1
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
2
|
Helfer BM, Bulte JW. Cell Surveillance Using Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Huang L, Xia B, Liu Z, Cao Q, Huang J, Luo Z. Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro. Front Cell Neurosci 2017; 11:83. [PMID: 28400720 PMCID: PMC5368970 DOI: 10.3389/fncel.2017.00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Schwann cells (SCs) are one of the most promising cellular candidates for the treatment of spinal cord injury. However, SCs show poor migratory ability within the astrocyte-rich central nervous system (CNS) environment and exhibit only limited integration with host astrocytes. Our strategy for improving the therapeutic potential of SCs was to magnetically drive SCs to migrate across the astrocyte-SC boundary to intermingle with astrocytes. SCs were firstly magnetized with poly-L-lysine-coated superparamagnetic iron oxide nanoparticles (SPIONs). Internalization of SPIONs showed no effect upon the migration of SCs in the absence of a magnetic field (MF). In contrast, magnetized SCs exhibited enhanced migration along the direction of force in the presence of a MF. An inverted coverslip assay showed that a greater number of magnetized SCs migrated longer distances onto astrocytic monolayers under the force of a MF compared to other test groups. More importantly, a confrontation assay demonstrated that magnetized SCs intermingled with astrocytes under an applied MF. Furthermore, inhibition of integrin activation reduced the migration of magnetized SCs within an astrocyte-rich environment under an applied MF. Thus, SPION-mediated forces could act as powerful stimulants to enhance the migration of SCs across the astrocyte-SC boundary, via integrin-mediated mechanotransduction, and could represent a vital way of improving the therapeutic potential of SCs for spinal cord injuries.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhongyang Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Quanliang Cao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology Wuhan, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
4
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
5
|
Cao X, Horák D, An Z, Plichta Z. Raft polymerization ofN,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xueteng Cao
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University; Shanghai 200444 China
| | - Daniel Horák
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic, 162 06; Prague 6 Czech Republic
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University; Shanghai 200444 China
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic, 162 06; Prague 6 Czech Republic
| |
Collapse
|
6
|
Bernau K, Lewis CM, Petelinsek AM, Reagan MS, Niles DJ, Mattis VB, Meyerand ME, Suzuki M, Svendsen CN. In Vivo Tracking of Human Neural Progenitor Cells in the Rat Brain Using Magnetic Resonance Imaging Is Not Enhanced by Ferritin Expression. Cell Transplant 2015; 25:575-92. [PMID: 26160767 DOI: 10.3727/096368915x688614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid growth in the field of stem cell research has generated a lot of interest in their therapeutic use, especially in the treatment of neurodegenerative diseases. Specifically, human neural progenitor cells (hNPCs), unique in their capability to differentiate into cells of the neural lineage, have been widely investigated due to their ability to survive, thrive, and migrate toward injured tissues. Still, one of the major roadblocks for clinical applicability arises from the inability to monitor these cells following transplantation. Molecular imaging techniques, such as magnetic resonance imaging (MRI), have been explored to assess hNPC transplant location, migration, and survival. Here we investigated whether inducing hNPCs to overexpress ferritin (hNPCs(Fer)), an iron storage protein, is sufficient to track these cells long term in the rat striatum using MRI. We found that increased hypointensity on MRI images could establish hNPC(Fer) location. Unexpectedly, however, wild-type hNPC transplants were detected in a similar manner, which is likely due to increased iron accumulation following transplantation-induced damage. Hence, we labeled hNPCs with superparamagnetic iron oxide (SPIO) nanoparticles to further increase iron content in an attempt to enhance cell contrast in MRI. SPIO-labeling of hNPCs (hNPCs-SPIO) achieved increased hypointensity, with significantly greater area of decreased T2* compared to hNPC(Fer) (p < 0.0001) and all other controls used. However, none of the techniques could be used to determine graft rejection in vivo, which is imperative for understanding cell behavior following transplantation. We conclude that in order for cell survival to be monitored in preclinical and clinical settings, another molecular imaging technique must be employed, including perhaps multimodal imaging, which would utilize MRI along with another imaging modality.
Collapse
Affiliation(s)
- Ksenija Bernau
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim Y, Kong SD, Chen LH, Pisanic TR, Jin S, Shubayev VI. In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:1057-66. [PMID: 23669369 PMCID: PMC3783535 DOI: 10.1016/j.nano.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
Abstract
Iron oxide nanoparticles (IONPs) are promising neuroimaging agents and molecular cargo across neurovascular barriers. Development of intrinsically safe IONP chemistries requires a robust in vivo nanoneurotoxicity screening model. Herein, we engineered four IONPs of different surface and core chemistries: DMSA-Fe2O3, DMSA-Fe3O4, PEG-Fe3O4 and PEG-Au-Fe3O4. Capitalizing on the ability of the peripheral nervous system to recruit potent immune cells from circulation, we characterized a spatiotemporally controlled platform for the study of in vivo nanobiointerfaces with hematogenous immune cells, neuroglial and neurovascular units after intraneural IONP delivery into rat sciatic nerve. SQUID magnetometry and histological iron stain were used for IONP tracking. Among the IONPs, DMSA-Fe2O3 NPs were potent pro-apoptotic agents in nerve, with differential ability to regulate oxidative stress, inflammation and apoptotic signaling in neuroglia, macrophages, lymphocytes and endothelial cells. This platform aims to facilitate the development of predictive paradigms of nanoneurotoxicity based on mechanistic investigation of relevant in vivo bio-nanointerfaces. FROM THE CLINICAL EDITOR This team of investigators report the development of a platform that enables screening of iron oxide nanoparticles from the standpoint of their potential neurotoxicity, utilizing rat sciatic nerves. Such screening tools are clearly needed with the potential advent of iron oxide nanoparticle-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Youngsoon Kim
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA
| | - Seong Deok Kong
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | - Li-Han Chen
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Sungho Jin
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA
- VA San Diego Healthcare System, La Jolla, CA
| |
Collapse
|
8
|
Blomster LV, Cowin GJ, Kurniawan ND, Ruitenberg MJ. Detection of endogenous iron deposits in the injured mouse spinal cord through high-resolution ex vivo and in vivo MRI. NMR IN BIOMEDICINE 2013; 26:141-150. [PMID: 22730180 DOI: 10.1002/nbm.2829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/07/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The main aim of this study was to employ high-resolution MRI to investigate the spatiotemporal development of pathological features associated with contusive spinal cord injury (SCI) in mice. Experimental mice were subjected to either sham surgery or moderate contusive SCI. A 16.4-T small-animal MR system was employed for nondestructive imaging of post-mortem, fixed spinal cord specimens at the subacute (7 days) and more chronic (28-35 days) stages post-injury. Routine histological techniques were used for subsequent investigation of the observed neuropathology at the microscopic level. The central core of the lesion appeared as a dark hypo-intense area on MR images at all time points investigated. Small focal hypo-intense spots were also observed spreading through the dorsal funiculi proximal and distal to the site of impact, an area that is known to undergo gliosis and Wallerian degeneration in response to injury. Histological examination revealed these hypo-intense spots to be high in iron content as determined by Prussian blue staining. Quantitative image analysis confirmed the increased presence of iron deposits at all post-injury time points investigated (p<0.05). Distant iron deposits were also detectable through live imaging without the use of contrast-enhancing agents, enabling the longitudinal investigation of this pathology in individual animals. Further immunohistochemical evaluation showed that intracellular iron deposits localised to macrophages/microglia, astrocytes and oligodendrocytes in the subacute phase of SCI, but predominantly to glial fibrillary acidic protein-positive, CC-1-positive astrocytes at later stages of recovery. Progressive, widespread intracellular iron accumulation is thus a normal feature of SCI in mice, and high-resolution MRI can be effectively used to detect and monitor these neuropathological changes with time.
Collapse
Affiliation(s)
- Linda V Blomster
- University of Queensland, School of Biomedical Sciences, St Lucia, Qld, Australia
| | | | | | | |
Collapse
|
9
|
The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol 2011; 13:702-11. [PMID: 20686855 DOI: 10.1007/s11307-010-0393-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The objective of this study was to track the fate of iron-labeled, multipotent stromal cells (MSC) after their direct transplantation into mice with spinal cord injuries using magnetic resonance imaging (MRI). PROCEDURES Mice with spinal cord injuries received a direct transplant of (1) live MSC labeled with micron-sized iron oxide particles (MPIO); (2) dead, MPIO-labeled MSC; (3) unlabeled MSC; or (4) free MPIO and were imaged at 3 T for 6 weeks after transplantation. RESULTS Live, iron-labeled MSC appeared as a well-defined region of signal loss in the mouse spinal cord at the site of transplant. However, the MR appearance of dead, iron-labeled MSC and free iron particles was similar and persisted for the 6 weeks of the study. CONCLUSIONS Iron-labeled stem cells can be detected and monitored in vivo after direct transplantation into the injured spinal cord of mice. However, the fate of the iron label is not clear. Our investigation indicates that caution should be taken when interpreting MR images after direct transplantation of iron-labeled cells.
Collapse
|
10
|
Kammer NN, Billecke N, Morgul MH, Adonopoulou MK, Mogl M, Huang MD, Florek S, Schmitt KR, Raschzok N, Sauer IM. Labeling of Primary Human Hepatocytes With Micron-Sized Iron Oxide Particles in Suspension Culture Suitable for Large-Scale Preparation. Artif Organs 2011; 35:E91-100. [DOI: 10.1111/j.1525-1594.2010.01177.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chen A, Siow B, Blamire AM, Lako M, Clowry GJ. Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 2010; 5:255-66. [PMID: 20875955 DOI: 10.1016/j.scr.2010.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 11/24/2022] Open
Abstract
Periventricular white matter injury (PVWMI) in preterm infants is a leading cause of cerebral palsy. Mesenchymal stem cell (MSC) transplantation in experimental models of adult demyelinating conditions is reported to reduce neurological deficits so we investigated their potential for treating developmental PVWMI. Neonatal rat MSCs, when cultured and labeled in vitro with fluorescent, micrometer-sized paramagnetic iron oxide particles (MPIO), retained their differentiation potential. Rats received bilateral intracerebral injections of ibotenic acid at postnatal day 5 causing PVWMI-like lesions with localized hypomyelination and sensorimotor deficits. MPIO-labeled MSCs were transplanted near the lesion in the right hemisphere 1 day postlesioning. Animals receiving cell transplants showed significantly increased antimyelin immunoreactivity in the corpus callosum, and improved reaching and retrieval skills, compared to animals receiving conditioned medium only. In separate experiments, in vivo MRI demonstrated that MPIO-labeled cells migrated away from the injection site toward lesioned areas in both hemispheres, confirmed by microscopy postmortem, but double-labeling studies found little evidence of differentiation into neural phenotypes. MSC transplantation led to significantly more forebrain cell proliferation, assayed by bromodeoxyuridine incorporation, than in controls. MSC transplants may have been neuroprotective and indirectly contributed to brain repair.
Collapse
Affiliation(s)
- Aiqing Chen
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
12
|
Abstract
Clinical neurology and neurosurgery are two fields that face some of the most challenging and exciting problems remaining in medicine. Brain tumors, paralysis after trauma or stroke, and neurodegerative diseases are some of the many disorders for which effective therapies remain elusive. Nanotechnology seems poised to offer promising new solutions to some of these difficult problems. The latest advances in materials engineered at the nanoscale for applications relevant to the clinical neurosciences, such as medical imaging, nanotherapies for neurologic disease, nerve tissue engineering, and nanotechnological contributions to neuroelectrodes and brain-machine interface technology are reviewed. The primary classes of materials discussed include superparamagnetic iron oxide nanoparticles, gold nanoparticles, liposomes, carbon fullerenes, and carbon nanotubes. The potential of the field and the challenges that must be overcome for the current technology to become available clinically are highlighted.
Collapse
Affiliation(s)
- Kelly L. Collins
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| | - Daniel A. Orringer
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| | - Parag G. Patil
- University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338
| |
Collapse
|
13
|
Raschzok N, Billecke N, Kammer NN, Morgul MH, Adonopoulou MK, Sauer IM, Florek S, Becker-Ross H, Huang MD. Quantification of cell labeling with micron-sized iron oxide particles using continuum source atomic absorption spectrometry. Tissue Eng Part C Methods 2010; 15:681-6. [PMID: 19422300 DOI: 10.1089/ten.tec.2008.0675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Detection of cells after transplantation is necessary for quality control in regenerative medicine. Labeling with micron-sized iron oxide particles enables noninvasive detection of single cells by magnetic resonance imaging. However, techniques for evaluation of the particle uptake are challenging. The aim of this study was to investigate continuum source atomic absorption spectrometry (CSAAS) for this purpose. Porcine liver cells were labeled with micron-sized iron oxide particles, and the iron concentration of the cell samples was investigated by a CSAAS spectrometer equipped with a Perkin-Elmer THGA graphite furnace. The weak iron line at 305.754 nm provides only about 1/600 sensitivity of the iron resonance line at 248.327 nm and was used for CSAAS measurements. Iron concentrations measured from labeled cells ranged from 5.8 +/- 0.3 to 25.8 +/- 0.9 pg Fe/cell, correlating to an uptake of 8.2 +/- 0.5 to 25.7 +/- 0.8 particles/cell. The results were verified by standardized morphometric evaluation. CSAAS enabled rapid quantification of particle load from small quantities of cells without extensive preparation steps. Thereby, CSAAS could be used for quality control in a clinical setting of cell transplantation.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité, Campus Virchow, Universitätsmedizin Berlin , Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cordeiro MF, Nickells R, Drexler W, Borrás T, Ritch R. High-resolution ocular imaging: combining advanced optics and microtechnology. Ophthalmic Surg Lasers Imaging Retina 2009; 40:480-8. [PMID: 19772272 DOI: 10.3928/15428877-20090901-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 01/10/2023]
Abstract
Recent developments in imaging technologies offer great potential for the assessment of retinal ganglion cell disorders, with particular relevance to glaucoma. In particular, advances in this field have allowed unprecedented in vivo access to the retinal layers, using many different properties of light to differentiate cellular structures. This article is a summary of currently available and investigational advanced, high-resolution imaging technologies and their potential applications to glaucoma. It represents the topics of discussion at the annual Optic Nerve Rescue and Restoration Think Tank, sponsored by The Glaucoma Foundation, entitled "High Resolution Imaging of the Eye: Advanced Optics, Microtechnology and Nanotechnology" and held in New York, New York, September 28-29, 2007.
Collapse
|
15
|
Abstract
Noninvasive cellular imaging allows the real-time tracking of grafted cells as well as the monitoring of their migration. Several techniques for in vivo cellular imaging are available that permit the characterization of transplanted cells in a living organism, including magnetic resonance imaging (MRI), bioluminescence, positron emission tomography, and multiple photon microscopy. All of these methods, based on different principles, provide distinctive, usually complementary information. In this review, we will focus on cell tracking using MRI, since MRI is noninvasive, clinically transferable, and displays good resolution, ranging from 50microm in animal experiments up to 300microm using whole body clinical scanners. In addition to information about grafted cells, MRI provides information about the surrounding tissue (i.e., lesion size, edema, inflammation), which may negatively affect graft survival or the functional recovery of the tissue. Transplanted cells are labeled with MR contrast agents in vitro prior to transplantation in order to visualize them in the host tissue. The chapter will focus on the use of superparamagnetic iron oxide nanoparticles (SPIO), because they have strong effects on T2 relaxation yet do not affect cell viability, and will provide an overview of different modifications of SPIO and their use in MR tracking in living organisms.
Collapse
|
16
|
Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2008; 87:133-70. [PMID: 18926873 DOI: 10.1016/j.pneurobio.2008.09.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/02/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.
Collapse
|
17
|
De Guio F, Benoit-Cattin H, Davenel A. Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 21:261-71. [PMID: 18575911 DOI: 10.1007/s10334-008-0119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Characterization of magnetic susceptibility artefacts with assessment of the gradient-echo signal decay function of echo time, pixel size, and object geometry in the case of air-filled cylinders embedded in water. MATERIALS AND METHODS Experiments were performed with a 0.2 T magnet on a network of small interacting air-filled cylinders along with Magnetic resonance imaging (MRI) simulations integrating intravoxel dephasing. Signal decay over echo time was assessed at different pixel sizes on real and simulated images. The effects of radius, distance between cylinders and main magnetic field were studied using simulation. RESULTS Signal loss was greater as echo time or pixel size increased. Voxel signal decay was not exponential but was weighted by sinus cardinalis functions integrating echo time, pixel size and field inhomogeneities which depended on main magnetic field strength and geometric configuration of the object. Simulation was able to model signal decay, even for a complex object constituted of several cylinders. The specific experimental signal modulation we observed was thus reproduced and explained by simulation. CONCLUSION The quantitative signal decay approach at 0.2 T can be used in characterization studies in the case of locally regular air/water interfaces as the signal depends on object size relative to pixel size and is relevant to the geometric configuration. Moreover, the good concordance between simulation and experiments should lead to further studies of magnetic susceptibility effects with other objects such as networks of spheres. MRI simulation is thus a potential tool for molecular and porous media imaging.
Collapse
Affiliation(s)
- François De Guio
- Cemagref, Food Process Engineering Research Unit, 35 044, Rennes, France.
| | | | | |
Collapse
|
18
|
Shapiro EM, Medford-Davis LN, Fahmy TM, Dunbar CE, Koretsky AP. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 2:147-53. [PMID: 17541955 PMCID: PMC7032004 DOI: 10.1002/cmmi.134] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Labeling cells with iron oxide is a useful tool for MRI based cellular imaging. Here it is demonstrated that peripheral rat T cells can be labeled in whole blood, in vitro, with streptavidin-coated micron-sized iron oxide particles (MPIOs), achieving iron concentrations as high as 60 pg iron per cell. This is 30 times the amount of labeling reported with ultrasmall particles of iron oxide (USPIOs). Labeling was mediated by use of a biotinylated anti-CD5 antibody, which is specific for peripheral T cells. Such labeling allowed the in vitro detection of single lymphocytes by MRI, using conditions well suited for in vivo animal work. Electron microscopic analysis demonstrated that MPIOs remained largely extracellular after labeling, with some evidence of intracellular uptake. Cell viability and early and late cytokine release studies showed no significant differences between labeled and unlabeled cells. Therefore, the use of MPIOs for achieving high iron concentrations for cellular MRI is potentially an effective new modality for non-invasive imaging of lymphocytes.
Collapse
Affiliation(s)
- Erik M Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
19
|
Zujovic V, Bachelin C, Baron-Van Evercooren A. Remyelination of the central nervous system: a valuable contribution from the periphery. Neuroscientist 2007; 13:383-91. [PMID: 17644768 DOI: 10.1177/10738584070130041001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The loss of myelin, a major element involved in the saltatory conduction of the electrical impulse of the nervous system, is a major target of current research. Serious long-term disabilities are observed in patients with demyelinating disease of the central nervous system, such as multiple sclerosis. New therapeutic strategies aimed at overcoming myelin damage and axonal loss focus on the repair potential of myelin-forming cells. This review examines the use of peripheral myelin-forming cells, the Schwann cells, to promote myelin repair.
Collapse
Affiliation(s)
- Violetta Zujovic
- Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, and AP-HP Hôpital Pitié-Salpêtrière, Fédération de Neurologie, Paris, France
| | | | | |
Collapse
|
20
|
Räty JK, Liimatainen T, Unelma Kaikkonen M, Gröhn O, Airenne KJ, Jumani Airenne K, Ylä-Herttuala S. Non-invasive Imaging in Gene Therapy. Mol Ther 2007; 15:1579-86. [PMID: 17579578 DOI: 10.1038/sj.mt.6300233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Several methods are available for non-invasive imaging of gene delivery and transgene expression, including magnetic resonance imaging (MRI), single photon emission tomography (SPECT)/positron emission tomography (PET), and fluorescence and bioluminescence imaging. However, these imaging modalities differ greatly in terms of their sensitivity, cost, and ability to measure the signal. Whereas MRI can produce a resolution of approximately 50 mum, optical imaging achieves only 3-5 mm but outperforms MRI in terms of the cost of the imaging device. Similarly, SPECT and PET give a resolution of only 1-2 mm but provide for relatively easy quantitation of the signal and need only nanograms of probe, compared with the microgram or milligram levels required for MRI and optical imaging. To develop safer and more efficient gene delivery vectors, it is essential to perform rigorous in vivo experiments, to image particle biodistribution and transduction patterns, and to quantify the transgene expression profile. Differences between modalities have a significant effect on the resultant imaging resolution for gene therapy. This review describes the methodologies in use and highlights recent key approaches using the latest imaging modalities in gene therapy. Future trends in gene therapy imaging are also discussed.
Collapse
Affiliation(s)
- Jani Kristian Räty
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Baron-Van Evercooren A, Lachapelle F, Nait-Oumesmar B, Pham-Dinh D. [Promoting myelin repair in disorders such as multiple sclerosis and some types of leukodystrophy: current studies]. Rev Neurol (Paris) 2007; 163:523-31. [PMID: 17571021 DOI: 10.1016/s0035-3787(07)90459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several ways of promoting myelin repair in myelin disorders such as multiple sclerosis and certain types of leukodystrophies are currently being investigated. Numerous studies suggest that it is possible to repair the central nervous system (CNS) by cell transplantation or by enhancing endogenous remyelination. Investigations in animal models indicate that cell therapy results in robust anatomical and functional recovery of acute myelin lesions. These models are also used to explore and validate the role of candidate molecules to stimulate endogenous remyelination by activating the myelin competent population or providing neuroprotection. However, in view of the heterogeneity of the lesion environment in MS, it seems more likely that cell therapy alone will not be able to contribute efficiently to the repair of the lesion. Further developments should indicate whether combining multiple approaches will be more powerful to achieve global myelin repair in the CNS than applying these strategies alone.
Collapse
|
22
|
De Guio F, Benoit-Cattin H, Davenel A. Quantitative study of signal decay due to magnetic susceptibility interfaces: MRI simulations and experiments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:1607-1610. [PMID: 18002279 DOI: 10.1109/iembs.2007.4352613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Characterization of magnetic susceptibility artifacts is required in a wide range of MRI studies. Experiments with a 0.2T magnet and MRI simulations were used to assess the signal decay over echo time at different pixel sizes in the case of air-water interfaces. The specific experimental signal modulation which was reproduced in simulation was interpreted. Concordance between simulation and experiments should make possible further studies of magnetic susceptibility effects with more complex objects as in molecular imaging and in porous medium imaging.
Collapse
Affiliation(s)
- F De Guio
- Cemagref, Food Process Engineering Research Unit, CS 64426, 17 avenue de Cucillé, 35044 Rennes, France.
| | | | | |
Collapse
|