1
|
Sawant-Basak A, Chen L, Lockwood P, Boyden T, Doran AC, Mancuso J, Zasadny K, McCarthy T, Morris ED, Carson RE, Esterlis I, Huang Y, Nabulsi N, Planeta B, Fullerton T. Investigating CNS distribution of PF-05212377, a P-glycoprotein substrate, by translation of 5-HT 6 receptor occupancy from non-human primates to humans. Biopharm Drug Dispos 2023; 44:48-59. [PMID: 36825693 DOI: 10.1002/bdd.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
PF-05212377 (SAM760) is a potent and selective 5-HT6 antagonist, previously under development for the treatment of Alzheimer's disease. In vitro, PF-05212377 was determined to be a P-gp/non-BCRP human transporter substrate. Species differences were observed in the in vivo brain penetration of PF-05212377 with a ratio of the unbound concentration in brain/unbound concentration in plasma (Cbu /Cpu ) of 0.05 in rat and 0.64 in non-human primates (NHP). Based on pre-clinical evidence, brain penetration and target engagement of PF-05212377 was confirmed in NHP using positron emission tomography (PET) measured 5-HT6 receptor occupancy (%RO). The NHP Cpu EC50 of PF-05212377 was 0.31 nM (consistent with the in vitro human 5HT6 Ki : 0.32 nM). P-gp has been reported to be expressed in higher abundance at the rat BBB and in similar abundance at the BBB of non-human primates and human; brain penetration of PF-05212377 in humans was postulated to be similar to that in non-human primates. In humans, PF-05212377 demonstrated dose and concentration dependent increases in 5-HT6 RO; maximal 5-HT6 RO of ∼80% was measured in humans at doses of ≥15 mg with an estimated unbound plasma EC50 of 0.37 nM (which was similar to the in vitro human 5HT6 binding Ki 0.32 nM). In conclusion, cumulative evidence from NHP and human PET RO assessments confirmed that NHP is more appropriate than the rat for the prediction of human brain penetration of PF-05212377, a P-gp/non-BCRP substrate. Clinical trial number: NCT01258751.
Collapse
Affiliation(s)
- Aarti Sawant-Basak
- Clinical Pharmacology, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Laigao Chen
- Digital Sciences and Translational Imaging, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Peter Lockwood
- Clinical Pharmacology, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Tracey Boyden
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Angela C Doran
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Jessica Mancuso
- Biostatistics, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Kenneth Zasadny
- Digital Sciences and Translational Imaging, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Timothy McCarthy
- Digital Sciences and Translational Imaging, Early Clinical Development, Worldwide Research, Development and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Irina Esterlis
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Terence Fullerton
- Internal Medicine, Global Product Development, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
2
|
Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R, Salinas C, Johnson CN, Jakobsen S, Houle S, Laruelle M, Cunningham VJ, Martarello L. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med 2012; 53:295-303. [PMID: 22223878 DOI: 10.2967/jnumed.111.093419] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The development of a PET radioligand for imaging 5-hydroxytryptamine (5-HT) 6 receptors in the brain would, for the first time, enable in vivo imaging of this target along with assessment of its involvement in disease pathophysiology. In addition, such a tool would assist in the development of novel drugs targeting the 5-HT6 receptor. METHODS On the basis of in vitro data, GSK215083 was identified as a promising 5-HT6 radioligand candidate and was radiolabeled with (11)C via methylation. The in vivo properties of (11)C-GSK215083 were evaluated first in pigs (to investigate brain penetration and specific binding), second in nonhuman primates (to confirm brain penetration, specific binding, selectivity, and kinetics), and third in human subjects (to confirm brain penetration and biodistribution). RESULTS (11)C-GSK215083 readily entered the brain in all 3 species, leading to a heterogeneous distribution (striatum > cortex > cerebellum) consistent with reported 5-HT6 receptor densities and distribution determined by tissue-section autoradiography in preclinical species and humans. In vivo saturation studies using escalating doses of GSK215083 in primates demonstrated saturable, dose-dependent binding to the 5-HT6 receptor in the striatum. Importantly, (11)C-GSK215083 also exhibited affinity for the 5-HT2A receptor; however, given the differential localization of these 2 receptors in the central nervous system, the discrete 5-HT6 binding properties of this radioligand were able to be determined. CONCLUSION These data demonstrate the utility of (11)C-GSK215083 as a promising PET radioligand for probing the 5-HT6 receptor in vivo in both preclinical and clinical species.
Collapse
|
4
|
Saulin A, Savli M, Lanzenberger R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids 2011; 42:2039-57. [PMID: 21947614 DOI: 10.1007/s00726-011-1078-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023]
Abstract
The serotonergic system is one of the most important modulatory neurotransmitter systems in the human brain. It plays a central role in major physiological processes and is implicated in a number of psychiatric disorders. Along with the dopaminergic system, it is also one of the phylogenetically oldest human neurotransmitter systems and one of the most diverse, with 14 different receptors identified up to this day, many of whose function remains to be understood. The system's functioning is even more diverse than the number of its receptors, since each is implicated in a number of different processes. This review aims at illustrating the distribution and summarizing the main functions of the serotonin (5-hydroxytryptamin, 5-HT) receptors as well as the serotonin transporter (SERT, 5-HTT), the vesicular monoamine transporter 2, monoamine oxidase type A and 5-HT synthesis in the human brain. Recent advances in in vivo quantification of these different receptors and enzymes that are part of the serotonergic system using positron emission tomography are described.
Collapse
Affiliation(s)
- Anne Saulin
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | |
Collapse
|
5
|
Liu F, Majo VJ, Prabhakaran J, Milak MS, John Mann J, Parsey RV, Kumar JSD. Synthesis and in vivo evaluation of [O-methyl-11C] N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide as an imaging probe for 5-HT6 receptors. Bioorg Med Chem 2011; 19:5255-9. [PMID: 21821420 DOI: 10.1016/j.bmc.2011.06.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The serotonin receptor 6 (5-HT(6)) is implicated in the pathophysiology of cognitive diseases, schizophrenia, anxiety and obesity and in vivo studies of this receptor would be of value for studying the pathophysiology of these disorders. Therefore, N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide (SB399885), a selective and high affinity (pK(i)=9.11) 5-HT(6) antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue with [(11)C]MeOTf in order to determine the suitability of [(11)C]SB399885 to quantify 5-HT(6)R in living brain using PET. Desmethyl-SB399885 was prepared, starting from 1-(2-methoxyphenyl) piperazine hydrochloride, in excellent yield. The yield obtained for radiolabeling of [(11)C]SB399885 was 30±5% (EOS) and the total synthesis time was 30min at EOB. PET studies with [(11)C]SB399885 in baboon showed fast uptake followed by rapid clearance in the brain. Highest uptake of radioactivity of [(11)C]SB399885 in baboon brain were found in temporal cortex, parahippocampal gyrus, pareital cortex, amygdala, and hippocampus. Poor brain entry and inconsistent brain uptake of [(11)C]SB399885 compared to known 5-HT(6)R distribution limits its usefulness for the in vivo quantification of 5-HT(6)R with PET.
Collapse
Affiliation(s)
- Fei Liu
- Division of Substance Abuse, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev 2011; 33:54-111. [PMID: 21674551 DOI: 10.1002/med.20245] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.
Collapse
Affiliation(s)
- Louise M Paterson
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Abstract
Abnormalities in specific cerebral networks likely confer vulnerability that increases the susceptibility for development of geriatric depression and affect the course of symptoms. Functional neuroimaging enables the in vivo identification of alterations in cerebral function that characterize disease vulnerability and contribute to variability in depressive symptoms and antidepressant response. Judicious use of functional neuroimaging tools can advance pathophysiologic models of geriatric depression. Furthermore, geriatric depression provides a logical context within which to study the role of specific functional abnormalities in both antidepressant response and key behavioral and cognitive abnormalities of mood disorders.
Collapse
Affiliation(s)
- Faith M. Gunning
- Institute of Geriatric Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road; White Plains, N.Y. 10605; Tel. (914) 997-8643; Fax Number (914) 682-6979
| | - Gwenn S. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview Medical Center, Alpha Commons Bldg. 4th floor, 5300 Alpha Commons Drive, Baltimore, MD 21224, USA. Phone Number: 410-550-8696, Fax Number: 410-550-0564
| |
Collapse
|
8
|
Abstract
Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future.
Collapse
|