1
|
Staquet C, Vanhaudenhuyse A, Kandeepan S, Sanders RD, Ribeiro de Paula D, Brichant JF, Laureys S, Bonhomme V, Soddu A. Changes in Intrinsic Connectivity Networks Topology Across Levels of Dexmedetomidine-Induced Alteration of Consciousness. Anesth Analg 2024; 139:798-811. [PMID: 38289856 DOI: 10.1213/ane.0000000000006799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Human consciousness is generally thought to emerge from the activity of intrinsic connectivity networks (resting-state networks [RSNs]) of the brain, which have topological characteristics including, among others, graph strength and efficiency. So far, most functional brain imaging studies in anesthetized subjects have compared wakefulness and unresponsiveness, a state considered as corresponding to unconsciousness. Sedation and general anesthesia not only produce unconsciousness but also phenomenological states of preserved mental content and perception of the environment (connected consciousness), and preserved mental content but no perception of the environment (disconnected consciousness). Unresponsiveness may be seen during unconsciousness, but also during disconnectedness. Deep dexmedetomidine sedation is frequently a state of disconnected consciousness. In this study, we were interested in characterizing the RSN topology changes across 4 different and steady-state levels of dexmedetomidine-induced alteration of consciousness, namely baseline (Awake, drug-free state), Mild sedation (drowsy, still responding), Deep sedation (unresponsive), and Recovery, with a focus on changes occurring between a connected consciousness state and an unresponsiveness state. METHODS A functional magnetic resonance imaging database acquired in 14 healthy volunteers receiving dexmedetomidine sedation was analyzed using a method combining independent component analysis and graph theory, specifically looking at changes in connectivity strength and efficiency occurring during the 4 above-mentioned dexmedetomidine-induced altered consciousness states. RESULTS Dexmedetomidine sedation preserves RSN architecture. Unresponsiveness during dexmedetomidine sedation is mainly characterized by a between-networks graph strength alteration and within-network efficiency alteration of lower-order sensory RSNs, while graph strength and efficiency in higher-order RSNs are relatively preserved. CONCLUSIONS The differential dexmedetomidine-induced RSN topological changes evidenced in this study may be the signature of inadequate processing of sensory information by lower-order RSNs, and of altered communication between lower-order and higher-order networks, while the latter remain functional. If replicated in an experimental paradigm distinguishing, in unresponsive subjects, disconnected consciousness from unconsciousness, such changes would sustain the hypothesis that disconnected consciousness arises from altered information handling by lower-order sensory networks and altered communication between lower-order and higher-order networks, while the preservation of higher-order networks functioning allows for an internally generated mental content (or dream).
Collapse
Affiliation(s)
- Cecile Staquet
- From the Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness, Liege University, Liege, Belgium
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Audrey Vanhaudenhuyse
- Interdisciplinary Center of Algology, Liege University Hospital, Liege, Belgium
- Sensation & Perception Research Group, GIGA-Consciousness, Liege University, Liege, Belgium
| | - Sivayini Kandeepan
- Department of Physics and Astronomy, Western Institute for Neuroscience, University of Western Ontario, London, Ontario, Canada
- Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Robert D Sanders
- University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jean François Brichant
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Steven Laureys
- Sensation & Perception Research Group, GIGA-Consciousness, Liege University, Liege, Belgium
- Coma Science Group, GIGA-Consciousness, Liege University, Liege, Belgium
- Centre du Cerveau , Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- From the Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness, Liege University, Liege, Belgium
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Institute of Academic Surgery, Sydney, New South Wales, Australia
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Andrea Soddu
- Department of Physics and Astronomy, Western Institute for Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Dimitriadis SI, Routley B, Linden DEJ, Singh KD. Multiplexity of human brain oscillations as a personal brain signature. Hum Brain Mapp 2023; 44:5624-5640. [PMID: 37668332 PMCID: PMC10619372 DOI: 10.1002/hbm.26466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- Department of Clinical Psychology and PsychobiologyUniversity of BarcelonaBarcelonaSpain
| | - B. Routley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| | - David E. J. Linden
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- School for Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| |
Collapse
|
3
|
Hotta J, Saari J, Harno H, Kalso E, Forss N, Hari R. Somatotopic disruption of the functional connectivity of the primary sensorimotor cortex in complex regional pain syndrome type 1. Hum Brain Mapp 2023; 44:6258-6274. [PMID: 37837646 PMCID: PMC10619416 DOI: 10.1002/hbm.26513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023] Open
Abstract
In complex regional pain syndrome (CRPS), the representation area of the affected limb in the primary sensorimotor cortex (SM1) reacts abnormally during sensory stimulation and motor actions. We recorded 3T functional magnetic resonance imaging resting-state data from 17 upper-limb CRPS type 1 patients and 19 healthy control subjects to identify alterations of patients' SM1 function during spontaneous pain and to find out how the spatial distribution of these alterations were related to peripheral symptoms. Seed-based correlations and independent component analyses indicated that patients' upper-limb SM1 representation areas display (i) reduced interhemispheric connectivity, associated with the combined effect of intensity and spatial extent of limb pain, (ii) increased connectivity with the right anterior insula that positively correlated with the duration of CRPS, (iii) increased connectivity with periaqueductal gray matter, and (iv) disengagement from the other parts of the SM1 network. These findings, now reported for the first time in CRPS, parallel the alterations found in patients suffering from other chronic pain conditions or from limb denervation; they also agree with findings in healthy persons who are exposed to experimental pain or have used their limbs asymmetrically. Our results suggest that CRPS is associated with a sustained and somatotopically specific alteration of SM1 function, that has correspondence to the spatial distribution of the peripheral manifestations and to the duration of the syndrome.
Collapse
Affiliation(s)
- Jaakko Hotta
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Jukka Saari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Hanna Harno
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Nina Forss
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Riitta Hari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of Art and MediaAalto University School of Arts, Design and ArchitectureHelsinkiFinland
| |
Collapse
|
4
|
Desowska A, Berde CB, Cornelissen L. Emerging functional connectivity patterns during sevoflurane anaesthesia in the developing human brain. Br J Anaesth 2023; 130:e381-e390. [PMID: 35803755 DOI: 10.1016/j.bja.2022.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Spectral-based EEG is used to monitor anaesthetic state during surgical procedures in adults. Spectral EEG features that can resemble the patterns seen in adults emerge in children after the age of 10 months and cannot distinguish wakefulness and anaesthesia in the youngest children. There is a need to explore alternative EEG measures. We hypothesise that functional connectivity is one of the measures that can help distinguish between consciousness states in children. METHODS An EEG data set of children undergoing sevoflurane general anaesthesia (age 0-3 yr) was reanalysed using debiased weighted phase lag index as a measure of functional connectivity in wakefulness (n=38) and anaesthesia (n=73). Network topology measures were compared between states in 0- to 6-, 6- to 10-, and >10-month-old children. RESULTS Functional connectivity was reduced in anaesthesia vs wakefulness in delta band (n=cluster of 17 significant connections; P=0.013; 58% connections surviving thresholding in wakefulness and 49% in anaesthesia). Network density and node degree were lower in anaesthesia even in the youngest children (0.57 in wakefulness; 0.48 in anaesthesia; t [9]=3.39; P=0.029; G=0.98; confidence interval [CI] [0.25-1.77]). Modularity was higher in anaesthesia (0-6 months: 0.16 in wakefulness and 0.19 in anaesthesia, t [9]=-2.95, P=0.04, G=-0.85, CI [-1.60 to -0.16]; >10 months: 0.16 vs 0.21, t [13]=-6.45, P<0.001, G=-1.62, CI [-2.49 to -0.85]) and decreased with age (ρ [73]=-0.456; P<0.001). CONCLUSIONS Anaesthesia modulates functional connectivity. Increased segregation into a more modular structure in anaesthesia decreases with age as adult-like features develop. These findings advance our understanding of the network architecture underlying the effects of anaesthesia on the developing brain.
Collapse
Affiliation(s)
- Adela Desowska
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles B Berde
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
O'Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable RT. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. Neuroimage 2022; 264:119735. [PMID: 36347441 PMCID: PMC9808917 DOI: 10.1016/j.neuroimage.2022.119735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.
Collapse
Affiliation(s)
- D O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - F Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - X Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - C Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - X Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - P Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - F Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - M Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - X Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Emr Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R T Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Chamberlain TA, Rosenberg MD. Propofol selectively modulates functional connectivity signatures of sustained attention during rest and narrative listening. Cereb Cortex 2022; 32:5362-5375. [PMID: 35285485 DOI: 10.1093/cercor/bhac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Sustained attention is a critical cognitive function reflected in an individual's whole-brain pattern of functional magnetic resonance imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time. Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state? To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals. More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity of network-based models of cognitive function.
Collapse
Affiliation(s)
- Taylor A Chamberlain
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago.,Neuroscience Institute, The University of Chicago, 5812 South Ellis Ave., MC 0912, Suite P-400, IL 60637, Chicago
| |
Collapse
|
7
|
Grant KA, Newman N, Lynn C, Davenport C, Gonzales S, Cuzon Carlson VC, Kroenke CD. Brain Functional Connectivity Mapping of Behavioral Flexibility in Rhesus Monkeys. J Neurosci 2022; 42:4867-4878. [PMID: 35552233 PMCID: PMC9188385 DOI: 10.1523/jneurosci.0816-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
The predisposition to engage in autonomous habitual behaviors has been associated with behavioral disorders, such as obsessive-compulsive disorder and addiction. Attentional set-shifting tasks (ASSTs), which incorporate changes governing the association of discriminative stimuli with contingent reinforcement, are commonly used to measure underlying processes of cognitive/behavioral flexibility. The purpose of this study was to identify primate brain networks that mediate trait-like deficits in ASST performance using resting-state fMRI. A self-pacing ASST was administered to three cohorts of rhesus monkeys (total n = 35, 18 female). Increased performance over 30 consecutive sessions segregated the monkeys into two populations, termed High Performers (HP, n = 17) and Low Performers (LP, n = 17), with one anomaly. Compared with LPs, HPs had higher rates of improving performance over sessions and completed the 8 sets/sessions with fewer errors. LP monkeys, on the other hand, spent most of each session in the first set and often did not acquire the first reversal. A whole-brain independent components analysis of resting-state fMRI under isoflurane identified four strong networks. Of these, a dual regression analysis revealed that a designated "executive control network," differed between HPs and LPs. Specific areas of connectivity in the rhesus executive control network, including frontal cortices (ventrolateral, ventromedial, and orbital) and the dorsal striatum (caudate, putamen) correlated with perseverative errors and response latency. Overall, the results identify trait-like characteristics of behavioral flexibility that are associated with correlated brain activity involving specific nuclei of frontostriatal networks.SIGNIFICANCE STATEMENT Resting state functional connectivity MRI in rhesus monkeys identified specific nuclei in frontostriatal circuitry that were associated with population differences in perseverative and impulsive aspects of cognitive flexibility.
Collapse
Affiliation(s)
- Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon 97239
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Colton Lynn
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Conor Davenport
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Steven Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon 97239
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
8
|
Wu H, Qi Z, Wu X, Zhang J, Wu C, Huang Z, Zang D, Fogel S, Tanabe S, Hudetz AG, Northoff G, Mao Y, Qin P. Anterior precuneus related to the recovery of consciousness. Neuroimage Clin 2022; 33:102951. [PMID: 35134706 PMCID: PMC8856921 DOI: 10.1016/j.nicl.2022.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Degree centrality of anterior precuneus correlated with Glasgow Outcome Scale scores. Anterior precuneus was shown as a hub in multiple recoverable unconscious states. Anterior precuneus had similar connectivity pattern in recoverable unconscious states.
The neural mechanism that enables the recovery of consciousness in patients with unresponsive wakefulness syndrome (UWS) remains unclear. The aim of the current study is to characterize the cortical hub regions related to the recovery of consciousness. In the current fMRI study, voxel-wise degree centrality analysis was adopted to identify the cortical hubs related to the recovery of consciousness, for which a total of 27 UWS patients were recruited, including 13 patients who emerged from UWS (UWS-E), and 14 patients who remained in UWS (UWS-R) at least three months after the experiment performance. Furthermore, other recoverable unconscious states were adopted as validation groups, including three independent N3 sleep datasets (n = 12, 9, 9 respectively) and three independent anesthesia datasets (n = 27, 14, 6 respectively). Spatial similarity of the hub characteristic with the validation groups between the UWS-E and UWS-R was compared using the dice coefficient. Finally, with the cortical regions persistently shown as hubs across UWS-E and validation states, functional connectivity analysis was further performed to explore the connectivity patterns underlying the recovery of consciousness. The results identified four cortical hubs in the UWS-E, which showed significantly higher degree centrality for UWS-E than UWS-R, including the anterior precuneus, left inferior parietal lobule, left inferior frontal gyrus, and left middle frontal gyrus, of which the degree centrality value also positively correlated with the patients’ Glasgow Outcome Scale (GOS) score that assessed global brain functioning outcome after a brain injury. Furthermore, the anterior precuneus was found with significantly higher similarity of hub characteristics as well as functional connectivity patterns between UWS-E and the validation groups. The results suggest that the recovery of consciousness may be relevant to the integrity of cortical hubs in the recoverable unconscious states, especially the anterior precuneus. The identified cortical hub regions could serve as potential treatment targets for patients with UWS.
Collapse
Affiliation(s)
- Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200433, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200433, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China; Pazhou Lab, Guangzhou 510335, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center Shanghai, 200433, China
| | - Changwei Wu
- Research Center for Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei 11031, Taiwan; Shuang-Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Zirui Huang
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200433, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sean Tanabe
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony G Hudetz
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, ON K1Z 7K4, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200433, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China.
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Pazhou Lab, Guangzhou 510335, China.
| |
Collapse
|
9
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|
10
|
Linke AC, Slušná D, Kohli JS, Álvarez-Linera Prado J, Müller RA, Hinzen W. Morphometry and functional connectivity of auditory cortex in school-age children with profound language disabilities: Five comparative case studies. Brain Cogn 2021; 155:105822. [PMID: 34837801 DOI: 10.1016/j.bandc.2021.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Many neurodevelopmental conditions imply absent or severely reduced language capacities at school age. Evidence from functional magnetic resonance imaging is highly limited. We selected a series of five cases scanned with the same fMRI paradigm and the aim of relating individual language profiles onto underlying patterns of functional connectivity (FC) across auditory language cortex: three with neurogenetic syndromes (Coffin-Siris, Landau-Kleffner, and Fragile-X), one with idiopathic intellectual disability, one with autism spectrum disorder (ASD). Compared to both a group with typical development (TD) and a verbal ASD group (total N = 110), they all showed interhemispheric FC below two standard deviations of the TD mean. Children with higher language scores showed higher intrahemispheric FC between Heschl's gyrus and other auditory language regions, as well as an increase of FC during language stimulation compared to rest. An increase of FC in forward vs. reversed speech in the posterior and middle temporal gyri was seen across all cases. The Coffin-Siris case, the most severe, also had the most anomalous FC patterns and showed reduced myelin content, while the Landau-Kleffner case showed reduced cortical thickness. These results suggest potential for neural markers and mechanisms of severe language processing deficits under highly heterogeneous etiological conditions.
Collapse
Affiliation(s)
- Annika Carola Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA.
| | - Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona 08018, Barcelona, Spain
| | - Jiwandeep Singh Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona 08018, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Rhythmic Change of Cortical Hemodynamic Signals Associated with Ongoing Nociception in Awake and Anesthetized Individuals: An Exploratory Functional Near Infrared Spectroscopy Study. Anesthesiology 2021; 135:877-892. [PMID: 34610092 DOI: 10.1097/aln.0000000000003986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Patients undergoing surgical procedures are vulnerable to repetitive evoked or ongoing nociceptive barrage. Using functional near infrared spectroscopy, the authors aimed to evaluate the cortical hemodynamic signal power changes during ongoing nociception in healthy awake volunteers and in surgical patients under general anesthesia. The authors hypothesized that ongoing nociception to heat or surgical trauma would induce reductions in the power of cortical low-frequency hemodynamic oscillations in a similar manner as previously reported using functional magnetic resonance imaging for ongoing pain. METHODS Cortical hemodynamic signals during noxious stimuli from the fontopolar cortex were evaluated in two groups: group 1, a healthy/conscious group (n = 15, all males) where ongoing noxious and innocuous heat stimulus was induced by a contact thermode to the dorsum of left hand; and group 2, a patient/unconscious group (n = 13, 3 males) receiving general anesthesia undergoing knee surgery. The fractional power of low-frequency hemodynamic signals was compared across stimulation conditions in the healthy awake group, and between patients who received standard anesthesia and those who received standard anesthesia with additional regional nerve block. RESULTS A reduction of the total fractional power in both groups-specifically, a decrease in the slow-5 frequency band (0.01 to 0.027 Hz) of oxygenated hemoglobin concentration changes over the frontopolar cortex-was observed during ongoing noxious stimuli in the healthy awake group (paired t test, P = 0.017; effect size, 0.70), and during invasive procedures in the surgery group (paired t test, P = 0.003; effect size, 2.16). The reduction was partially reversed in patients who received a regional nerve block that likely diminished afferent nociceptive activity (two-sample t test, P = 0.002; effect size, 2.34). CONCLUSIONS These results suggest common power changes in slow-wave cortical hemodynamic oscillations during ongoing nociceptive processing in conscious and unconscious states. The observed signal may potentially promote future development of a surrogate signal to assess ongoing nociception under general anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
12
|
Li Y, Li F, Zheng H, Jiang L, Peng Y, Zhang Y, Yao D, Xu T, Yuan T, Xu P. Recognition of general anesthesia-induced loss of consciousness based on the spatial pattern of the brain networks. J Neural Eng 2021; 18. [PMID: 34534980 DOI: 10.1088/1741-2552/ac27fc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Objective.Unconsciousness is a key feature related to general anesthesia (GA) but is difficult to be evaluated accurately by anesthesiologists clinically.Approach.To tracking the loss of consciousness (LOC) and recovery of consciousness (ROC) under GA, in this study, by investigating functional connectivity of the scalp electroencephalogram, we explore any potential difference in brain networks among anesthesia induction, anesthesia recovery, and the resting state.Main results.The results of this study demonstrated significant differences among the three periods, concerning the corresponding brain networks. In detail, the suppressed default mode network, as well as the prolonged characteristic path length and decreased clustering coefficient, during LOC was found in the alpha band, compared to the Resting and the ROC state. When to further identify the Resting and LOC states, the fused network topologies and properties achieved the highest accuracy of 95%, along with a sensitivity of 93.33% and a specificity of 96.67%.Significance.The findings of this study not only deepen our understanding of propofol-induced unconsciousness but also provide quantitative measurements subserving better anesthesia management.
Collapse
Affiliation(s)
- Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Tao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China.,Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, People's Republic of China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| |
Collapse
|
13
|
Wang J, Xu Y, Deshpande G, Li K, Sun P, Liang P. The Effect of Light Sedation with Midazolam on Functional Connectivity of the Dorsal Attention Network. Brain Sci 2021; 11:brainsci11081107. [PMID: 34439725 PMCID: PMC8392174 DOI: 10.3390/brainsci11081107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Altered connectivity within and between the resting-state networks (RSNs) brought about by anesthetics that induce altered consciousness remains incompletely understood. It is known that the dorsal attention network (DAN) and its anticorrelations with other RSNs have been implicated in consciousness. However, the role of DAN-related functional patterns in drug-induced sedative effects is less clear. In the current study, we investigated altered functional connectivity of the DAN during midazolam-induced light sedation. In a placebo-controlled and within-subjects experimental study, fourteen healthy volunteers received midazolam or saline with a 1-week interval. Resting-state fMRI data were acquired before and after intravenous drug administration. A multiple region of interest-driven analysis was employed to investigate connectivity within and between RSNs. It was found that functional connectivity was significantly decreased by midazolam injection in two regions located in the left inferior parietal lobule and the left middle temporal area within the DAN as compared with the saline condition. We also identified three clusters in anticorrelation between the DAN and other RSNs for the interaction effect, which included the left medial prefrontal cortex, the right superior temporal gyrus, and the right superior frontal gyrus. Connectivity between all regions and DAN was significantly decreased by midazolam injection. The sensorimotor network was minimally affected. Midazolam decreased functional connectivity of the dorsal attention network. These findings advance the understanding of the neural mechanism of sedation, and such functional patterns might have clinical implications in other medical conditions related to patients with cognitive impairment.
Collapse
Affiliation(s)
- Junkai Wang
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
| | - Yachao Xu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Gopikrishna Deshpande
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 35233, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560030, India
- Center for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
- Correspondence: (P.S.); (P.L.)
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- Correspondence: (P.S.); (P.L.)
| |
Collapse
|
14
|
Zhang W, Davis CM, Zeppenfeld DM, Golgotiu K, Wang MX, Haveliwala M, Hong D, Li Y, Wang RK, Iliff JJ, Alkayed NJ. Role of endothelium-pericyte signaling in capillary blood flow response to neuronal activity. J Cereb Blood Flow Metab 2021; 41:1873-1885. [PMID: 33853406 PMCID: PMC8327110 DOI: 10.1177/0271678x211007957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Local blood flow in the brain is tightly coupled to metabolic demands, a phenomenon termed functional hyperemia. Both capillaries and arterioles contribute to the hyperemic response to neuronal activity via different mechanisms and timescales. The nature and specific signaling involved in the hyperemic response of capillaries versus arterioles, and their temporal relationship are not fully defined. We determined the time-dependent changes in capillary flux and diameter versus arteriolar velocity and flow following whisker stimulation using optical microangiography (OMAG) and two-photon microscopy. We further characterized depth-resolved responses of individual capillaries versus capillary networks. We hypothesized that capillaries respond first to neuronal activation, and that they exhibit a coordinated response mediated via endothelial-derived epoxyeicosatrienoates (EETs) acting on pericytes. To visualize peri-capillary pericytes, we used Tie2-GFP/NG2-DsRed mice, and to determine the role of endothelial-derived EETs, we compared cerebrovascular responses to whisker stimulation between wild-type mice and mice with lower endothelial EETs (Tie2-hsEH). We found that capillaries respond immediately to neuronal activation in an orchestrated network-level manner, a response attenuated in Tie2-hsEH and inhibited by blocking EETs action on pericytes. These results demonstrate that capillaries are first responders during functional hyperemia, and that they exhibit a network-level response mediated via endothelial-derived EETs' action on peri-capillary pericytes.
Collapse
Affiliation(s)
- Wenri Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Douglas M Zeppenfeld
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kirsti Golgotiu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marie X Wang
- Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mariya Haveliwala
- Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel Hong
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Gu Y, Sainburg LE, Kuang S, Han F, Williams JW, Liu Y, Zhang N, Zhang X, Leopold DA, Liu X. Brain Activity Fluctuations Propagate as Waves Traversing the Cortical Hierarchy. Cereb Cortex 2021; 31:3986-4005. [PMID: 33822908 PMCID: PMC8485153 DOI: 10.1093/cercor/bhab064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain's functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.
Collapse
Affiliation(s)
- Yameng Gu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucas E Sainburg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sizhe Kuang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jack W Williams
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiang Zhang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
16
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis EA. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021; 42:2802-2822. [PMID: 33738899 PMCID: PMC8127159 DOI: 10.1002/hbm.25405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamic interplay of integration and segregation in the brain is at the core of leading theoretical accounts of consciousness. The human brain dynamically alternates between a sub-state where integration predominates, and a predominantly segregated sub-state, with different roles in supporting cognition and behaviour. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from healthy volunteers before, during, and after loss of responsiveness induced with different concentrations of the inhalational anaesthetic, sevoflurane. We show that dynamic states characterised by high brain integration are especially vulnerable to general anaesthesia, exhibiting attenuated complexity and diminished small-world character. Crucially, these effects are reversed upon recovery, demonstrating their association with consciousness. Higher doses of sevoflurane (3% vol and burst-suppression) also compromise the temporal balance of integration and segregation in the human brain. Additionally, we demonstrate that reduced anticorrelations between the brain's default mode and executive control networks dynamically reconfigure depending on the brain's state of integration or segregation. Taken together, our results demonstrate that the integrated sub-state of brain connectivity is especially vulnerable to anaesthesia, in terms of both its complexity and information capacity, whose breakdown represents a generalisable biomarker of loss of consciousness and its recovery.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Andreas Ranft
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyAsklepios ClinicBad TölzGermany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - David K. Menon
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Wolfon Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Emmanuel A. Stamatakis
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Houldin E, Fang Z, Ray LB, Stojanoski B, Owen AM, Fogel SM. Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake. Sci Rep 2021; 11:11943. [PMID: 34099771 PMCID: PMC8184935 DOI: 10.1038/s41598-021-91211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and towards wake-like desynchronized oscillations in REM. This study employed simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of functional connections modulated by sleep. Further, changes were directional: e.g., positive wake correlations trended towards negative correlations in NREM and back towards positive correlations in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many of these functional connections comprised “higher-order” RSNs (which have been previously linked to cognition and consciousness), such as the default mode network, this finding is suggestive of possibly concomitant alterations to cognition and consciousness.
Collapse
Affiliation(s)
- Evan Houldin
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Neuroscience, Western University, 1151 Richmond St. N., London, N6A 3K7, Canada.,Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Zhuo Fang
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada
| | - Bobby Stojanoski
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Psychology, Western University, London, N6A 5C2, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada. .,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada. .,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada. .,Department of Psychology, Western University, London, N6A 5C2, Canada. .,School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
18
|
Horien C, Fontenelle S, Joseph K, Powell N, Nutor C, Fortes D, Butler M, Powell K, Macris D, Lee K, Greene AS, McPartland JC, Volkmar FR, Scheinost D, Chawarska K, Constable RT. Low-motion fMRI data can be obtained in pediatric participants undergoing a 60-minute scan protocol. Sci Rep 2020; 10:21855. [PMID: 33318557 PMCID: PMC7736342 DOI: 10.1038/s41598-020-78885-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Performing functional magnetic resonance imaging (fMRI) scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in fMRI connectivity analyses. One approach to limit motion has been to use shorter MRI protocols, though this reduces the reliability of results. Hence, there is a need to implement methods to achieve high-quality, low-motion data while not sacrificing data quantity. Here we show that by using a mock scan protocol prior to a scan, in conjunction with other in-scan steps (weighted blanket and incentive system), it is possible to achieve low-motion fMRI data in pediatric participants (age range: 7-17 years old) undergoing a 60 min MRI session. We also observe that motion is low during the MRI protocol in a separate replication group of participants, including some with autism spectrum disorder. Collectively, the results indicate it is possible to conduct long scan protocols in difficult-to-scan populations and still achieve high-quality data, thus potentially allowing more reliable fMRI findings.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA.
- Magnetic Resonance Research Center, 300 Cedar St, PO Box 208043, New Haven, CT, 06520-8043, USA.
| | | | | | | | | | | | | | | | | | - Kangjoo Lee
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Signorelli CM, Uhrig L, Kringelbach M, Jarraya B, Deco G. Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neuroimage 2020; 227:117618. [PMID: 33307225 DOI: 10.1016/j.neuroimage.2020.117618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Anesthesia induces a reconfiguration of the repertoire of functional brain states leading to a high function-structure similarity. However, it is unclear how these functional changes lead to loss of consciousness. Here we suggest that the mechanism of conscious access is related to a general dynamical rearrangement of the intrinsic hierarchical organization of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis to resting-state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence of spatial and temporal hierarchical differences of neural activity within the macaque cortex, with a strong modulation by the depth of anesthesia and the employed anesthetic agent. Higher values of Intrinsic Ignition correspond to rich and flexible brain dynamics whereas lower values correspond to poor and rigid, structurally driven brain dynamics. Moreover, spatial and temporal hierarchical dimensions are disrupted in a different manner, involving different hierarchical brain networks. All together suggest that disruption of brain hierarchy is a new signature of consciousness loss.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, UK; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Department of Anesthesiology and Critical Care, Necker Hospital, University Paris Descartes, France; Department of Anesthesiology and Critical Care, Sainte-Anne Hospital, University Paris Descartes, France
| | - Morten Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Neurosurgery Department, Foch Hospital, Suresnes, France; University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, France.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Pullon RM, Yan L, Sleigh JW, Warnaby CE. Granger Causality of the Electroencephalogram Reveals Abrupt Global Loss of Cortical Information Flow during Propofol-induced Loss of Responsiveness. Anesthesiology 2020; 133:774-786. [PMID: 32930729 PMCID: PMC7495984 DOI: 10.1097/aln.0000000000003398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is a commonly held view that information flow between widely separated regions of the cerebral cortex is a necessary component in the generation of wakefulness (also termed “connected” consciousness). This study therefore hypothesized that loss of wakefulness caused by propofol anesthesia should be associated with loss of information flow, as estimated by the effective connectivity in the scalp electroencephalogram (EEG) signal. In healthy adult volunteers, propofol anesthesia–induced loss of consciousness was associated with an abrupt, substantial, and global decrease in connectivity. These changes are comparably reversed at regain of consciousness. These observations suggest that information flow is an important indicator of wakefulness. Supplemental Digital Content is available in the text.
Collapse
|
21
|
Hori Y, Schaeffer DJ, Gilbert KM, Hayrynen LK, Cléry JC, Gati JS, Menon RS, Everling S. Altered Resting-State Functional Connectivity Between Awake and Isoflurane Anesthetized Marmosets. Cereb Cortex 2020; 30:5943-5959. [PMID: 32556184 PMCID: PMC7899065 DOI: 10.1093/cercor/bhaa168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a New World primate that is becoming increasingly popular as a preclinical model. To assess functional connectivity (FC) across the marmoset brain, resting-state functional MRI (RS-fMRI) is often performed under isoflurane anesthesia to avoid the effects of motion, physiological stress, and training requirements. In marmosets, however, it remains unclear how isoflurane anesthesia affects patterns of FC. Here, we investigated the effects of isoflurane on FC when delivered with either medical air or 100% pure oxygen, two canonical methods of inhalant isoflurane anesthesia delivery. The results demonstrated that when delivered with either medical air or 100% oxygen, isoflurane globally decreased FC across resting-state networks that were identified in awake marmosets. Generally, although isoflurane globally decreased FC in resting-state networks, the spatial structure of the networks was preserved. Outside of the context of RS networks, we indexed pair-wise functional connectivity between regions across the brain and found that isoflurane substantially altered interhemispheric and thalamic FC. Taken together, these findings indicate that RS-fMRI under isoflurane anesthesia is useful to evaluate the global structure of functional networks, but may obfuscate important nodes of some network components when compared to data acquired in fully awake marmosets.
Collapse
Affiliation(s)
- Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lauren K Hayrynen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
22
|
Pan P, Wei S, Ou Y, Liu F, Li H, Jiang W, Li W, Lei Y, Guo W, Luo S. Reduced Global-Brain Functional Connectivity of the Cerebello-Thalamo-Cortical Network in Patients With Dry Eye Disease. Front Hum Neurosci 2020; 14:572693. [PMID: 33100998 PMCID: PMC7546321 DOI: 10.3389/fnhum.2020.572693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The pathophysiology of patients with dry eye disease (DED) is associated with abnormal functional connectivity (FC). The present study aims to probe alterations of voxel-wise brain-wide FC in patient with DED at rest in an unbiased way. Method: A total of 20 patients with DED and 23 controls matched by age, sex, and years of education underwent resting-state functional magnetic resonance imaging scans. Global-brain FC (GFC) was adopted to analyze the images. Support vector machine (SVM) was utilized to differentiate the patients from the controls. Results: Compared with the controls, patients with DED exhibited decreased GFC in the right cerebellum lobule VIII/inferior semi-lunar lobule and left thalamus that belonged to the cerebello-thalamo-cortical network. The GFC values in the left thalamus were positively correlated to the illness duration (r = 0.589, p = 0.006) in the patients. Decreased GFC values in the left thalamus could be used to discriminate the patients from the controls with optimal accuracy, sensitivity and specificity (88.37, 85.00, and 91.30%). Conclusions: Our findings indicate that decreased GFC in the brain regions associated with cerebello-thalamo-cortical network may provide a new insight for understanding the pathological changes of FC in DED. GFC values in the left thalamus may be utilized as a potential biomarker to identify the patients from the controls.
Collapse
Affiliation(s)
- Pan Pan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shubao Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,The Third People's Hospital of Foshan, Foshan, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Vertes RP, Linley SB. No cognitive processing in the unconscious,
anesthetic‐like
, state of sleep. J Comp Neurol 2020; 529:524-538. [DOI: 10.1002/cne.24963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
24
|
Standage D, Areshenkoff CN, Nashed JY, Hutchison RM, Hutchison M, Heinke D, Menon RS, Everling S, Gallivan JP. Dynamic Reconfiguration, Fragmentation, and Integration of Whole-Brain Modular Structure across Depths of Unconsciousness. Cereb Cortex 2020; 30:5229-5241. [PMID: 32469053 PMCID: PMC7472202 DOI: 10.1093/cercor/bhaa085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Indexed: 12/28/2022] Open
Abstract
General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.
Collapse
Affiliation(s)
- Dominic Standage
- School of Psychology, University of Birmingham, B15 2TT, Birmingham, UK
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Psychology, Queen's University, Kingston, K7L 3N6, Ontario, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada
| | | | | | - Dietmar Heinke
- School of Psychology, University of Birmingham, B15 2TT, Birmingham, UK
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, N6G 2V4, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, N6G 2V4, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, N6A 5C1, London, Ontario, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Psychology, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, K7L 3N6, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Golaszewski SM, Wutzl B, Unterrainer AF, Florea C, Schwenker K, Frey VN, Kronbichler M, Rattay F, Nardone R, Hauer L, Sellner J, Trinka E. Functional Magnetic Resonance Imaging in the Final Stage of Creutzfeldt-Jakob Disease. Diagnostics (Basel) 2020; 10:diagnostics10050309. [PMID: 32429303 PMCID: PMC7277986 DOI: 10.3390/diagnostics10050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare fatal degenerative disease of the central nervous system. The clinical course is characterized by rapid progression of neurological and neuromuscular symptoms. The late stage with loss of consciousness is not well characterized. We report a 62-year-old male patient with sCJD with the clinical picture of a vegetative state/apallic syndrome, in whom we studied cortical responses using a vibration paradigm. The functional magnetic resonance imaging (fMRI) investigation demonstrated a clear response within the sensorimotor cortex, the cerebellum, the parietal cortex, the insular, and frontal inferior region. The finding of persistent cortical activity on fMRI in a patient with CJD in a state of unconsciousness has implications for the clinical management and for ethical considerations.
Collapse
Affiliation(s)
- Stefan M. Golaszewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)5-7255-34600; Fax: +43-(0)5-7255-34899
| | - Bettina Wutzl
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Institute for Analysis and Scientific Computing, Technical University of Vienna, 1040 Vienna, Austria;
| | - Axel F. Unterrainer
- Institute of Neuroanesthesiology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Cristina Florea
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
| | - Vanessa N. Frey
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
| | - Martin Kronbichler
- Neuroscience Institute, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria;
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Technical University of Vienna, 1040 Vienna, Austria;
| | - Raffaele Nardone
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Department of Neurology, Franz-Tappeiner-Hospital, 39012 Merano, Italy
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria; (B.W.); (C.F.); (K.S.); (V.N.F.); (R.N.); (J.S.); (E.T.)
- Institute for Analysis and Scientific Computing, Technical University of Vienna, 1040 Vienna, Austria;
| |
Collapse
|
26
|
Lee CW, Blanco B, Dempsey L, Chalia M, Hebden JC, Caballero-Gaudes C, Austin T, Cooper RJ. Sleep State Modulates Resting-State Functional Connectivity in Neonates. Front Neurosci 2020; 14:347. [PMID: 32362811 PMCID: PMC7180180 DOI: 10.3389/fnins.2020.00347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
The spontaneous cerebral activity that gives rise to resting-state networks (RSNs) has been extensively studied in infants in recent years. However, the influence of sleep state on the presence of observable RSNs has yet to be formally investigated in the infant population, despite evidence that sleep modulates resting-state functional connectivity in adults. This effect could be extremely important, as most infant neuroimaging studies rely on the neonate to remain asleep throughout data acquisition. In this study, we combine functional near-infrared spectroscopy with electroencephalography to simultaneously monitor sleep state and investigate RSNs in a cohort of healthy term born neonates. During active sleep (AS) and quiet sleep (QS) our newborn neonates show functional connectivity patterns spatially consistent with previously reported RSN structures. Our three independent functional connectivity analyses revealed stronger interhemispheric connectivity during AS than during QS. In turn, within hemisphere short-range functional connectivity seems to be enhanced during QS. These findings underline the importance of sleep state monitoring in the investigation of RSNs.
Collapse
Affiliation(s)
- Chuen Wai Lee
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Borja Blanco
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom.,Basque Center on Cognition, Brain and Language, Donostia/San Sebastián, Spain
| | - Laura Dempsey
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,DOT-HUB, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Maria Chalia
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jeremy C Hebden
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,DOT-HUB, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | | | - Topun Austin
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,DOT-HUB, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Robert J Cooper
- neoLAB, The Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,DOT-HUB, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| |
Collapse
|
27
|
Neuroimaging contrast across the cortical hierarchy is the feature maximally linked to behavior and demographics. Neuroimage 2020; 215:116853. [PMID: 32302765 PMCID: PMC7311192 DOI: 10.1016/j.neuroimage.2020.116853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 01/21/2023] Open
Abstract
An essential task of neuroscience is to elucidate the relationship between brain activity, brain structure, and human behavior. This study aims to understand this 3-way relationship by studying the population covariance of resting-state functional connectivity, cortical thickness, and behavioral/demographic measures in a large cohort of individuals. Using a data-driven canonical correlation analysis, we found that maximal pairwise correlations between the three modalities are approximately along the same direction across subjects, which is characterized by the change of the overall positive-negative trait of human behavior. More importantly, this behavioral change is associated with a divergent modulation of both resting-state connectivity and cortical thickness across cortical hierarchies between the higher-order cognitive networks and lower-order sensory/motor regions. The findings suggest that the cross-hierarchy contrast of structural and functional brain measures is tightly linked to the overall positive-negative trait of human behavior/demographics.
Collapse
|
28
|
Vatansever D, Schröter M, Adapa RM, Bullmore ET, Menon DK, Stamatakis EA. Reorganisation of Brain Hubs across Altered States of Consciousness. Sci Rep 2020; 10:3402. [PMID: 32099008 PMCID: PMC7042369 DOI: 10.1038/s41598-020-60258-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Patterns of functional interactions across distributed brain regions are suggested to provide a scaffold for the conscious processing of information, with marked topological alterations observed in loss of consciousness. However, establishing a firm link between macro-scale brain network organisation and conscious cognition requires direct investigations into neuropsychologically-relevant architectural modifications across systematic reductions in consciousness. Here we assessed both global and regional disturbances to brain graphs in a group of healthy participants across baseline resting state fMRI as well as two distinct levels of propofol-induced sedation. We found a persistent modular architecture, yet significant reorganisation of brain hubs that formed parts of a wider rich-club collective. Furthermore, the reduction in the strength of rich-club connectivity was significantly associated with the participants’ performance in a semantic judgment task, indicating the importance of this higher-order topological feature for conscious cognition. These results highlight a remarkable interplay between global and regional properties of brain functional interactions in supporting conscious cognition that is relevant to our understanding of clinical disorders of consciousness.
Collapse
Affiliation(s)
- D Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, PR China. .,Division of Anaesthesia and Department of Clinical Neurosciences, School of Clinical Medicine, UK & Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, Cambridge, UK. .,Department of Psychiatry, School of Clinical Medicine, University of Cambridge, CB2 0QQ, Cambridge, UK.
| | - M Schröter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, CB2 0QQ, Cambridge, UK.,Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zurich, 4058, Basel, Switzerland
| | - R M Adapa
- Division of Anaesthesia and Department of Clinical Neurosciences, School of Clinical Medicine, UK & Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, Cambridge, UK
| | - E T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, CB2 0QQ, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Road, Fulbourn, CB21 5HH, Cambridge, UK
| | - D K Menon
- Division of Anaesthesia and Department of Clinical Neurosciences, School of Clinical Medicine, UK & Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, Cambridge, UK
| | - E A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, School of Clinical Medicine, UK & Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, Cambridge, UK
| |
Collapse
|
29
|
Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc Natl Acad Sci U S A 2020; 117:3797-3807. [PMID: 32019892 DOI: 10.1073/pnas.1912226117] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to sustain attention differs across people and changes within a single person over time. Although recent work has demonstrated that patterns of functional brain connectivity predict individual differences in sustained attention, whether these same patterns capture fluctuations in attention within individuals remains unclear. Here, across five independent studies, we demonstrate that the sustained attention connectome-based predictive model (CPM), a validated model of sustained attention function, generalizes to predict attentional state from data collected across minutes, days, weeks, and months. Furthermore, the sustained attention CPM is sensitive to within-subject state changes induced by propofol as well as sevoflurane, such that individuals show functional connectivity signatures of stronger attentional states when awake than when under deep sedation and light anesthesia. Together, these results demonstrate that fluctuations in attentional state reflect variability in the same functional connectivity patterns that predict individual differences in sustained attention.
Collapse
|
30
|
Fang Z, Ray LB, Houldin E, Smith D, Owen AM, Fogel SM. Sleep Spindle-dependent Functional Connectivity Correlates with Cognitive Abilities. J Cogn Neurosci 2019; 32:446-466. [PMID: 31659927 DOI: 10.1162/jocn_a_01488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
EEG studies have shown that interindividual differences in the electrophysiological properties of sleep spindles (e.g., density, amplitude, duration) are highly correlated with trait-like "reasoning" abilities (i.e., "fluid intelligence"; problem-solving skills; the ability to employ logic or identify complex patterns), but not interindividual differences in STM or "verbal" intellectual abilities. Previous simultaneous EEG-fMRI studies revealed brain activations time-locked to spindles. Our group has recently demonstrated that the extent of activation in a subset of these regions was related to interindividual differences in reasoning intellectual abilities, specifically. However, spindles reflect communication between spatially distant and functionally distinct brain areas. The functional communication among brain regions related to spindles and their relationship to reasoning abilities have yet to be investigated. Using simultaneous EEG-fMRI sleep recordings and psychophysiological interaction analysis, we identified spindle-related functional communication among brain regions in the thalamo-cortical-BG system, the salience network, and the default mode network. Furthermore, the extent of the functional connectivity of the cortical-striatal circuitry and the thalamo-cortical circuitry was specifically related to reasoning abilities but was unrelated to STM or verbal abilities, thus suggesting that individuals with higher fluid intelligence have stronger functional coupling among these brain areas during spontaneous spindle events. This may serve as a first step in further understanding the function of sleep spindles and the brain network functional communication, which support the capacity for fluid intelligence.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain & Mind Institute, Western University, London, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western University, London, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Evan Houldin
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Dylan Smith
- University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada.,University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| |
Collapse
|
31
|
Luppi AI, Craig MM, Pappas I, Finoia P, Williams GB, Allanson J, Pickard JD, Owen AM, Naci L, Menon DK, Stamatakis EA. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun 2019; 10:4616. [PMID: 31601811 PMCID: PMC6787094 DOI: 10.1038/s41467-019-12658-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
Prominent theories of consciousness emphasise different aspects of neurobiology, such as the integration and diversity of information processing within the brain. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of consciousness, in order to identify consciousness-specific patterns of brain function. We demonstrate that cortical networks are especially affected by loss of consciousness during temporal states of high integration, exhibiting reduced functional diversity and compromised informational capacity, whereas thalamo-cortical functional disconnections emerge during states of higher segregation. Spatially, posterior regions of the brain’s default mode network exhibit reductions in both functional diversity and integration with the rest of the brain during unconsciousness. These results show that human consciousness relies on spatio-temporal interactions between brain integration and functional diversity, whose breakdown may represent a generalisable biomarker of loss of consciousness, with potential relevance for clinical practice. How do diversity (entropy) and integration of activity across brain regions interact to support consciousness? Here the authors show that anaesthetised individuals and patients with disorders of consciousness exhibit overlapping reductions in both diversity and integration in the brain’s default mode network.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Helen Wills Neuroscience Institute, 210 Barker Hall, University of California - Berkeley, 94720, Berkeley, CA, USA
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK. .,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.
| |
Collapse
|
32
|
Propofol inhibits the local activity and connectivity of nuclei in the cortico-reticulo-thalamic loop in rats. J Anesth 2019; 33:572-578. [DOI: 10.1007/s00540-019-02667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
|
33
|
Layden EA, Schertz KE, London SE, Berman MG. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny. Neuroimage 2019; 195:113-127. [PMID: 30940612 DOI: 10.1016/j.neuroimage.2019.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch (Taeniopygia guttata) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.
Collapse
Affiliation(s)
- Elliot A Layden
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kathryn E Schertz
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarah E London
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Mind and Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Marc G Berman
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
34
|
Imperatori LS, Betta M, Cecchetti L, Canales-Johnson A, Ricciardi E, Siclari F, Pietrini P, Chennu S, Bernardi G. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci Rep 2019; 9:8894. [PMID: 31222021 PMCID: PMC6586889 DOI: 10.1038/s41598-019-45289-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 12/03/2022] Open
Abstract
The weighted Phase Lag Index (wPLI) and the weighted Symbolic Mutual Information (wSMI) represent two robust and widely used methods for MEG/EEG functional connectivity estimation. Interestingly, both methods have been shown to detect relative alterations of brain functional connectivity in conditions associated with changes in the level of consciousness, such as following severe brain injury or under anaesthesia. Despite these promising findings, it was unclear whether wPLI and wSMI may account for distinct or similar types of functional interactions. Using simulated high-density (hd-)EEG data, we demonstrate that, while wPLI has high sensitivity for couplings presenting a mixture of linear and nonlinear interdependencies, only wSMI can detect purely nonlinear interaction dynamics. Moreover, we evaluated the potential impact of these differences on real experimental data by computing wPLI and wSMI connectivity in hd-EEG recordings of 12 healthy adults during wakefulness and deep (N3-)sleep, characterised by different levels of consciousness. In line with the simulation-based findings, this analysis revealed that both methods have different sensitivity for changes in brain connectivity across the two vigilance states. Our results indicate that the conjoint use of wPLI and wSMI may represent a powerful tool to study the functional bases of consciousness in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca, Chile
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Pietro Pietrini
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Srivas Chennu
- School of Computing, University of Kent, Chatham Maritime, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland.
- University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
35
|
Zhang Z, Cai DC, Wang Z, Zeljic K, Wang Z, Wang Y. Isoflurane-Induced Burst Suppression Increases Intrinsic Functional Connectivity of the Monkey Brain. Front Neurosci 2019; 13:296. [PMID: 31031580 PMCID: PMC6470287 DOI: 10.3389/fnins.2019.00296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Animal functional magnetic resonance imaging (fMRI) has provided key insights into the physiological mechanisms underlying healthy and diseased brain states. In non-human primates, resting-state fMRI studies are commonly conducted under isoflurane anesthesia, where anesthetic concentration is used to roughly infer anesthesia depth. However, within the recommended isoflurane concentration range (1.00–1.50%), the brain state can switch from moderate anesthesia characterized by stable slow wave (SW) electroencephalogram (EEG) signals to deep anesthesia characterized by burst suppression (BS), which is electrophysiologically distinct from the resting state. To confirm the occurrence rate of BS activity in common setting of animal fMRI study, we conducted simultaneous resting-state EEG and fMRI experiments on 16 monkeys anesthetized using 0.80–1.30% isoflurane, and detected BS activity in two of them. Datasets either featured with BS or SW activity from these two monkeys were analyzed to investigate the intrinsic functional connectivity (FC) patterns during BS. In datasets with BS activity, we observed robust coupling between the BS pattern (the binary alternation between burst and suppression activity in EEG signal) and filtered BOLD signals in most brain areas, which was associated with a non-specific enhancement in whole brain connectivity. After eliminating the BS coupling effect by regressing out the BS pattern, we detected an overall increase in FC with a few decreased connectivity compared to datasets with SW activity. These affected connections were preferentially distributed within orbitofrontal cortex, between orbitofrontal and prefrontal/cingulate/occipital cortex, and between temporal and parietal cortex. Persistence of the default mode network and recovery of thalamocortical connections were also detected under deep anesthesia with BS activity. Taken together, the observed spatially specific alterations in BS activity induced by isoflurane not only highlight the necessity of EEG monitoring and careful data preprocessing in fMRI studies on anesthetized animals, but also advance our understanding of the underlying multi-phased mechanisms of anesthesia.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Yin D, Zhang Z, Wang Z, Zeljic K, Lv Q, Cai D, Wang Y, Wang Z. Brain Map of Intrinsic Functional Flexibility in Anesthetized Monkeys and Awake Humans. Front Neurosci 2019; 13:174. [PMID: 30873000 PMCID: PMC6403192 DOI: 10.3389/fnins.2019.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 01/15/2023] Open
Abstract
Emerging neuroimaging studies emphasize the dynamic organization of spontaneous brain activity in both human and non-human primates, even under anesthesia. In a recent study, we were able to characterize the heterogeneous architecture of intrinsic functional flexibility in the awake, resting human brain using time-resolved analysis and a probabilistic model. However, it is unknown whether this organizational principle is preserved in the anesthetized monkey brain, and how anesthesia affects dynamic and static measurements of spontaneous brain activity. To investigate these issues, we collected resting-state functional magnetic resonance imaging (fMRI) datasets from 178 awake humans and 11 anesthetized monkeys (all healthy). Our recently established method, a complexity measurement (i.e., Shannon entropy) of dynamic functional connectivity patterns of each brain region, was used to map the intrinsic functional flexibility across the cerebral cortex. To further explore the potential effects of anesthesia, we performed time series analysis and correlation analysis between dynamic and static measurements within awake human and anesthetized monkey brains, respectively. We observed a heterogeneous profile of intrinsic functional flexibility in the anesthetized monkey brain, which showed some similarities to that of awake humans (r = 0.30, p = 0.007). However, we found that brain activity in anesthetized monkeys generally shifted toward random fluctuations. Moreover, there is a negative correlation between nodal entropy for the distribution of dynamic functional connectivity patterns and static functional connectivity strength in anesthetized monkeys, but not in awake humans. Our findings indicate that the heterogeneous architecture of intrinsic functional flexibility across cortex probably reflects an evolutionarily conserved aspect of functional brain organization, which persists across levels of cognitive processing (states of consciousness). The coupling between nodal entropy for the distribution of dynamic functional connectivity patterns and static functional connectivity strength may serve as a potential signature of anesthesia. This study not only offers fresh insight into the evolution of brain functional architecture, but also advances our understanding of the dynamics of spontaneous brain activity.
Collapse
Affiliation(s)
- Dazhi Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Danchao Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Palanca BJA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth 2019; 119:573-582. [PMID: 29121298 DOI: 10.1093/bja/aex244] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
Sevoflurane, a volatile anaesthetic agent well-tolerated for inhalation induction, provides a useful opportunity to elucidate the processes whereby halogenated ethers disrupt consciousness and cognition. Multiple molecular targets of sevoflurane have been identified, complementing imaging and electrophysiologic markers for the mechanistically obscure progression from wakefulness to unconsciousness. Recent investigations have more precisely detailed scalp EEG activity during this transition, with practical clinical implications. The relative timing of scalp potentials in frontal and parietal EEG signals suggests that sevoflurane might perturb the propagation of neural information between underlying cortical regions. Spatially distributed brain activity during general anaesthesia has been further investigated with positron emission tomography (PET) and resting-state functional magnetic resonance imaging (fMRI). Combined EEG and PET investigations have identified changes in cerebral blood flow and metabolic activity in frontal, parietal, and thalamic regions during sevoflurane-induced loss of consciousness. More recent fMRI investigations have revealed that sevoflurane weakens the signal correlations among brain regions that share functionality and specialization during wakefulness. In particular, two such resting-state networks have shown progressive breakdown in intracortical and thalamocortical connectivity with increasing anaesthetic concentrations: the Default Mode Network (introspection and episodic memory) and the Ventral Attention Network (orienting of attention to salient feature of the external world). These data support the hypotheses that perturbations in temporally correlated activity across brain regions contribute to the transition between states of sevoflurane sedation and general anaesthesia.
Collapse
Affiliation(s)
- B J A Palanca
- Division of Biology and Biomedical Sciences.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - M S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G A Mashour
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Functional diversity of brain networks supports consciousness and verbal intelligence. Sci Rep 2018; 8:13259. [PMID: 30185912 PMCID: PMC6125486 DOI: 10.1038/s41598-018-31525-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigm-a highly engaging auditory-only narrative-in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence.
Collapse
|
39
|
Abnormal Effective Connectivity of the Anterior Forebrain Regions in Disorders of Consciousness. Neurosci Bull 2018; 34:647-658. [PMID: 29959668 DOI: 10.1007/s12264-018-0250-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 01/21/2023] Open
Abstract
A number of studies have indicated that disorders of consciousness result from multifocal injuries as well as from the impaired functional and anatomical connectivity between various anterior forebrain regions. However, the specific causal mechanism linking these regions remains unclear. In this study, we used spectral dynamic causal modeling to assess how the effective connections (ECs) between various regions differ between individuals. Next, we used connectome-based predictive modeling to evaluate the performance of the ECs in predicting the clinical scores of DOC patients. We found increased ECs from the striatum to the globus pallidus as well as from the globus pallidus to the posterior cingulate cortex, and decreased ECs from the globus pallidus to the thalamus and from the medial prefrontal cortex to the striatum in DOC patients as compared to healthy controls. Prediction of the patients' outcome was effective using the negative ECs as features. In summary, the present study highlights a key role of the thalamo-basal ganglia-cortical loop in DOCs and supports the anterior forebrain mesocircuit hypothesis. Furthermore, EC could be potentially used to assess the consciousness level.
Collapse
|
40
|
Dell'Italia J, Johnson MA, Vespa PM, Monti MM. Network Analysis in Disorders of Consciousness: Four Problems and One Proposed Solution (Exponential Random Graph Models). Front Neurol 2018; 9:439. [PMID: 29946293 PMCID: PMC6005847 DOI: 10.3389/fneur.2018.00439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, the study of the neural basis of consciousness, particularly in the context of patients recovering from severe brain injury, has greatly benefited from the application of sophisticated network analysis techniques to functional brain data. Yet, current graph theoretic approaches, as employed in the neuroimaging literature, suffer from four important shortcomings. First, they require arbitrary fixing of the number of connections (i.e., density) across networks which are likely to have different "natural" (i.e., stable) density (e.g., patients vs. controls, vegetative state vs. minimally conscious state patients). Second, when describing networks, they do not control for the fact that many characteristics are interrelated, particularly some of the most popular metrics employed (e.g., nodal degree, clustering coefficient)-which can lead to spurious results. Third, in the clinical domain of disorders of consciousness, there currently are no methods for incorporating structural connectivity in the characterization of functional networks which clouds the interpretation of functional differences across groups with different underlying pathology as well as in longitudinal approaches where structural reorganization processes might be operating. Finally, current methods do not allow assessing the dynamics of network change over time. We present a different framework for network analysis, based on Exponential Random Graph Models, which overcomes the above limitations and is thus particularly well suited for clinical populations with disorders of consciousness. We demonstrate this approach in the context of the longitudinal study of recovery from coma. First, our data show that throughout recovery from coma, brain graphs vary in their natural level of connectivity (from 10.4 to 14.5%), which conflicts with the standard approach of imposing arbitrary and equal density thresholds across networks (e.g., time-points, subjects, groups). Second, we show that failure to consider the interrelation between network measures does lead to spurious characterization of both inter- and intra-regional brain connectivity. Finally, we show that Separable Temporal ERGM can be employed to describe network dynamics over time revealing the specific pattern of formation and dissolution of connectivity that accompany recovery from coma.
Collapse
Affiliation(s)
- John Dell'Italia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Micah A. Johnson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul M. Vespa
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
41
|
Lichtner G, Auksztulewicz R, Kirilina E, Velten H, Mavrodis D, Scheel M, Blankenburg F, von Dincklage F. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain. Neuroimage 2018; 172:642-653. [DOI: 10.1016/j.neuroimage.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
|
42
|
Liu X, Lauer KK, Ward BD, Roberts CJ, Liu S, Gollapudy S, Rohloff R, Gross W, Xu Z, Chen G, Binder JR, Li SJ, Hudetz AG. Fine-Grained Parcellation of Brain Connectivity Improves Differentiation of States of Consciousness During Graded Propofol Sedation. Brain Connect 2018; 7:373-381. [PMID: 28540741 DOI: 10.1089/brain.2016.0477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connectivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and functional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline, mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol produced widespread, dose-dependent functional connectivity changes that scaled with the extent to which consciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116 anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior imaging-based distinction of the graded effect of anesthesia on consciousness.
Collapse
Affiliation(s)
- Xiaolin Liu
- 1 Department of Radiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathryn K Lauer
- 2 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - B Douglas Ward
- 3 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | - Suyan Liu
- 2 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Suneeta Gollapudy
- 2 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Robert Rohloff
- 4 Department of Neurology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - William Gross
- 2 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Zhan Xu
- 3 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Guangyu Chen
- 3 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Jeffrey R Binder
- 4 Department of Neurology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Shi-Jiang Li
- 3 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Anthony G Hudetz
- 5 Department of Anesthesiology and Center for Consciousness Science, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
43
|
Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, Suarez DMA, Herrera E, García AM, Manes F. Early bilateral and massive compromise of the frontal lobes. NEUROIMAGE-CLINICAL 2018; 18:543-552. [PMID: 29845003 PMCID: PMC5964834 DOI: 10.1016/j.nicl.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
The frontal lobes are one of the most complex brain structures involved in both domain-general and specific functions. The goal of this work was to assess the anatomical and cognitive affectations from a unique case with massive bilateral frontal affectation. We report the case of GC, an eight-year old child with nearly complete affectation of bilateral frontal structures and spared temporal, parietal, occipital, and cerebellar regions. We performed behavioral, neuropsychological, and imaging (MRI, DTI, fMRI) evaluations. Neurological and neuropsychological examinations revealed a mixed pattern of affected (executive control/abstraction capacity) and considerably preserved (consciousness, language, memory, spatial orientation, and socio-emotional) functions. Both structural (DTI) and functional (fMRI) connectivity evidenced abnormal anterior connections of the amygdala and parietal networks. In addition, brain structural connectivity analysis revealed almost complete loss of frontal connections, with atypical temporo-posterior pathways. Similarly, functional connectivity showed an aberrant frontoparietal network and relative preservation of the posterior part of the default mode network and the visual network. We discuss this multilevel pattern of behavioral, structural, and functional connectivity results. With its unique pattern of compromised and preserved structures and functions, this exceptional case offers new constraints and challenges for neurocognitive theories.
Collapse
Affiliation(s)
- Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, Australia.
| | - Máximo Zimerman
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Nicolas Lori
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Laboratory of Neuroimaging and Neuroscience (LANEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Rosario, Argentina
| | - Melina Rapacioli
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Juan F Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
44
|
Timescales of Intrinsic BOLD Signal Dynamics and Functional Connectivity in Pharmacologic and Neuropathologic States of Unconsciousness. J Neurosci 2018; 38:2304-2317. [PMID: 29386261 PMCID: PMC5830518 DOI: 10.1523/jneurosci.2545-17.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental events are processed on multiple timescales via hierarchical organization of temporal receptive windows (TRWs) in the brain. The dependence of neural timescales and TRWs on altered states of consciousness is unclear. States of reduced consciousness are marked by a shift toward slowing of neural dynamics (<1 Hz) in EEG/ECoG signals. We hypothesize that such prolongation of intrinsic timescales are also seen in blood-oxygen-level-dependent (BOLD) signals. To test this hypothesis, we measured the timescales of intrinsic BOLD signals using mean frequency (MF) and temporal autocorrelation (AC) in healthy volunteers (n = 23; male/female 14/9) during graded sedation with propofol. We further examined the relationship between the intrinsic timescales (local/voxel level) and its regional connectivity (across neighboring voxels; regional homogeneity, ReHo), global (whole-brain level) functional connectivity (GFC), and topographical similarity (Topo). Additional results were obtained from patients undergoing deep general anesthesia (n = 12; male/female: 5/7) and in patients with disorders of consciousness (DOC) (n = 21; male/female: 14/7). We found that MF, AC, and ReHo increased, whereas GFC and Topo decreased, during propofol sedation. The local alterations occur before changes of distant connectivity. Conversely, all of these parameters decreased in deep anesthesia and in patients with DOC. We conclude that propofol synchronizes local neuronal interactions and prolongs the timescales of intrinsic BOLD signals. These effects may impede communication among distant brain regions. Furthermore, the intrinsic timescales exhibit distinct dynamic signatures in sedation, deep anesthesia, and DOC. These results improve our understanding of the neural mechanisms of unconsciousness in pharmacologic and neuropathologic states. SIGNIFICANCE STATEMENT Information processing in the brain occurs through a hierarchy of temporal receptive windows (TRWs) in multiple timescales. Anesthetic drugs induce a reversible suppression of consciousness and thus offer a unique opportunity to investigate the state dependence of neural timescales. Here, we demonstrate for the first time that sedation with propofol is accompanied by the prolongation of the timescales of intrinsic BOLD signals presumably reflecting enlarged TRWs. We show that this is accomplished by an increase of local and regional signal synchronization, effects that may disrupt information exchange among distant brain regions. Furthermore, we show that the timescales of intrinsic BOLD signals exhibit distinct dynamic signatures in sedation, deep anesthesia, and disorders of consciousness.
Collapse
|
45
|
Venkatraghavan L, Bharadwaj S, Wourms V, Tan A, Jurkiewicz MT, Mikulis DJ, Crawley AP. Brain Resting-State Functional Connectivity Is Preserved Under Sevoflurane Anesthesia in Patients with Pervasive Developmental Disorders: A Pilot Study. Brain Connect 2018; 7:250-257. [PMID: 28443736 DOI: 10.1089/brain.2016.0448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional connectivity studies play a huge role in understanding the relationship between the network connections and the behavioral phenotype of patients with pervasive developmental disorders (PDD). Some patients with PDD may not be able to tolerate the imaging procedure while they are awake, and, hence, they often need general anesthesia. General anesthesia is a confounding factor in functional imaging studies due to its effect on the functional connectivity. The objective of this study is to look at the resting-state functional connectivity (RS-FC) under sevoflurane anesthesia in patients with PDDs. Thirteen adults with PDD scheduled for magnetic resonance imaging (MRI) of the brain under general anesthesia were recruited for the study. Resting-state functional MRI (fMRI) scans were acquired at 1 minimum alveolar concentration (MAC) of sevoflurane. Spontaneous blood oxygenation level-dependent fluctuations were measured, and a seed-voxel analysis was done to identify the resting-state networks. Subjects' data were compared with data from 16 nonanesthetized healthy controls. Six networks (default mode network [DMN], executive control network [ECN], salience network [SN], auditory, visual, and sensorimotor) were investigated. At 1 MAC sevoflurane anesthesia, RS-FC was preserved in all the networks. Secondary analysis of connectivity showed a decrease in connectivity within the thalamus and an increase in DMN-ECN and DMN-SN cross-network connectivity in the anesthetized patient group compared to healthy controls. Previous reports suggested that even mild levels of anesthesia could reduce overall fluctuation levels in the major brain. However, our results provide strong evidence that most networks can sustain detectable levels of activity in patients with PDDs even under deep levels of anesthesia.
Collapse
Affiliation(s)
- Lakshmikumar Venkatraghavan
- 1 Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto , Toronto, Canada
| | - Suparna Bharadwaj
- 1 Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto , Toronto, Canada
| | - Vincent Wourms
- 2 Department of Anesthesia, University of Manitoba , Winnipeg, Canada
| | - Audrey Tan
- 3 Department of Anesthesia, St. George's Hospital NHS Foundation Trust , London, United Kingdom
| | - Michael T Jurkiewicz
- 4 Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania , Philadelphia, Pennsylvania
| | - David J Mikulis
- 5 Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, University of Toronto , Toronto, Canada
| | - Adrian P Crawley
- 5 Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, University of Toronto , Toronto, Canada
| |
Collapse
|
46
|
Neuronal Connectivity, General Anesthesia, and the Elderly. CURRENT ANESTHESIOLOGY REPORTS 2017. [DOI: 10.1007/s40140-017-0241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Abstract
The mechanisms regulating the control of consciousness in both spontaneous sleep–wake behaviour and general anaesthesia remain poorly understood and are a fundamental question in neuroscience. The last 30 years have identified numerous molecular substrates and more recently important monoaminergic neuronal substrates. Future work now needs to concentrate on elucidating the convergence of these neuronal circuits to build a unifying mechanism of consciousness control.
Collapse
Affiliation(s)
- Thomas Gent
- Inselspital Universitatsspital Bern, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Inselspital Universitatsspital Bern, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Atasoy S, Deco G, Kringelbach ML, Pearson J. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics. Neuroscientist 2017; 24:277-293. [PMID: 28863720 DOI: 10.1177/1073858417728032] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.
Collapse
Affiliation(s)
- Selen Atasoy
- 1 Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- 1 Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,2 Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain.,3 Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,4 School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Morten L Kringelbach
- 5 Department of Psychiatry, University of Oxford, Oxford, UK.,6 Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Joel Pearson
- 7 School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Bharath RD, Panda R, Saini J, Sriganesh K, Rao GSU. Dynamic local connectivity uncovers altered brain synchrony during propofol sedation. Sci Rep 2017; 7:8501. [PMID: 28819211 PMCID: PMC5561230 DOI: 10.1038/s41598-017-08135-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Human consciousness is considered a result of the synchronous "humming" of multiple dynamic networks. We performed a dynamic functional connectivity analysis using resting state functional magnetic resonance imaging (rsfMRI) in 14 patients before and during a propofol infusion to characterize the sedation-induced alterations in consciousness. A sliding 36-second window was used to derive 59 time points of whole brain integrated local connectivity measurements. Significant changes in the connectivity strength (Z Corr) at various time points were used to measure the connectivity fluctuations during awake and sedated states. Compared with the awake state, sedation was associated with reduced cortical connectivity fluctuations in several areas connected to the default mode network and around the perirolandic cortex with a significantly decreased correlation of connectivity between their anatomical homologues. In addition, sedation was associated with increased connectivity fluctuations in the frequency range of 0.027 to 0.063 Hz in several deep nuclear regions, including the cerebellum, thalamus, basal ganglia and insula. These findings advance our understanding of sedation-induced altered consciousness by visualizing the altered dynamics in several cortical and subcortical regions and support the concept of defining consciousness as a dynamic and integrated network.
Collapse
Affiliation(s)
- Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rajanikant Panda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kamath Sriganesh
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuroscience (NIMHANS), Bangalore, India.
| | - G S Umamaheswara Rao
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuroscience (NIMHANS), Bangalore, India
| |
Collapse
|
50
|
Kim M, Kim S, Mashour GA, Lee U. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks. Front Comput Neurosci 2017; 11:55. [PMID: 28713258 PMCID: PMC5492767 DOI: 10.3389/fncom.2017.00055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea.,Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - UnCheol Lee
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|