1
|
Bhattacharjee AS, Konakamchi S, Turaev D, Vincis R, Nunes D, Dingankar AA, Spors H, Carleton A, Kuner T, Abraham NM. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time. Cell Rep 2020; 28:2966-2978.e5. [PMID: 31509755 PMCID: PMC7115995 DOI: 10.1016/j.celrep.2019.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022] Open
Abstract
The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.
Collapse
Affiliation(s)
| | - Sasank Konakamchi
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Dmitrij Turaev
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Roberto Vincis
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Daniel Nunes
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Atharva A Dingankar
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Hartwig Spors
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nixon M Abraham
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India; Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| |
Collapse
|
2
|
Chemla S, Muller L, Reynaud A, Takerkart S, Destexhe A, Chavane F. Improving voltage-sensitive dye imaging: with a little help from computational approaches. NEUROPHOTONICS 2017; 4:031215. [PMID: 28573154 PMCID: PMC5438098 DOI: 10.1117/1.nph.4.3.031215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 05/29/2023]
Abstract
Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community. However, this unprecedented technique remains largely under-utilized, and many future possibilities await for VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recurrent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger development of interdisciplinary approaches can bridge micro- to macroscales.
Collapse
Affiliation(s)
- Sandrine Chemla
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Lyle Muller
- Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California, United States
| | - Alexandre Reynaud
- McGill University, McGill Vision Research, Department of Ophthalmology, Montreal, Quebec, Canada
| | - Sylvain Takerkart
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Alain Destexhe
- Unit for Neurosciences, Information and Complexity (UNIC), Centre National de la Recherche Scientifique (CNRS), UPR-3293, Gif-sur-Yvette, France
- The European Institute for Theoretical Neuroscience (EITN), Paris, France
| | - Frédéric Chavane
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
3
|
Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception. Nat Commun 2017; 8:15922. [PMID: 28656980 PMCID: PMC5493759 DOI: 10.1038/ncomms15922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/11/2017] [Indexed: 01/19/2023] Open
Abstract
Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem cell interface. Fewer inhibitory neurons form in the OB of EGFL7-knockout mice, which increases the absolute signal conducted from the mitral cell layer of the OB but decreases neuronal network synchronicity. Consequently, EGFL7-knockout mice display severe physiological defects in olfactory behaviour and perception. The vascular stem cell niche regulates the proliferation and differentiation of neural stem cells (NSCs) in the adult subventricular zone. Here the authors identify EGFL7 as a neurovascular regulator of NSCs in vivo; EGFL7-knockout mice show reduced neurogenesis, and exhibit impaired olfactory perception and behaviour.
Collapse
|
4
|
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Sci Rep 2016; 6:36514. [PMID: 27824096 PMCID: PMC5099913 DOI: 10.1038/srep36514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness).
Collapse
|
5
|
Coelho DH, Costanzo RM. Spatial Mapping in the Rat Olfactory Bulb by Odor and Direct Electrical Stimulation. Otolaryngol Head Neck Surg 2016; 155:526-32. [PMID: 27165674 DOI: 10.1177/0194599816646358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To directly measure the spatial mapping in the olfactory bulb by odor presentation and by direct electrical stimulation. STUDY DESIGN Experimental (animal). SETTING University research laboratory. SUBJECTS AND METHODS Odor (n = 8) and electrical stimulation (n = 4) of the olfactory bulb in rats were used to demonstrate the spatial mapping of neural responses in the olfactory bulb. Both multiunit responses to odor stimulation and evoked potential responses to localized electrical stimulation were measured in different regions of the olfactory bulb. RESULTS Responses that were recorded simultaneously from an array of 32 electrodes positioned at different locations within the olfactory bulb were mapped. Results show different spatial patterns of neural activity for different odors (odor maps). Direct stimulation of the olfactory bulb with electrical current pulses from electrodes positioned at different locations was also effective in generating spatial patterns of neural activity. CONCLUSION These data suggest that by programming an array of stimulating electrodes, it should be possible to selectively activate different regions of the olfactory bulb, generating unique patterns of neural activity as seen in normal smell.
Collapse
Affiliation(s)
- Daniel H Coelho
- Department of Physiology and Biophysics, Department of Otolaryngology-Head and Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard M Costanzo
- Department of Physiology and Biophysics, Department of Otolaryngology-Head and Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Gschwend O, Abraham NM, Lagier S, Begnaud F, Rodriguez I, Carleton A. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci 2015; 18:1474-1482. [PMID: 26301325 PMCID: PMC4845880 DOI: 10.1038/nn.4089] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.
Collapse
Affiliation(s)
- Olivier Gschwend
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Frédéric Begnaud
- Firmenich SA, Corporate R&D Division / Analytical Innovation, route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| |
Collapse
|
7
|
Vincis R, Lagier S, Van De Ville D, Rodriguez I, Carleton A. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling. Cell Rep 2015; 12:313-25. [PMID: 26146075 PMCID: PMC5066842 DOI: 10.1016/j.celrep.2015.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS) imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.
Collapse
Affiliation(s)
- Roberto Vincis
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Dimitri Van De Ville
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland.
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1211 Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Brazhe A, Mathiesen C, Lind B, Rubin A, Lauritzen M. Multiscale vision model for event detection and reconstruction in two-photon imaging data. NEUROPHOTONICS 2014; 1:011012. [PMID: 26157968 PMCID: PMC4479008 DOI: 10.1117/1.nph.1.1.011012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 06/04/2023]
Abstract
Reliable detection of calcium waves in multiphoton imaging data is challenging because of the low signal-to-noise ratio and because of the unpredictability of the time and location of these spontaneous events. This paper describes our approach to calcium wave detection and reconstruction based on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed in the context of detection and reconstruction of intercellular glial calcium waves. We extend the framework by a different decomposition algorithm and iterative reconstruction of the detected objects. Comparison with several popular state-of-the-art image denoising methods shows that performance of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities.
Collapse
Affiliation(s)
- Alexey Brazhe
- Moscow State University, Faculty of Biology, Moscow 119234, Russia
| | - Claus Mathiesen
- Copenhagen University, Institute for Neuroscience and Pharmacology, Copenhagen 2200, Denmark
| | - Barbara Lind
- Copenhagen University, Institute for Neuroscience and Pharmacology, Copenhagen 2200, Denmark
| | - Andrey Rubin
- Moscow State University, Faculty of Biology, Moscow 119234, Russia
| | - Martin Lauritzen
- Copenhagen University, Institute for Neuroscience and Pharmacology, Copenhagen 2200, Denmark
| |
Collapse
|
9
|
A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 2014; 5:3791. [PMID: 24804702 PMCID: PMC4028618 DOI: 10.1038/ncomms4791] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/02/2014] [Indexed: 12/29/2022] Open
Abstract
In sensory systems, peripheral organs convey sensory inputs to relay networks where information is shaped by local microcircuits before being transmitted to cortical areas. In the olfactory system, odorants evoke specific patterns of sensory neuron activity which are transmitted to output neurons in olfactory bulb glomeruli. How sensory information is transferred and shaped at this level remains still unclear. Here we employ mouse genetics, 2-photon microscopy, electrophysiology and optogenetics, to identify a novel population of glutamatergic neurons (VGLUT3+) in the glomerular layer of the adult mouse olfactory bulb as well as several of their synaptic targets. Both peripheral and serotoninergic inputs control VGLUT3+ neurons firing. Furthermore, we show that VGLUT3+ neurons photostimulation in vivo strongly suppresses both spontaneous and odor-evoked firing of bulbar output neurons. In conclusion, we identify and characterize here a microcircuit controlling the transfer of sensory information at an early stage of the olfactory pathway.
Collapse
|
10
|
Automatic segmentation of odor maps in the mouse olfactory bulb using regularized non-negative matrix factorization. Neuroimage 2014; 98:279-88. [PMID: 24769181 DOI: 10.1016/j.neuroimage.2014.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/20/2022] Open
Abstract
Segmentation of functional parts in image series of functional activity is a common problem in neuroscience. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrinsic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF is more resilient to noise and requires fewer observations than conventional spatial independent component analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF provides a straightforward method for problem tailored source separation that enables reliable automatic segmentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in IOS imaging.
Collapse
|
11
|
Abraham NM, Vincis R, Lagier S, Rodriguez I, Carleton A. Long term functional plasticity of sensory inputs mediated by olfactory learning. eLife 2014; 3:e02109. [PMID: 24642413 PMCID: PMC3953949 DOI: 10.7554/elife.02109] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sensory inputs are remarkably organized along all sensory pathways. While sensory representations are known to undergo plasticity at the higher levels of sensory pathways following peripheral lesions or sensory experience, less is known about the functional plasticity of peripheral inputs induced by learning. We addressed this question in the adult mouse olfactory system by combining odor discrimination studies with functional imaging of sensory input activity in awake mice. Here we show that associative learning, but not passive odor exposure, potentiates the strength of sensory inputs up to several weeks after the end of training. We conclude that experience-dependent plasticity can occur in the periphery of adult mouse olfactory system, which should improve odor detection and contribute towards accurate and fast odor discriminations. DOI:http://dx.doi.org/10.7554/eLife.02109.001 The mammalian brain is not static, but instead retains a significant degree of plasticity throughout an animal’s life. It is this plasticity that enables adults to learn new things, adjust to new environments and, to some degree, regain functions they have lost as a result of brain damage. However, information about the environment must first be detected and encoded by the senses. Odors, for example, activate specific receptors in the nose, and these in turn project to structures called glomeruli in a region of the brain known as the olfactory bulb. Each odor activates a unique combination of glomeruli, and the information contained within this ‘odor fingerprint’ is relayed via olfactory bulb neurons to the olfactory cortex. Now, Abraham et al. have revealed that the earliest stages of odor processing also show plasticity in adult animals. Two groups of mice were exposed to the same two odors: however, the first group was trained to discriminate between the odors to obtain a reward, whereas the second group was passively exposed to them. When both groups of mice were subsequently re-exposed to the odors, the trained group activated more glomeruli, more strongly, than a control group that had never encountered the odors before. By contrast, the responses of mice in the passively exposed group did not differ from those of a control group. Given that the response of glomeruli correlates with the ability of mice to discriminate between odors, these results suggest that trained animals would now be able to discriminate between the odors more easily than other mice. In other words, sensory plasticity ensures that stimuli that have been associatively learned with or without reward will be easier to detect should they be encountered again in the future. DOI:http://dx.doi.org/10.7554/eLife.02109.002
Collapse
Affiliation(s)
- Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Takerkart S, Katz P, Garcia F, Roux S, Reynaud A, Chavane F. Vobi One: a data processing software package for functional optical imaging. Front Neurosci 2014; 8:2. [PMID: 24478623 PMCID: PMC3901006 DOI: 10.3389/fnins.2014.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
Optical imaging is the only technique that allows to record the activity of a neuronal population at the mesoscopic scale. A large region of the cortex (10-20 mm diameter) is directly imaged with a CCD camera while the animal performs a behavioral task, producing spatio-temporal data with an unprecedented combination of spatial and temporal resolutions (respectively, tens of micrometers and milliseconds). However, researchers who have developed and used this technique have relied on heterogeneous software and methods to analyze their data. In this paper, we introduce Vobi One, a software package entirely dedicated to the processing of functional optical imaging data. It has been designed to facilitate the processing of data and the comparison of different analysis methods. Moreover, it should help bring good analysis practices to the community because it relies on a database and a standard format for data handling and it provides tools that allow producing reproducible research. Vobi One is an extension of the BrainVISA software platform, entirely written with the Python programming language, open source and freely available for download at https://trac.int.univ-amu.fr/vobi_one.
Collapse
Affiliation(s)
- Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Philippe Katz
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France ; LabISEN, Vision Department, Institut Supérieur de lElectronique et du Numérique Brest, France
| | - Flavien Garcia
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Sébastien Roux
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophtalmology, McGill University Montréal, QC, Canada
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| |
Collapse
|
13
|
Patterson MA, Lagier S, Carleton A. Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage. Proc Natl Acad Sci U S A 2013; 110:E3340-9. [PMID: 23918364 PMCID: PMC3761593 DOI: 10.1073/pnas.1303873110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rodents can discriminate odors in one breath, and mammalian olfaction research has thus focused on the first breath. However, sensory representations dynamically change during and after stimuli. To investigate these dynamics, we recorded spike trains from the olfactory bulb of awake, head-fixed mice and found that some mitral cells' odor representations changed following the first breath and others continued after odor cessation. Population analysis revealed that these postodor responses contained odor- and concentration-specific information--an odor afterimage. Using calcium imaging, we found that most olfactory glomerular activity was restricted to the odor presentation, implying that the afterimage is not primarily peripheral. The odor afterimage was not dependent on odorant physicochemical properties. To artificially induce aftereffects, we photostimulated mitral cells using channelrhodopsin and recorded centrally maintained persistent activity. The strength and persistence of the afterimage was dependent on the duration of both artificial and natural stimulation. In summary, we show that the odor representation evolves after the first breath and that there is a centrally maintained odor afterimage, similar to other sensory systems. These dynamics may help identify novel odorants in complex environments.
Collapse
Affiliation(s)
- Michael Andrew Patterson
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland; and
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Peripheral deafferentation-driven functional somatosensory map shifts are associated with local, not large-scale dendritic structural plasticity. J Neurosci 2013; 33:9474-87. [PMID: 23719814 DOI: 10.1523/jneurosci.1032-13.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term peripheral deafferentation induces representational map changes in the somatosensory cortex. It has been suggested that dendrites and axons structurally rearrange in such paradigms. However, the extent and process of this plasticity remains elusive. To more precisely quantify deafferentation-induced structural plasticity of excitatory cells we repeatedly imaged GFP-expressing L2/3 and L5 pyramidal dendrites in the mouse barrel cortex over months after the removal of a subset of the whisker follicles (FR), a procedure that completely and permanently removes whisker-sensory input. In the same mice we imaged whisker-evoked intrinsic optical signals (IOS) to assess functional cortical map changes. FR triggered the expansion of spared whisker IOS responses, whereas they remained unchanged over months in controls. The gross structure and orientation of apical dendrite tufts remained stable over a two-month period, both in controls and after deprivation. However, terminal branch tip dynamics were slightly reduced after FR, and the formation of new dendritic spines was increased in a cell-type and location-dependent manner. Together, our data suggest that peripheral nerve lesion-induced cortical map shifts do not depend on the large scale restructuring of dendritic arbors but are rather associated with local cell-type and position-dependent changes in dendritic synaptic connectivity.
Collapse
|
15
|
Zhou J, Dong Q, Zhuang LJ, Li R, Wang P. Rapid odor perception in rat olfactory bulb by microelectrode array. J Zhejiang Univ Sci B 2013; 13:1015-23. [PMID: 23225857 DOI: 10.1631/jzus.b1200073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array. Saturated vapors of four pure chemicals, anisole, carvone, citral and isoamyl acetate were applied. After aligning spike trains to the initial phase of the inhalation after odor onset, the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns. Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus. Due to the small amount of information received from a single cell, we pooled results from all responsive M/T cells to study the ensemble activity. The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed. The high dimension vectors were condensed into three dimensions for visualization using principal component analysis. The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation. The distances among cluster centers were enlarged compared to those of the resting state. Thus, we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle.
Collapse
Affiliation(s)
- Jun Zhou
- Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
16
|
Lang J, Li A, Luo W, Wu R, Li P, Xu F. Odor representation in the olfactory bulb under different brain states revealed by intrinsic optical signals imaging. Neuroscience 2013; 243:54-63. [PMID: 23567814 DOI: 10.1016/j.neuroscience.2013.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The olfactory system responds to the same stimulus with great variability according to the current state of the brain. At the levels of multi-unit activity and local field potentials, the response of the olfactory bulb (OB) to a given olfactory stimulus during a state of lower background activity is stronger than the response that occurs during higher background activity, but the distribution pattern of activity remains similar. However, these results have only been established at the individual neuron and neuron cluster scales in previous studies. It remains unclear whether these results are consistent at a larger scale (e.g., OB regions); therefore, intrinsic optical signals imaging was employed in the present study to clarify this issue. The basal brain states of rats were manipulated by using different levels of anesthesia. Under a state of low basal brain activity, the intensity of the activity pattern elicited in the dorsal OB by a given odorant was significantly higher than that under high basal brain activity, but the topography was highly similar across different brain states. These results were consistent across the levels of individual neurons, neuron clusters, glomeruli, and the OB regions, which suggest that the OB contains as yet unknown neural mechanisms that ensure the high-fidelity representation of the same olfactory stimulation under different brain states.
Collapse
Affiliation(s)
- J Lang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
17
|
Similar odor discrimination behavior in head-restrained and freely moving mice. PLoS One 2012; 7:e51789. [PMID: 23272168 PMCID: PMC3525655 DOI: 10.1371/journal.pone.0051789] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 12/16/2022] Open
Abstract
A major challenge in neuroscience is relating neuronal activity to animal behavior. In olfaction limited techniques are available for these correlation studies in freely moving animals. To solve this problem, we developed an olfactory behavioral assay in head-restrained mice where we can monitor behavioral responses with high temporal precision. Mice were trained on a go/no-go operant conditioning paradigm to discriminate simple monomolecular odorants, as well as complex odorants such as binary mixtures of monomolecular odorants or natural odorants. Mice learned to discriminate both simple and complex odors in a few hundred trials with high accuracy. We then compared the discrimination performance of head-restrained mice to the performance observed in freely moving mice. Discrimination accuracies were comparable in both behavioral paradigms. In addition, discrimination times were measured while the animals performed well. In both tasks, mice discriminated simple odors in a few hundred milliseconds and took additional time to discriminate the complex mixtures. In conclusion, mice showed similar and efficient discrimination behavior while head-restrained compared with freely moving mice. Therefore, the head-restrained paradigm offers a relevant approach to monitor neuronal activity while animals are actively engaged in olfactory discrimination behaviors.
Collapse
|
18
|
Brazhe A, Mathiesen C, Lauritzen M. Multiscale vision model highlights spontaneous glial calcium waves recorded by 2-photon imaging in brain tissue. Neuroimage 2012; 68:192-202. [PMID: 23219568 DOI: 10.1016/j.neuroimage.2012.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/26/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022] Open
Abstract
Intercellular glial calcium waves (GCW) constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca(2+) changes. Reliable detection of calcium waves in multiphoton imaging data is challenging because of low signal-to-noise ratio. We modified the multiscale vision model (MVM), originally employed to detect faint objects in astronomy data to process stacks of fluorescent images. We demonstrate that the MVM identified and characterized GCWs with much higher sensitivity and detail than pixel thresholding. Origins of GCWs were often associated with prolonged secondary Ca(2+) elevations. The GCWs had variable shapes, and secondary GCWs were observed to bud from the primary, larger GCW. GCWs evaded areas shortly before occupied by a preceding GCW instead circulating around the refractory area. Blood vessels uniquely reshaped GCWs and were associated with secondary GCW events. We conclude that the MVM provides unique possibilities to study spatiotemporally correlated Ca(2+) signaling in brain tissue.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Faculty of Biology, Moscow State University, 119234 Moscow, Russia.
| | | | | |
Collapse
|
19
|
Dense representation of natural odorants in the mouse olfactory bulb. Nat Neurosci 2012; 15:537-9. [PMID: 22406552 DOI: 10.1038/nn.3057] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/24/2012] [Indexed: 11/08/2022]
Abstract
In mammals, odorant molecules are thought to activate only a few glomeruli, leading to the hypothesis that odor representation in the olfactory bulb is sparse. However, the studies supporting this model used anesthetized animals or monomolecular odorants at limited concentration ranges. Using optical imaging and two-photon microscopy, we found that natural odorants at their native concentrations could elicit dense representations in the olfactory bulb. Both anesthesia and odorant concentration were found to modulate the representation density of natural odorants.
Collapse
|
20
|
Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS One 2012; 7:e30155. [PMID: 22272291 PMCID: PMC3260228 DOI: 10.1371/journal.pone.0030155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model. METHODOLOGY/PRINCIPAL FINDINGS To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rate-invariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles. CONCLUSION We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spiking packets sequence using the gamma oscillations as a clock. This would allow the system to reach a tradeoff between rapid and accurate odorant discrimination.
Collapse
|
21
|
Pain F, L'heureux B, Gurden H. Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli. Cell Mol Life Sci 2011; 68:2689-709. [PMID: 21584811 PMCID: PMC11114686 DOI: 10.1007/s00018-011-0708-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 01/15/2023]
Abstract
The brain transforms clues from the external world, the sensory stimuli, into activities in neuroglial networks. These circuits are activated in specialized sensory cortices where specific functional modules are responsible for the spatiotemporal coding of the stimulus. A major challenge in the neuroscience field has been to image the spatial distribution and follow the temporal dynamics of the activation of such large populations in vivo. Functional imaging techniques developed in the last 30 years have enabled researchers to solve this critical issue, and are reviewed here. These techniques utilize sources of contrast of radioisotopic, magnetic and optical origins and exploit two major families of signals to image sensory activity: the first class uses sources linked to cellular energy metabolism and hemodynamics, while the second involves exogenous indicators of neuronal activity. The whole panel of imaging techniques has fostered the functional exploration of the olfactory bulb which is one of the most studied sensory structures. We summarize the major results obtained using these techniques that describe the spatial and temporal activity patterns in the olfactory glomeruli, the first relay of olfactory information processing in the main olfactory bulb. We conclude this review by describing promising technical developments in optical imaging and future directions in the study of olfactory spatiotemporal coding.
Collapse
Affiliation(s)
- F Pain
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR Université Paris Sud, CNRS, Campus d'Orsay Bat, France.
| | | | | |
Collapse
|
22
|
Lavine M, Haglund MM, Hochman DW. Dynamic linear model analysis of optical imaging data acquired from the human neocortex. J Neurosci Methods 2011; 199:346-62. [PMID: 21640137 DOI: 10.1016/j.jneumeth.2011.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/19/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
The amount of light absorbed and scattered by neocortical tissue is altered by neuronal activity. Imaging of intrinsic optical signals (ImIOS), a technique for mapping these activity-evoked optical changes with an imaging detector, has the potential to be useful for both clinical and experimental investigations of the human neocortex. However, its usefulness for human studies is currently limited because intraoperatively acquired ImIOS data is noisy. To improve the reliability and usefulness of ImIOS for human studies, it is desirable to find appropriate methods for the removal of noise artifacts and its statistical analysis. Here we develop a Bayesian, dynamic linear modeling approach that appears to address these problems. A dynamic linear model (DLM) was constructed that included cyclic components to model the heartbeat and respiration artifacts, and a local linear component to model the activity-evoked response. The robustness of the model was tested on a set of ImIOS data acquired from the exposed cortices of six human subjects illuminated with either 535nm or 660nm light. The DLM adequately reduced noise artifacts in these data while reliably preserving their activity-evoked optical responses. To demonstrate how these methods might be used for intraoperative neurosurgical mapping, optical data acquired from a single human subject during direct electrical stimulation of the cortex were quantitatively analyzed. This example showed that the DLM can be used to provide quantitative information about human ImIOS data that is not available through qualitative analysis alone.
Collapse
Affiliation(s)
- Michael Lavine
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, United States
| | | | | |
Collapse
|
23
|
Reynaud A, Takerkart S, Masson GS, Chavane F. Linear model decomposition for voltage-sensitive dye imaging signals: Application in awake behaving monkey. Neuroimage 2011; 54:1196-210. [DOI: 10.1016/j.neuroimage.2010.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 07/24/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022] Open
|
24
|
Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci 2010; 33:326-34. [PMID: 20493563 DOI: 10.1016/j.tins.2010.04.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/29/2010] [Accepted: 04/13/2010] [Indexed: 01/17/2023]
Abstract
To understand gustatory physiology and associated dysfunctions it is important to know how oral taste stimuli are encoded both in the periphery and in taste-related brain centres. The identification of distinct taste receptors, together with electrophysiological recordings and behavioral assessments in response to taste stimuli, suggest that information about distinct taste modalities (e.g. sweet versus bitter) are transmitted from the periphery to the brain via segregated pathways. By contrast, gustatory neurons throughout the brain are more broadly tuned, indicating that ensembles of neurons encode taste qualities. Recent evidence reviewed here suggests that the coding of gustatory stimuli is not immutable, but is dependant on a variety of factors including appetite-regulating molecules and associative learning.
Collapse
Affiliation(s)
- Alan Carleton
- Department of Neurosciences, Medical Faculty, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
25
|
Bathellier B, Buhl DL, Accolla R, Carleton A. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales. Neuron 2008; 57:586-98. [PMID: 18304487 DOI: 10.1016/j.neuron.2008.02.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/05/2007] [Accepted: 02/06/2008] [Indexed: 11/19/2022]
Abstract
Neural firing discharges are often temporally patterned, but it is often ambiguous as to whether the temporal features of these patterns constitute a useful code. Here we show in the mouse olfactory bulb that ensembles of projection neurons respond with complex odor- and concentration-specific dynamic activity sequences developing below and above sniffing frequency. Based on this activity, almost optimal discrimination of presented odors was possible during single sniffs, consistent with reported behavioral data. Within a sniff cycle, slower features of the dynamics alone (>100 ms resolution, including mean firing rate) were sufficient for maximal discrimination. A smaller amount of information was also observed in faster features down to 20-40 ms resolution. Therefore, mitral cell ensemble activity contains information at different timescales that could be separately or complementarily exploited by downstream brain centers to make odor discriminations. Our results also support suggestive analogies in the dynamics of odor representations between insects and mammals.
Collapse
Affiliation(s)
- Brice Bathellier
- Flavour Perception Group, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), CH-1015, Switzerland
| | | | | | | |
Collapse
|
26
|
Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc Natl Acad Sci U S A 2008; 105:4010-5. [PMID: 18305172 DOI: 10.1073/pnas.0708927105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Primary sensory cortices are remarkably organized in spatial maps according to specific sensory features of the stimuli. These cortical maps can undergo plastic rearrangements after changes in afferent ("bottom-up") sensory inputs such as peripheral lesions or passive sensory experience. However, much less is known about the influence of "top-down" factors on cortical plasticity. Here, we studied the effect of a visceral malaise on taste representations in the gustatory cortex (GC). Using in vivo optical imaging, we showed that inducing conditioned taste aversion (CTA) to a sweet and pleasant stimulus induced plastic rearrangement of its cortical representation, becoming more similar to a bitter and unpleasant taste representation. Using a behavior task, we showed that changes in hedonic perception are directly related to the maps plasticity in the GC. Indeed imaging the animals after CTA extinction indicated that sweet and bitter representations were dissimilar. In conclusion, we showed that an internal state of malaise induces plastic reshaping in the GC associated to behavioral shift of the stimulus hedonic value. We propose that the GC not only encodes taste modality, intensity, and memory but extends its integrative properties to process also the stimulus hedonic value.
Collapse
|
27
|
Van De Ville D, Seghier ML, Lazeyras F, Blu T, Unser M. WSPM: Wavelet-based statistical parametric mapping. Neuroimage 2007; 37:1205-17. [PMID: 17689101 DOI: 10.1016/j.neuroimage.2007.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/23/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022] Open
Abstract
Recently, we have introduced an integrated framework that combines wavelet-based processing with statistical testing in the spatial domain. In this paper, we propose two important enhancements of the framework. First, we revisit the underlying paradigm; i.e., that the effect of the wavelet processing can be considered as an adaptive denoising step to "improve" the parameter map, followed by a statistical detection procedure that takes into account the non-linear processing of the data. With an appropriate modification of the framework, we show that it is possible to reduce the spatial bias of the method with respect to the best linear estimate, providing conservative results that are closer to the original data. Second, we propose an extension of our earlier technique that compensates for the lack of shift-invariance of the wavelet transform. We demonstrate experimentally that both enhancements have a positive effect on performance. In particular, we present a reproducibility study for multi-session data that compares WSPM against SPM with different amounts of smoothing. The full approach is available as a toolbox, named WSPM, for the SPM2 software; it takes advantage of multiple options and features of SPM such as the general linear model.
Collapse
Affiliation(s)
- Dimitri Van De Ville
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), and Department of Radiology and Medical Informatics, University Hospital Geneva, Switzerland.
| | | | | | | | | |
Collapse
|