1
|
Levitas DJ, Folco KL, James TW. Impact of aversive affect on neural mechanisms of categorization decisions. Brain Behav 2023; 13:e3312. [PMID: 37969052 PMCID: PMC10726818 DOI: 10.1002/brb3.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Many theories contend that evidence accumulation is a critical component of decision-making. Cognitive accumulation models typically interpret two main parameters: a drift rate and decision threshold. The former is the rate of accumulation, based on the quality of evidence, and the latter is the amount of evidence required for a decision. Some studies have found neural signals that mimic evidence accumulators and can be described by the two parameters. However, few studies have related these neural parameters to experimental manipulations of sensory data or memory representations. Here, we investigated the influence of affective salience on neural accumulation parameters. High affective salience has been repeatedly shown to influence decision-making, yet its effect on neural evidence accumulation has been unexamined. METHODS The current study used a two-choice object categorization task of body images (feet or hands). Half the images in each category were high in affective salience because they contained highly aversive features (gore and mutilation). To study such quick categorization decisions with a relatively slow technique like functional magnetic resonance imaging, we used a gradual reveal paradigm to lengthen cognitive processing time through the gradual "unmasking" of stimuli. RESULTS Because the aversive features were task-irrelevant, high affective salience produced a distractor effect, slowing decision time. In visual accumulation regions of interest, high affective salience produced a longer time to peak activation. Unexpectedly, the later peak appeared to be the product of changes to both drift rate and decision threshold. The drift rate for high affective salience was shallower, and the decision threshold was greater. To our knowledge, this is the first demonstration of an experimental manipulation of sensory data or memory representations that changed the neural decision threshold. CONCLUSION These findings advance our knowledge of the neural mechanisms underlying affective responses in general and the influence of high affective salience on object representations and categorization decisions.
Collapse
Affiliation(s)
- Daniel J. Levitas
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Kess L. Folco
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Thomas W. James
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
2
|
James TW, Folco KL, Levitas DJ. Neural segregation and integration of sensory, decision, and action processes during object categorization. Neuropsychologia 2023; 190:108695. [PMID: 37769870 DOI: 10.1016/j.neuropsychologia.2023.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Neural and computational evidence suggests that perceptual decisions depend on an evidence accumulation process. The gradual reveal fMRI method, which prolongs a decision to match the slow temporal resolution of fMRI measurements, has classified dorsal visual stream regions as "Action" (alternatively, "Moment of Recognition" or "Commitment") and ventral visual stream regions as "Accumulator." Previous gradual reveal fMRI studies, however, only tested actions that were in response to decisions and, thus, related to evidence accumulation. To fully dissociate the contribution of sensory, decision, and motor components to Action and Accumulator regions in the dorsal and ventral visual streams, we extended the gradual reveal paradigm to also include responses made to cues where no decision was necessary. We found that the lateral occipital cortex in the ventral visual stream showed a highly selective Accumulator profile, whereas regions in the fusiform gyrus were influenced by action generation. Dorsal visual stream regions showed strikingly similar profiles as classical motor regions and also as regions of the salience network. These results suggest that the dorsal and ventral visual streams may appear highly segregated because they include a small number of regions that are highly selective for Accumulator or Action. However, the streams may be more integrated than previously thought and this integration may be accomplished by regions with graded responses that are less selective (i.e., more distributed).
Collapse
Affiliation(s)
- Thomas W James
- Psychological and Brain Sciences, Indiana University Bloomington, USA.
| | - Kess L Folco
- Psychological and Brain Sciences, Indiana University Bloomington, USA
| | - Daniel J Levitas
- Psychological and Brain Sciences, Indiana University Bloomington, USA
| |
Collapse
|
3
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
4
|
Li J, Guo B, Cui L, Huang H, Meng M. Dissociated modulations of multivoxel activation patterns in the ventral and dorsal visual pathways by the temporal dynamics of stimuli. Brain Behav 2020; 10:e01673. [PMID: 32496013 PMCID: PMC7375111 DOI: 10.1002/brb3.1673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Previous studies suggested temporal limitations of visual object identification in the ventral pathway. Moreover, multivoxel pattern analyses (MVPA) of fMRI activation have shown reliable encoding of various object categories including faces and tools in the ventral pathway. By contrast, the dorsal pathway is involved in reaching a target and grasping a tool, and quicker in processing the temporal dynamics of stimulus change. However, little is known about how activation patterns in both pathways may change according to the temporal dynamics of stimulus change. METHODS Here, we measured fMRI responses of two consecutive stimuli with varying interstimulus intervals (ISIs), and we compared how the two visual pathways respond to the dynamics of stimuli by using MVPA and information-based searchlight mapping. RESULTS We found that the temporal dynamics of stimuli modulate responses of the two visual pathways in opposite directions. Specifically, slower temporal dynamics (longer ISIs) led to greater activity and better MVPA results in the ventral pathway. However, faster temporal dynamics (shorter ISIs) led to greater activity and better MVPA results in the dorsal pathway. CONCLUSIONS These results are the first to show how temporal dynamics of stimulus change modulated multivoxel fMRI activation pattern change. And such temporal dynamic response function in different ROIs along the two visual pathways may shed lights on understanding functional relationship and organization of these ROIs.
Collapse
Affiliation(s)
- Jiaxin Li
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Bingbing Guo
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Lin Cui
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Hong Huang
- School of PsychologySouth China Normal UniversityGuangzhouChina
| | - Ming Meng
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Key Laboratory of BrainCognition and Education Sciences (South China Normal University)Ministry of EducationGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
5
|
Adelhöfer N, Chmielewski WX, Beste C. How perceptual ambiguity affects response inhibition processes. J Neurophysiol 2019; 122:500-511. [PMID: 31166823 DOI: 10.1152/jn.00298.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to inhibit responses is a central requirement for goal-directed behavior but has been dominated by a top-down or cognitive control view. Only recently, the role of bottom-up perceptual factors were focused in research. However, studies usually use clearly distinguishable stimulus categories to trigger response execution or inhibition. In the current study, we present a novel Gabor patch Go/No-go task to induce perceptual ambiguity during response inhibition. To examine the neurophysiological processes in detail, we use EEG recordings and combined temporal EEG signal decomposition methods with source localization analyses. We show that perceptual similarity between Go and No-go trials compromises response inhibition performance. Interestingly, the EEG data show that this is due to a modulation of stimulus-response transition or decision processes, and not purely stimulus-related processes. This was possible by applying a temporal EEG decomposition method. We provide evidence that a prefrontal P2 (pP2) likely reflects decision processes on action execution using stimulus information. These processes were associated with superior and middle prefrontal regions (BA8). When these processes fail, occasions to execute a response become misinterpreted as occasions to inhibit a response. Successful and unsuccessful decisions to inhibit a response under high perceptual ambiguity seem to further depend on how well "what-decisions," supported by neural mechanisms in BA19, can be processed. However, these what-decisions seem to be closely linked to the specification of the required action. Stimulus processing is closely linked to response programming so that response control is already informed when uncertainty with regard to stimulus identity is detected.NEW & NOTEWORTHY This study introduces a novel Go/No-go paradigm and shows what neurophysiological subprocesses and functional neuroanatomical are involved during inhibitory control when ambiguous stimulus input is provided. The results show that bottom-up perceptual processes are important to consider during top-down controlled response inhibition. Stimulus processing is closely linked to response programming so that response control is already informed when uncertainty with regard to stimulus identity is detected.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Witold X Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
6
|
Rapid Extraction of Emotion Regularities from Complex Scenes in the Human Brain. COLLABRA-PSYCHOLOGY 2019. [DOI: 10.1525/collabra.226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adaptive behavior requires the rapid extraction of behaviorally relevant information in the environment, with particular emphasis on emotional cues. However, the speed of emotional feature extraction from complex visual environments is largely undetermined. Here we use objective electrophysiological recordings in combination with frequency tagging to demonstrate that the extraction of emotional information from neutral, pleasant, or unpleasant naturalistic scenes can be completed at a presentation speed of 167 ms (i.e., 6 Hz) under high perceptual load. Emotional compared to neutral pictures evoked enhanced electrophysiological responses with distinct topographical activation patterns originating from different neural sources. Cortical facilitation in early visual cortex was also more pronounced for scenes with pleasant compared to unpleasant or neutral content, suggesting a positivity offset mechanism dominating under conditions of rapid scene processing. These results significantly advance our knowledge of complex scene processing in demonstrating rapid integrative content identification, particularly for emotional cues relevant for adaptive behavior in complex environments.
Collapse
|
7
|
Affiliation(s)
- Joshua I. Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alan A. Stocker
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Neta M, Nelson SM, Petersen SE. Dorsal Anterior Cingulate, Medial Superior Frontal Cortex, and Anterior Insula Show Performance Reporting-Related Late Task Control Signals. Cereb Cortex 2017; 27:2154-2165. [PMID: 26972752 DOI: 10.1093/cercor/bhw053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cingulo-opercular network (including the dorsal anterior cingulate and bilateral anterior insula) shows 3 distinct task-control signals across a wide variety of tasks, including trial-related signals that appear to come online at or near the end of the trial. Previous work suggests that there are separable responses in this network for errors and ambiguity, implicating multiple types of processing units within these regions. Using a unique paradigm, we directly show that these separable responses withhold activity to the end of the trial, in the service of reporting performance back into the task set. Participants performed a slow reveal task where images were presented behind a black mask which was gradually degraded, and they pressed a button when they could recognize the object that was being revealed. A behavioral pilot was used to identify ambiguous stimuli. We found interactive effects of accuracy and ambiguity, which suggests that these regions are computing and utilizing information, at one time, about both types of performance indices. Importantly, we showed a relationship between cingulo-opercular activity and behavioral performance, suggesting a role for these regions in performance reporting, per se. We discuss these results in the context of task control.
Collapse
Affiliation(s)
- Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE68588, USA
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA.,Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA
| | - Steven E Petersen
- Department of Neurology, Washington University, St. Louis, MO 63110, USA.,Department of Psychology, Washington University, St. Louis, MO 63110, USA.,Department of Radiology, Washington University, St. Louis, MO 63110, USA.,Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA.,Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA.,Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Chand GB, Lamichhane B, Dhamala M. Face or House Image Perception: Beta and Gamma Bands of Oscillations in Brain Networks Carry Out Decision-Making. Brain Connect 2016; 6:621-631. [PMID: 27417452 DOI: 10.1089/brain.2016.0421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous functional magnetic resonance imaging studies have consistently shown that perception of visual objects, such as faces and houses, involves distributed brain networks that include the fusiform face area (FFA), parahippocampal place area (PPA), and dorsolateral prefrontal cortex (DLPFC). These regions are commonly observed to be coactivated in BOLD measurements during perception of visual objects. In this study, we aimed to disentangle node-level and network-level activities in millisecond timescale of perception and decision-making in attempts to answer questions about timing and frequency of brain oscillatory activities. We used clear and noisy face-house image categorization tasks and human scalp electroencephalography recordings combined with source reconstruction techniques to study when and how oscillatory activity organizes within the FFA, PPA, and DLPFC. We uncovered the dynamics of two oscillatory networks-beta (13-30 Hz) and gamma (30-100 Hz). In beta band, the node and network activities were enhanced in time frame of 125-250 msec after stimulus onset, the FFA and PPA acted as main outflow hubs and the DLPFC as a main inflow hub, and network activities negatively correlated with behavior measures of noise levels (response times). In gamma band, node and network activities were elevated in time frame of 0-125 msec after stimulus onset, the DLPFC acted as a main outflow hub, and finally network activities were positively correlated with the noise level. These findings broaden our understanding of temporal evolution of node and network features associated with visual perceptual decision-making.
Collapse
Affiliation(s)
- Ganesh B Chand
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia
| | - Bidhan Lamichhane
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia
| | - Mukesh Dhamala
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia .,2 Neuroscience Institute, Georgia State University , Atlanta, Georgia .,3 Center for Behavioral Neuroscience, Center for Nano-Optics, Center for Diagnostics and Therapeutics, GSU-GaTech Center for Advanced Brain Imaging, Georgia State University , Atlanta, Georgia
| |
Collapse
|
10
|
Tovar DA, Zhan W, Rajan SS. A Rotational Cylindrical fMRI Phantom for Image Quality Control. PLoS One 2015; 10:e0143172. [PMID: 26625264 PMCID: PMC4666484 DOI: 10.1371/journal.pone.0143172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose A novel phantom for image quality testing for functional magnetic resonance imaging (fMRI) scans is described. Methods The cylindrical, rotatable, ~4.5L phantom, with eight wedge-shaped compartments, is used to simulate rest and activated states. The compartments contain NiCl2 doped agar gel with alternating concentrations of agar (1.4%, 1.6%) to produce T1 and T2 values approximating brain grey matter. The Jacard index was used to compare the image distortions for echo planar imaging (EPI) and gradient recalled echo (GRE) scans. Contrast to noise ratio (CNR) was compared across the imaging volume for GRE and EPI. Results The mean T2 for the two agar concentrations were found to be 106.5±4.8, 94.5±4.7 ms, and T1 of 1500±40 and 1485±30 ms, respectively. The Jacard index for GRE was generally found to be higher than for EPI (0.95 versus 0.8). The CNR varied from 20 to 50 across the slices and echo times used for EPI scans, and from 20 to 40 across the slices for the GRE scans. The phantom provided a reproducible CNR over 25 days. Conclusions The phantom provides a quantifiable signal change over a head-size imaging volume with EPI and GRE sequences, which was used for image quality assessment.
Collapse
Affiliation(s)
- David A. Tovar
- Division of Biomedical Physics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Wang Zhan
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| | - Sunder S. Rajan
- Division of Biomedical Physics, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Lamichhane B, Dhamala M. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex. Front Hum Neurosci 2015; 9:498. [PMID: 26441596 PMCID: PMC4563775 DOI: 10.3389/fnhum.2015.00498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI) experiments involving thirty-three participants. The behavioral performance error and response time (RT) were correlated with noise in face-house images. We then built dynamical causal models (DCM) of fMRI blood-oxygenation level dependent (BOLD) signals from the face and house category-specific regions in ventral temporal (VT) cortex, the fusiform face area (FFA) and parahippocampal place area (PPA), and the dorsolateral prefrontal cortex (dlPFC). We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions.
Collapse
Affiliation(s)
- Bidhan Lamichhane
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA ; Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University Atlanta, GA, USA ; Center for Nano-Optics, Georgia State University Atlanta, GA, USA ; Center for Diagnostics and Therapeutics, Georgia State University Atlanta, GA, USA
| |
Collapse
|
12
|
Ramon M, Vizioli L, Liu-Shuang J, Rossion B. Neural microgenesis of personally familiar face recognition. Proc Natl Acad Sci U S A 2015; 112:E4835-44. [PMID: 26283361 PMCID: PMC4568242 DOI: 10.1073/pnas.1414929112] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.
Collapse
Affiliation(s)
- Meike Ramon
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB, Glasgow, United Kingdom
| | - Luca Vizioli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB, Glasgow, United Kingdom
| | - Joan Liu-Shuang
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Bruno Rossion
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
13
|
Lamichhane B, Dhamala M. The Salience Network and Its Functional Architecture in a Perceptual Decision: An Effective Connectivity Study. Brain Connect 2015; 5:362-70. [DOI: 10.1089/brain.2014.0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bidhan Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
14
|
Category search speeds up face-selective fMRI responses in a non-hierarchical cortical face network. Cortex 2015; 66:69-80. [DOI: 10.1016/j.cortex.2015.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/25/2014] [Accepted: 01/30/2015] [Indexed: 11/23/2022]
|
15
|
Tremel JJ, Wheeler ME. Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making. Neuroimage 2015; 109:35-49. [PMID: 25562821 PMCID: PMC4340815 DOI: 10.1016/j.neuroimage.2014.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 11/17/2022] Open
Abstract
During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation.
Collapse
Affiliation(s)
- Joshua J Tremel
- Department of Psychology, University of Pittsburgh, PA, USA; Learning Research and Development Center, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA.
| | - Mark E Wheeler
- Department of Psychology, University of Pittsburgh, PA, USA; Learning Research and Development Center, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, PA, USA; School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Liu-Shuang J, Ales JM, Rossion B, Norcia AM. The effect of contrast polarity reversal on face detection: Evidence of perceptual asymmetry from sweep VEP. Vision Res 2015; 108:8-19. [PMID: 25595857 DOI: 10.1016/j.visres.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022]
|
17
|
Wheeler ME, Woo SG, Ansel T, Tremel JJ, Collier AL, Velanova K, Ploran EJ, Yang T. The strength of gradually accruing probabilistic evidence modulates brain activity during a categorical decision. J Cogn Neurosci 2014; 27:705-19. [PMID: 25313658 DOI: 10.1162/jocn_a_00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolution of neural activity during a perceptual decision is well characterized by the evidence parameter in sequential sampling models. However, it is not known whether accumulating signals in human neuroimaging are related to the integration of evidence. Our aim was to determine whether activity accumulates in a nonperceptual task by identifying brain regions tracking the strength of probabilistic evidence. fMRI was used to measure whole-brain activity as choices were informed by integrating a series of learned prior probabilities. Participants first learned the predictive relationship between a set of shape stimuli and one of two choices. During scanned testing, they made binary choices informed by the sum of the predictive strengths of individual shapes. Sequences of shapes adhered to three distinct rates of evidence (RoEs): rapid, gradual, and switch. We predicted that activity in regions informing the decision would modulate as a function of RoE prior to the choice. Activity in some regions, including premotor areas, changed as a function of RoE and response hand, indicating a role in forming an intention to respond. Regions in occipital, temporal, and parietal lobes modulated as a function of RoE only, suggesting a preresponse stage of evidence processing. In all of these regions, activity was greatest on rapid trials and least on switch trials, which is consistent with an accumulation-to-boundary account. In contrast, activity in a set of frontal and parietal regions was greatest on switch and least on rapid trials, which is consistent with an effort or time-on-task account.
Collapse
|
18
|
Taminato T, Miura N, Sugiura M, Kawashima R. Neuronal substrates characterizing two stages in visual object recognition. Neurosci Res 2014; 89:61-8. [PMID: 25218238 DOI: 10.1016/j.neures.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Visual object recognition is classically believed to involve two stages: a perception stage in which perceptual information is integrated, and a memory stage in which perceptual information is matched with an object's representation. The transition from the perception to the memory stage can be slowed to allow for neuroanatomical segregation using a degraded visual stimuli (DVS) task in which images are first presented at low spatial resolution and then gradually sharpened. In this functional magnetic resonance imaging study, we characterized these two stages using a DVS task based on the classic model. To separate periods that are assumed to dominate the perception, memory, and post-recognition stages, subjects responded once when they could guess the identity of the object in the image and a second time when they were certain of the identity. Activation of the right medial occipitotemporal region and the posterior part of the rostral medial frontal cortex was found to be characteristic of the perception and memory stages, respectively. Although the known role of the former region in perceptual integration was consistent with the classic model, a likely role of the latter region in monitoring for confirmation of recognition suggests the advantage of recently proposed interactive models.
Collapse
Affiliation(s)
| | - Naoki Miura
- Faculty of Engineering, Tohoku Institute of Technology, Sendai, Japan; IDAC, Tohoku University, Sendai, Japan
| | - Motoaki Sugiura
- IDAC, Tohoku University, Sendai, Japan; IRIDeS, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
19
|
Giganti F, Viggiano MP. How semantic category modulates preschool children's visual memory. Child Neuropsychol 2014; 21:849-55. [PMID: 25089556 DOI: 10.1080/09297049.2014.945406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The dynamic interplay between perception and memory has been explored in preschool children by presenting filtered stimuli regarding animals and artifacts. The identification of filtered images was markedly influenced by both prior exposure and the semantic nature of the stimuli. The identification of animals required less physical information than artifacts did. Our results corroborate the notion that the human attention system evolves to reliably develop definite category-specific selection criteria by which living entities are monitored in different ways.
Collapse
Affiliation(s)
- Fiorenza Giganti
- a Department of Neurosciences, Psychology, Drug Research , Child Health University of Florence , Florence , Italy
| | - Maria Pia Viggiano
- a Department of Neurosciences, Psychology, Drug Research , Child Health University of Florence , Florence , Italy.,b Pediatric Psychology Service , Children's Hospital A. Meyer-University of Florence , Florence , Italy
| |
Collapse
|
20
|
Schettino A, Loeys T, Pourtois G. Multiple synergistic effects of emotion and memory on proactive processes leading to scene recognition. Neuroimage 2013; 81:81-95. [DOI: 10.1016/j.neuroimage.2013.04.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/17/2013] [Accepted: 04/27/2013] [Indexed: 11/30/2022] Open
|
21
|
Abstract
In making sense of the visual world, the brain's processing is driven by two factors: the physical information provided by the eyes ("bottom-up" data) and the expectancies driven by past experience ("top-down" influences). We use degraded stimuli to tease apart the effects of bottom-up and top-down processes because they are easier to recognize with prior knowledge of undegraded images. Using machine learning algorithms, we quantify the amount of information that brain regions contain about stimuli as the subject learns the coherent images. Our results show that several distinct regions, including high-level visual areas and the retinotopic cortex, contain more information about degraded stimuli with prior knowledge. Critically, these regions are separate from those that exhibit classical priming, indicating that top-down influences are more than feature-based attention. Together, our results show how the neural processing of complex imagery is rapidly influenced by fleeting experiences.
Collapse
|
22
|
Jiang F, Dricot L, Weber J, Righi G, Tarr MJ, Goebel R, Rossion B. Face categorization in visual scenes may start in a higher order area of the right fusiform gyrus: evidence from dynamic visual stimulation in neuroimaging. J Neurophysiol 2011; 106:2720-36. [DOI: 10.1152/jn.00672.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How a visual stimulus is initially categorized as a face by the cortical face-processing network remains largely unclear. In this study we used functional MRI to study the dynamics of face detection in visual scenes by using a paradigm in which scenes containing faces or cars are revealed progressively as they emerge from visual noise. Participants were asked to respond as soon as they detected a face or car during the noise sequence. Among the face-sensitive regions identified based on a standard localizer, a high-level face-sensitive area, the right fusiform face area (FFA), showed the earliest difference between face and car activation. Critically, differential activation in FFA was observed before differential activation in the more posteriorly located occipital face area (OFA). A whole brain analysis confirmed these findings, with a face-sensitive cluster in the right fusiform gyrus being the only cluster showing face preference before successful behavioral detection. Overall, these findings indicate that following generic low-level visual analysis, a face stimulus presented in a gradually revealed visual scene is first detected in the right middle fusiform gyrus, only after which further processing spreads to a network of cortical and subcortical face-sensitive areas (including the posteriorly located OFA). These results provide further evidence for a nonhierarchical organization of the cortical face-processing network.
Collapse
Affiliation(s)
- Fang Jiang
- Institute of Psychology and Institute of Neuroscience, University of Louvain, Belgium
| | - Laurence Dricot
- Institute of Psychology and Institute of Neuroscience, University of Louvain, Belgium
| | - Jochen Weber
- Department of Psychology, Columbia University, New York, New York
| | - Giulia Righi
- Division of Developmental Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Michael J. Tarr
- Center for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Rainer Goebel
- Maastricht Brain Imaging Center, Maastrict University, Maastrict, The Netherlands
| | - Bruno Rossion
- Institute of Psychology and Institute of Neuroscience, University of Louvain, Belgium
| |
Collapse
|
23
|
Ploran EJ, Tremel JJ, Nelson SM, Wheeler ME. High quality but limited quantity perceptual evidence produces neural accumulation in frontal and parietal cortex. Cereb Cortex 2011; 21:2650-62. [PMID: 21498405 DOI: 10.1093/cercor/bhr055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Goal-directed perceptual decisions involve the analysis of sensory inputs, the extraction and accumulation of evidence, and the commitment to a choice. Previous neuroimaging studies of perceptual decision making have identified activity related to accumulation in parietal, inferior temporal, and frontal regions. However, such effects may be related to factors other than the integration of evidence over time, such as changes in the quantity of stimulus input and in attentional demands leading up to a decision. The current study tested an accumulation account using 2 manipulations. First, to test whether patterns of accumulation can be explained by changes in the quantity of sensory information, objects were revealed with a high quality but consistent quantity of evidence throughout the trial. Imaging analysis revealed patterns of accumulation in frontal and parietal regions but not in inferior temporal regions. This result supports a framework in which evidence is processed in sensory cortex and integrated over time in higher order cortical areas. Second, to test whether accumulation signals are driven by attentional demands, task difficulty was increased on some trials. This manipulation did not affect the nature of accumulating functional magnetic resonance imaging signals, indicating that accumulating signals are not necessarily driven by changes in attentional demand.
Collapse
Affiliation(s)
- Elisabeth J Ploran
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
24
|
Neural correlates of own- and other-race face perception: Spatial and temporal response differences. Neuroimage 2011; 54:2547-55. [DOI: 10.1016/j.neuroimage.2010.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/21/2022] Open
|
25
|
Schettino A, Loeys T, Delplanque S, Pourtois G. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study. Neuroimage 2011; 55:1227-41. [PMID: 21237274 DOI: 10.1016/j.neuroimage.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022] Open
Abstract
Recent studies suggest that visual object recognition is a proactive process through which perceptual evidence accumulates over time before a decision can be made about the object. However, the exact electrophysiological correlates and time-course of this complex process remain unclear. In addition, the potential influence of emotion on this process has not been investigated yet. We recorded high density EEG in healthy adult participants performing a novel perceptual recognition task. For each trial, an initial blurred visual scene was first shown, before the actual content of the stimulus was gradually revealed by progressively adding diagnostic high spatial frequency information. Participants were asked to stop this stimulus sequence as soon as they could correctly perform an animacy judgment task. Behavioral results showed that participants reliably gathered perceptual evidence before recognition. Furthermore, prolonged exploration times were observed for pleasant, relative to either neutral or unpleasant scenes. ERP results showed distinct effects starting at 280 ms post-stimulus onset in distant brain regions during stimulus processing, mainly characterized by: (i) a monotonic accumulation of evidence, involving regions of the posterior cingulate cortex/parahippocampal gyrus, and (ii) true categorical recognition effects in medial frontal regions, including the dorsal anterior cingulate cortex. These findings provide evidence for the early involvement, following stimulus onset, of non-overlapping brain networks during proactive processes eventually leading to visual object recognition.
Collapse
Affiliation(s)
- Antonio Schettino
- Department of Experimental-Clinical and Health Psychology, Ghent University, Belgium
| | | | | | | |
Collapse
|
26
|
Berman MG, Park J, Gonzalez R, Polk TA, Gehrke A, Knaffla S, Jonides J. Evaluating functional localizers: the case of the FFA. Neuroimage 2009; 50:56-71. [PMID: 20025980 DOI: 10.1016/j.neuroimage.2009.12.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/27/2009] [Accepted: 12/04/2009] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are routinely used in neuroimaging studies to test hypotheses about the function of specific brain areas. The specific tasks and stimuli used to localize particular regions vary widely from study to study even when the same cortical region is targeted. Thus, it is important to ask whether task and stimulus changes lead to differences in localization or whether localization procedures are largely immune to differences in tasks and contrasting stimuli. We present two experiments and a literature review that explore whether face localizer tasks yield differential localization in the fusiform gyrus as a function of task and contrasting stimuli. We tested standard localization tasks-passive viewing, 1-back, and 2-back memory tests--and did not find differences in localization based on task. We did, however, find differences in the extent, strength and patterns/reliabilities of the activation in the fusiform gyrus based on comparison stimuli (faces vs. houses compared to faces vs. scrambled stimuli).
Collapse
Affiliation(s)
- Marc G Berman
- Department of Psychology, University of Michigan at Ann Arbor, MI 48109-1043, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wheeler ME, Petersen SE, Nelson SM, Ploran EJ, Velanova K. Dissociating early and late error signals in perceptual recognition. J Cogn Neurosci 2009; 20:2211-25. [PMID: 18457507 DOI: 10.1162/jocn.2008.20155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Decisions about object identity follow a period in which evidence is gathered and analyzed. Evidence can consist of both task-relevant external stimuli and internally generated goals and expectations. How the various pieces of information are gathered and filtered into meaningful evidence by the nervous system is largely unknown. Although object recognition is often highly efficient and accurate, errors are common. Errors may be related to faulty evidence gathering arising from early misinterpretations of incoming stimulus information. In addition, errors in task performance are known to elicit late corrective performance monitoring mechanisms that can optimize or otherwise adjust future behavior. In this study, we used functional magnetic resonance imaging (fMRI) in an extended trial paradigm of object recognition to study whether we could identify performance-based signal modulations prior to and following the moment of recognition. The rationale driving the current report is that early modulations in fMRI activity may reflect faulty evidence gathering, whereas late modulations may reflect the presence of performance monitoring mechanisms. We tested this possibility by comparing fMRI activity on correct and error trials in regions of interest (ROIs) that were selected a priori. We found pre- and postrecognition accuracy-dependent modulation in different sets of a priori ROIs, suggesting the presence of dissociable error signals.
Collapse
|
28
|
Disruption of the prefrontal cortex function by rTMS produces a category-specific enhancement of the reaction times during visual object identification. Neuropsychologia 2008; 46:2725-31. [DOI: 10.1016/j.neuropsychologia.2008.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 11/21/2022]
|
29
|
Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. J Neurosci 2007; 27:11912-24. [PMID: 17978031 DOI: 10.1523/jneurosci.3522-07.2007] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Decision making can be conceptualized as the culmination of an integrative process in which evidence supporting different response options accumulates gradually over time. We used functional magnetic resonance imaging to investigate brain activity leading up to and during decisions about perceptual object identity. Pictures were revealed gradually and subjects signaled the time of recognition (T(R)) with a button press. We examined the time course of T(R)-dependent activity to determine how brain regions tracked the timing of recognition. In several occipital regions, activity increased primarily as stimulus information increased, suggesting a role in lower-level sensory processing. In inferior temporal, frontal, and parietal regions, a gradual buildup in activity peaking in correspondence with T(R) suggested that these regions participated in the accumulation of evidence supporting object identity. In medial frontal cortex, anterior insula/frontal operculum, and thalamus, activity remained near baseline until T(R), suggesting a relation to the moment of recognition or the decision itself. The findings dissociate neural processes that function in concert during perceptual recognition decisions.
Collapse
|