 10.1016/j.neuroimage.2011.05.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/16/2011] [Accepted: 05/21/2011] [Indexed: 11/17/2022] Open
Abstract
Induced gamma band responses (iGBRs) in the human electroencephalogram (EEG) have been ascribed to the activation of cortical object representations. Recently, this claim was challenged and it was stated that iGBRs occurring in the time window between 200 and 350 ms after stimulus onset are, to a great extent, generated by an electromyogenic artifact caused by miniature saccades (MS). In the present paper we focus on the characterization of iGBRs during the activation of cortical object representations, when recordings have been controlled for saccade-related transient potentials. For this we present an algorithm for the correction of saccade-related transient potentials (COSTRAP) which identifies and notably suppresses transient spike potentials (TSPs) that are likely to be linked to MSs. Furthermore, we conducted an EEG study to demonstrate (1) the feasibility of the algorithm, (2) the cortical origin iGBRs and (3) their relation to cortical object representations. Our results revealed that (i) it is possible to isolate TSPs, (ii) the morphology of the cleansed iGBR cannot be explained by an underlying myogenic artifact and (iii) the remaining iGBRs are sensitive to object recognition. Therefore we conclude that, with saccadic artifacts being controlled, high-frequency oscillations in human EEG are reliable electrophysiological correlates of cognitive processes.
Collapse
Affiliation(s)
- Uwe Hassler
- University of Osnabrueck, Unit: General and Experimental Psychology I, Osnabrueck, Germany.
| | | | | |
Collapse
|
37
|
Aissani C, Cottereau B, Dumas G, Paradis AL, Lorenceau J. Magnetoencephalographic signatures of visual form and motion binding. Brain Res 2011; 1408:27-40. [PMID: 21782159 DOI: 10.1016/j.brainres.2011.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 05/13/2011] [Accepted: 05/20/2011] [Indexed: 11/26/2022]
Abstract
This study investigates neural magneto-encephalographic (MEG) correlates of visual form and motion binding. Steady-state visual evoked fields (SSVEF) were recorded in MEG while observers reported their bound or unbound perception of moving bars arranged in a square shape. By using pairs of oscillating vertical and horizontal bars, "frequency-tagged" at f1 and f2, we identified a region with enhanced sustained power at 2f1+2f2 intermodulation frequency correlated with perceptual reports. Intermodulation power is more important during perceptual form/motion integration than during the perceptual segmentation of the stimulus into individual component motions, indicating that intermodulation frequency power is a neuromarker of form/motion integration. Source reconstruction of cortical activities at the relevant frequencies further reveals well segregated activity in the occipital lobe at the fundamental of the stimulation, f1 and f2, widely spread activity at 2f1 and 2f2 and a focal activity in the medial part of the right precentral sulcus region at the intermodulation component, 2f1+2f2. The present findings indicate that motion tagging provides a powerful way of investigating the processes underlying visual form/motion binding non-invasively in humans.
Collapse
Affiliation(s)
- Charles Aissani
- CRICM, Cogimage, Université Pierre and Marie Curie, UMR 7225, CNRS, INSERM, 47 Bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
38
|
Dobel C, Junghöfer M, Gruber T. The role of gamma-band activity in the representation of faces: reduced activity in the fusiform face area in congenital prosopagnosia. PLoS One 2011; 6:e19550. [PMID: 21573175 PMCID: PMC3088687 DOI: 10.1371/journal.pone.0019550] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Congenital prosopagnosia (CP) describes an impairment in face processing that is presumably present from birth. The neuronal correlates of this dysfunction are still under debate. In the current paper, we investigate high-frequent oscillatory activity in response to faces in persons with CP. Such neuronal activity is thought to reflect higher-level representations for faces. METHODOLOGY Source localization of induced Gamma-Band Responses (iGBR) measured by magnetoencephalography (MEG) was used to establish the origin of oscillatory activity in response to famous and unknown faces which were presented in upright and inverted orientation. Persons suffering from congenital prosopagnosia (CP) were compared to matched controls. PRINCIPAL FINDINGS Corroborating earlier research, both groups revealed amplified iGBR in response to upright compared to inverted faces predominately in a time interval between 170 and 330 ms and in a frequency range from 50-100 Hz. Oscillatory activity upon known faces was smaller in comparison to unknown faces, suggesting a "sharpening" effect reflecting more efficient processing for familiar stimuli. These effects were seen in a wide cortical network encompassing temporal and parietal areas involved in the disambiguation of homogenous stimuli such as faces, and in the retrieval of semantic information. Importantly, participants suffering from CP displayed a strongly reduced iGBR in the left fusiform area compared to control participants. CONCLUSIONS In sum, these data stress the crucial role of oscillatory activity for face representation and demonstrate the involvement of a distributed occipito-temporo-parietal network in generating iGBR. This study also provides the first evidence that persons suffering from an agnosia actually display reduced gamma band activity. Finally, the results argue strongly against the view that oscillatory activity is a mere epiphenomenon brought fourth by rapid eye-movements (micro saccades).
Collapse
Affiliation(s)
- Christian Dobel
- Institute for Biomagnetism and Biosignalanalyis, Otto Creutzfeldt Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | | | |
Collapse
|
39
|
Kamijo K, Takeda Y, Hillman CH. The relation of physical activity to functional connectivity between brain regions. Clin Neurophysiol 2011; 122:81-9. [DOI: 10.1016/j.clinph.2010.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/06/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
|
40
|
Is my mobile ringing? Evidence for rapid processing of a personally significant sound in humans. J Neurosci 2010; 30:7310-3. [PMID: 20505097 DOI: 10.1523/jneurosci.1113-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anecdotal reports and also empirical observations suggest a preferential processing of personally significant sounds. The utterance of one's own name, the ringing of one's own telephone, or the like appear to be especially effective for capturing attention. However, there is a lack of knowledge about the time course and functional neuroanatomy of the voluntary and the involuntary detection of personally significant sounds. To address this issue, we applied an active and a passive listening paradigm, in which male and female human participants were presented with the SMS ringtone of their own mobile and other's ringtones, respectively. Enhanced evoked oscillatory activity in the 35-75 Hz band for one's own ringtone shows that the brain distinguishes complex personally significant and nonsignificant sounds, starting as early as 40 ms after sound onset. While in animals it has been reported that the primary auditory cortex accounts for acoustic experience-based memory matching processes, results from the present study suggest that in humans these processes are not confined to sensory processing areas. In particular, we found a coactivation of left auditory areas and left frontal gyri during passive listening. Active listening evoked additional involvement of sensory processing areas in the right hemisphere. This supports the idea that top-down mechanisms affect stimulus representations even at the level of sensory cortices. Furthermore, active detection of sounds additionally activated the superior parietal lobe supporting the existence of a frontoparietal network of selective attention.
Collapse
|
41
|
Eulitz C, Hannemann R. On the matching of top-down knowledge with sensory input in the perception of ambiguous speech. BMC Neurosci 2010; 11:67. [PMID: 20525210 PMCID: PMC2891792 DOI: 10.1186/1471-2202-11-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 06/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How does the brain repair obliterated speech and cope with acoustically ambivalent situations? A widely discussed possibility is to use top-down information for solving the ambiguity problem. In the case of speech, this may lead to a match of bottom-up sensory input with lexical expectations resulting in resonant states which are reflected in the induced gamma-band activity (GBA). METHODS In the present EEG study, we compared the subject's pre-attentive GBA responses to obliterated speech segments presented after a series of correct words. The words were a minimal pair in German and differed with respect to the degree of specificity of segmental phonological information. RESULTS The induced GBA was larger when the expected lexical information was phonologically fully specified compared to the underspecified condition. Thus, the degree of specificity of phonological information in the mental lexicon correlates with the intensity of the matching process of bottom-up sensory input with lexical information. CONCLUSIONS These results together with those of a behavioural control experiment support the notion of multi-level mechanisms involved in the repair of deficient speech. The delineated alignment of pre-existing knowledge with sensory input is in accordance with recent ideas about the role of internal forward models in speech perception.
Collapse
Affiliation(s)
- C Eulitz
- Department of Linguistics, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
42
|
Kaspar K, Hassler U, Martens U, Trujillo-Barreto N, Gruber T. Steady-state visually evoked potential correlates of object recognition. Brain Res 2010; 1343:112-21. [PMID: 20450897 DOI: 10.1016/j.brainres.2010.04.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 11/15/2022]
Abstract
In present high density electroencephalogram (EEG) study, we examined steady-state visual evoked potential (SSVEP) correlates of object recognition. In SSVEP tasks a visual stimulus is presented repetitively at a specific flickering rate and typically elicits a continuous oscillatory brain response. This response is characterized by the same fundamental frequency as the initiating stimulus. The stimulus material consisted of a series of pictures depicting familiar and unfamiliar objects which have been successfully applied in previous EEG studies on object recognition. In particular, we presented familiar and unfamiliar objects at rates of 7.5, 12 and 15Hz. At all three driving frequencies, we found specific SSVEPs that furthermore showed significant amplitude differences between familiar and unfamiliar objects. The familiar/unfamiliar effects were localized to early occipital, lateral occipital and temporal areas by means of VARETA (Variable Resolution Electromagnetic Tomography). Interestingly, the morphology of the familiar/unfamiliar effect differed between flicker rates. The 12 and 15Hz conditions revealed higher SSVEP amplitudes for familiar as opposed to unfamiliar objects, whereas in the 7.5Hz condition the effect was reversed. We concluded that SSVEPs are sensitive to stimuli's semantic content. Thus, SSVEP paradigms open new venues to study object recognition. Nonetheless, selecting appropriate driving frequencies is non-trivial, because flicker rate might have an influence on the observed effects.
Collapse
Affiliation(s)
- Kai Kaspar
- University of Osnabrück, Institute of Cognitive Science, 49069 Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
43
|
Object-sensitive activity reflects earlier perceptual and later cognitive processing of visual objects between 95 and 500ms. Brain Res 2010; 1329:124-41. [DOI: 10.1016/j.brainres.2010.01.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 11/17/2022]
|
44
|
Chaumon M, Schwartz D, Tallon-Baudry C. Unconscious learning versus visual perception: dissociable roles for gamma oscillations revealed in MEG. J Cogn Neurosci 2010; 21:2287-99. [PMID: 18855554 DOI: 10.1162/jocn.2008.21155] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Oscillatory synchrony in the gamma band (30-120 Hz) has been involved in various cognitive functions including conscious perception and learning. Explicit memory encoding, in particular, relies on enhanced gamma oscillations. Does this finding extend to unconscious memory encoding? Can we dissociate gamma oscillations related to unconscious learning and to conscious perception? We investigate these issues in a magnetoencephalographic experiment using a modified version of the contextual cueing paradigm. In this visual search task, repeated presentation of search arrays triggers an unconscious spatial learning process that speeds reaction times but leaves conscious perception unaffected. In addition to a high-frequency perceptual gamma activity present throughout the experiment, we reveal the existence of a fronto-occipital network synchronized in the low gamma range specifically engaged in unconscious learning. This network shows up as soon as a display is searched for the second time and disappears as behavior gets affected. We suggest that oscillations in this network shape neural processing to build an efficient neural route for learned displays. Accordingly, in the last part of the experiment, evoked responses dissociate learned images at early latencies, suggesting that a sharpened representation is activated without resort on learning gamma oscillations, whereas perceptual gamma oscillations remain unaffected.
Collapse
Affiliation(s)
- Maximilien Chaumon
- Université Pierre et Marie Curie (Paris6), LENA CNRS UPR640, Paris, France.
| | | | | |
Collapse
|
45
|
Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 2009; 34:981-92. [PMID: 19744515 DOI: 10.1016/j.neubiorev.2009.09.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 06/03/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Gamma-band oscillations (roughly 30-100 Hz) in human and animal EEG have received considerable attention in the past due to their correlations with cognitive processes. Here, we want to sketch how some of the higher cognitive functions can be explained by memory processes which are known to modulate gamma activity. Especially, the function of binding together the multiple features of a perceived object requires a comparison with contents stored in memory. In addition, we review recent findings about the actual behavioral relevance of human gamma-band activity. Interestingly, rather simple models of spiking neurons are not only able to generate oscillatory activity within the gamma-band range, but even show modulations of these oscillations in line with findings from human experiments.
Collapse
Affiliation(s)
- Christoph S Herrmann
- Department of Experimental Psychology, Carl-von-Ossietzky University, Oldenburg, Germany.
| | | | | |
Collapse
|
46
|
Werkle-Bergner M, Shing YL, Müller V, Li SC, Lindenberger U. EEG gamma-band synchronization in visual coding from childhood to old age: Evidence from evoked power and inter-trial phase locking. Clin Neurophysiol 2009; 120:1291-302. [DOI: 10.1016/j.clinph.2009.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 03/13/2009] [Accepted: 04/21/2009] [Indexed: 11/29/2022]
|
47
|
The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades. Brain Topogr 2009; 22:3-6. [PMID: 19234781 DOI: 10.1007/s10548-009-0077-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The contraction of the extra-ocular muscles, during the execution of saccades, produces a strong electric potential in the EEG called the saccadic spike potential (SP). At the frequency spectrum, this SP manifests as a broadband response with most of its power at the gamma-band frequencies. Saccadic activity is known to follow a time-pattern of repression (at around 50-150 ms post stimulus) which is followed by a large increase in saccadic rate at around 200-300 ms post stimulus. Due to this temporal pattern relative to the stimulus, and to the appearance of a SP at each saccade, this increase in saccadic rate shows up after averaging as an increase in gamma-band activity at the time-range of 200-300 ms. Thus, the broadband-transient "induced gamma-band response" frequently reported in the EEG literature, is in fact a "gamma-imposter", due to ocular myographic activity, and not to neural activity. Previous findings regarding the scalp EEG broadband-transient induced gamma-band response, relating it to neural synchronization and to various cognitive functions should be reevaluated considering the systematic contamination by ocular activity.
Collapse
|
48
|
Cuetos F, Barbón A, Urrutia M, Domínguez A. Determining the time course of lexical frequency and age of acquisition using ERP. Clin Neurophysiol 2009; 120:285-94. [DOI: 10.1016/j.clinph.2008.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/20/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
49
|
Martinovic J, Gruber T, Ohla K, Müller MM. Induced Gamma-band Activity Elicited by Visual Representation of Unattended Objects. J Cogn Neurosci 2009; 21:42-57. [DOI: 10.1162/jocn.2009.21004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Object recognition is achieved through neural mechanisms reliant on the activity of distributed neural assemblies that are thought to be coordinated by synchronous firing in the gamma-band range (>20 Hz). An outstanding question focuses on the extent to which the role of gamma oscillations in object recognition is dependent on attention. Attentional mechanisms determine the allocation of perceptual resources to objects in complex scenes biasing the outcome of their mutual competitive interactions. Would object-related enhancements in gamma activity also occur for unattended objects when perceptual resources are traded off to the processing of concurrent visual material? The present electroencephalogram study investigated event-related potentials and evoked (time- and phase-locked) and induced (non-time- and phase-locked to stimulus onset) gamma-band activity (GBA) using a visual discrimination task of low or high perceptual load at fixation. The task was performed while task-irrelevant familiar or unfamiliar objects coappeared in the surrounding central area. Attentional focus was kept at fixation by varying perceptual load between trials; in such conditions, only holistic object processing or low-level perceptual processing, requiring little or no attention, are thought to occur. Although evoked GBA remained unmodulated, induced GBA enhancements, specific to familiar object presentations, were observed, thus providing evidence for cortical visual representation of unattended objects. In addition, the effect was mostly driven by object-specific activity under low load, implying that, in cluttered or complex scenes, attentional selection likely plays a more significant role in object representation.
Collapse
|
50
|
Hauk O, Pulvermüller F, Ford M, Marslen-Wilson W, Davis M. Can I have a quick word? Early electrophysiological manifestations of psycholinguistic processes revealed by event-related regression analysis of the EEG. Biol Psychol 2009; 80:64-74. [DOI: 10.1016/j.biopsycho.2008.04.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 03/11/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
|