1
|
Muthukrishnan SP, Anand KS. Restricted Cortical Activity Involving Parietal Lobe and Sublobar Region Leads to Generalized Spike-Wave Discharges of Juvenile Myoclonic Epilepsy: Evidence from an EEG Source Localization Study. Neurol India 2024; 72:1027-1034. [PMID: 39428776 DOI: 10.4103/neurol-india.ni_851_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/31/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND Previous studies have localized the origin of "generalized" spike-wave discharges of idiopathic generalized epilepsies to specific brain regions. Although there are studies in juvenile myoclonic epilepsy (JME) which have investigated the origin of spike-wave discharges, reports on the propagation of discharges are sparse. OBJECTIVE The current study investigated the propagation of spike-wave discharges in JME, which was investigated by statistically comparing the electroencephalography (EEG)-derived cortical source activity during (a) various phases of spike-wave discharge versus background (eyes closed) activity, and (b) various phases of the first spike wave versus the corresponding phase of subsequent spike waves. MATERIAL AND METHODS Fourteen patients with JME who had generalized spike/polyspike and slow wave discharges in interictal EEG were included in the study. A total of 179 spike waves (first discernible spike wave - 55; subsequent spike waves - 124) were selected for source localization. Source analysis was carried out using exact low-resolution electromagnetic tomography (eLORETA). Statistical analyses to estimate the probability distribution of differences in cortical activity between (a) eight phases of epileptic discharge versus background (eyes closed) activity and (b) phases of the first spike wave versus the corresponding phases of subsequent spike waves were performed by paired t-tests and corrected for multiple testing using LORETA-KEY software. RESULTS Widespread activation of cortical voxels (more than 94%) was observed during all phases of epileptic discharge except the initial phase (pre-first spike) and terminal phase (post-peak of the subsequent wave). The parietal lobe, which was the most activated lobe during the pre-first spike, was found to be the least activated during the post-peak of first and subsequent waves. More than 93% of voxels in the sublobar region were consistently activated during all eight phases of discharge. CONCLUSION The study findings suggest that the activity generated from the restricted brain network involving parietal lobe could be propagated through sublobar structures to cause widespread cortical activation during the subsequent phases of the spike-wave cycle.
Collapse
Affiliation(s)
| | - Kuljeet Singh Anand
- Department of Neurology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
2
|
Ke M, Hou Y, Zhang L, Liu G. Brain functional network changes in patients with juvenile myoclonic epilepsy: a study based on graph theory and Granger causality analysis. Front Neurosci 2024; 18:1363255. [PMID: 38774788 PMCID: PMC11106382 DOI: 10.3389/fnins.2024.1363255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that the brain networks are disrupted in adolescent patients with juvenile myoclonic epilepsy (JME). However, previous studies have mainly focused on investigating brain connectivity disruptions from the perspective of static functional connections, overlooking the dynamic causal characteristics between brain network connections. In our study involving 37 JME patients and 35 Healthy Controls (HC), we utilized rs-fMRI to construct whole-brain functional connectivity network. By applying graph theory, we delved into the altered topological structures of the brain functional connectivity network in JME patients and identified abnormal regions as key regions of interest (ROIs). A novel aspect of our research was the application of a combined approach using the sliding window technique and Granger causality analysis (GCA). This method allowed us to delve into the dynamic causal relationships between these ROIs and uncover the intricate patterns of dynamic effective connectivity (DEC) that pervade various brain functional networks. Graph theory analysis revealed significant deviations in JME patients, characterized by abnormal increases or decreases in metrics such as nodal betweenness centrality, degree centrality, and efficiency. These findings underscore the presence of widespread disruptions in the topological features of the brain. Further, clustering analysis of the time series data from abnormal brain regions distinguished two distinct states indicative of DEC patterns: a state of strong connectivity at a lower frequency (State 1) and a state of weak connectivity at a higher frequency (State 2). Notably, both states were associated with connectivity abnormalities across different ROIs, suggesting the disruption of local properties within the brain functional connectivity network and the existence of widespread multi-functional brain functional networks damage in JME patients. Our findings elucidate significant disruptions in the local properties of whole-brain functional connectivity network in patients with JME, revealing causal impairments across multiple functional networks. These findings collectively suggest that JME is a generalized epilepsy with localized abnormalities. Such insights highlight the intricate network dysfunctions characteristic of JME, thereby enriching our understanding of its pathophysiological features.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Yaru Hou
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Li Zhang
- Hospital of Lanzhou University of Technology, Lanzhou University of Technology, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Acar D, Ozcelik EU, Baykan B, Bebek N, Demiralp T, Bayram A. Diffusion tensor imaging in photosensitive and nonphotosensitive juvenile myoclonic epilepsy. Seizure 2024; 115:36-43. [PMID: 38183826 DOI: 10.1016/j.seizure.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
INTRODUCTION/BACKGROUND Juvenile myoclonic epilepsy (JME) syndrome is known to cause alterations in brain structure and white matter integrity. The study aimed to determine structural white matter changes in patients with JME and to reveal the differences between the photosensitive (PS) and nonphotosensitive (NPS) subgroups by diffusion tensor imaging (DTI) using the tract-based spatial statistics (TBSS) method. METHODS This study included data from 16 PS, 15 NPS patients with JME, and 41 healthy participants. The mean fractional anisotropy (FA) values of these groups were calculated, and comparisons were made via the TBSS method over FA values in the whole-brain and 81 regions of interest (ROI) obtained from the John Hopkins University White Matter Atlas. RESULTS In the whole-brain TBSS analysis, no significant differences in FA values were observed in pairwise comparisons of JME patient group and subgroups with healthy controls (HCs) and in comparison between JME subgroups. In ROI-based TBSS analysis, an increase in FA values of right anterior corona radiata and left corticospinal pathways was found in JME patient group compared with HC group. When comparing JME-PS patients with HCs, an FA increase was observed in the bilateral anterior corona radiata region, whereas when comparing JME-NPS patients with HCs, an FA increase was observed in bilateral corticospinal pathway. Moreover, in subgroup comparison, an increase in FA values was noted in corpus callosum genu region in JME-PS compared with JME-NPS. CONCLUSIONS Our results support the disruption in thalamofrontal white matter integrity in JME, and subgroups and highlight the importance of using different analysis methods to show the underlying microstructural changes.
Collapse
Affiliation(s)
- Dilan Acar
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Türkiye
| | - Emel Ur Ozcelik
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye; Department of Neurology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye.
| | - Betül Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye; Department of Neurology, Istanbul EMAR Medical Center, Istanbul, Türkiye
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
4
|
Vataman A, Ciolac D, Chiosa V, Aftene D, Leahu P, Winter Y, Groppa SA, Gonzalez-Escamilla G, Muthuraman M, Groppa S. Dynamic flexibility and controllability of network communities in juvenile myoclonic epilepsy. Neurobiol Dis 2023; 179:106055. [PMID: 36849015 DOI: 10.1016/j.nbd.2023.106055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.
Collapse
Affiliation(s)
- Anatolie Vataman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Vitalie Chiosa
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Daniela Aftene
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Pavel Leahu
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stanislav A Groppa
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Neurophysiology of Juvenile and Progressive Myoclonic Epilepsy. J Clin Neurophysiol 2023; 40:100-108. [PMID: 36735458 DOI: 10.1097/wnp.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMMARY Myoclonus can be epileptic or nonepileptic. Epileptic myoclonus has been defined in clinical, neurophysiological, and neuroanatomical terms. Juvenile myoclonic epilepsy (JME) is typically considered to be an adolescent-onset idiopathic generalized epilepsy with a combination of myoclonic, generalized tonic-clonic, and absence seizures and normal cognitive status that responds well to anti-seizure medications but requires lifelong treatment. EEG shows generalized epileptiform discharges and photosensitivity. Recent observations indicate that the clinical picture of JME is heterogeneous and a number of neuropsychological and imaging studies have shown structural and functional abnormalities in the frontal lobes and thalamus. Advances in neurophysiology and imaging suggest that JME may not be a truly generalized epilepsy, in that restricted cortical and subcortical networks appear to be involved rather than the entire brain. Some patients with JME may be refractory to anti-seizure medications and attempts have been made to identify neurophysiological biomarkers predicting resistance. Progressive myoclonic epilepsy is a syndrome with multiple specific causes. It is distinct from JME because of the occurrence of progressive neurologic dysfunction in addition to myoclonus and generalized tonic-clonic seizures but may sometimes be difficult to distinguish from JME or misdiagnosed as drug-resistant JME. This article provides an overview of progressive myoclonic epilepsy and focuses on the clinical and neurophysiological findings in the two most commonly recognized forms of progressive myoclonic epilepsy-Unverricht-Lundborg disease (EPM1) and Lafora disease (EPM2). A variety of neurophysiological tests can be used to distinguish between JME and progressive myoclonic epilepsy and between EPM1 and EPM2.
Collapse
|
6
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
7
|
Kim KY, Moon JU, Lee JY, Eom TH, Kim YH, Lee IG. Distributed source localization of epileptiform discharges in juvenile myoclonic epilepsy: Standardized low-resolution brain electromagnetic tomography (sLORETA) Study. Medicine (Baltimore) 2022; 101:e29625. [PMID: 35777062 PMCID: PMC9239631 DOI: 10.1097/md.0000000000029625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Juvenile myoclonic epilepsy (JME) is a common generalized epilepsy syndrome considered the prototype of idiopathic generalized epilepsy. To date, generalized and focal seizures have been the fundamental concepts for classifying seizure types. In several studies, focal features of JME have been reported predominantly in the frontal lobe. However, results in previous studies are inconsistent. Therefore, we investigated the origin of epileptiform discharges in JME. We performed electroencephalography source localization using a distributed model with standardized low-resolution brain electromagnetic tomography. In 20 patients with JME, standardized low-resolution brain electromagnetic tomography images corresponding to the midpoint of the ascending phase and the negative peak of epileptiform discharges were obtained from a total of 362 electroencephalography epochs (181 epochs at each timepoint). At the ascending phase, the maximal current source density was located in the frontal lobe (58.6%), followed by the parietal (26.5%) and occipital lobes (8.8%). At the negative peak, the maximal current source density was located in the frontal lobe (69.1%), followed by the parietal (11.6%) and occipital lobes (9.4%). In the ascending phase, 41.4% of discharges were located outside the frontal lobe, and 30.9% were in the negative peak. Frontal predominance of epileptiform discharges was observed; however, source localization extending to various cortical regions also was identified. This widespread pattern was more prominent in the ascending phase (P = .038). The study results showed that JME includes widespread cortical regions over the frontal lobe. The current concept of generalized epilepsy and pathophysiology in JME needs further validation.
Collapse
Affiliation(s)
- Kwang Yeon Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ja-Un Moon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo-Young Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Hoon Eom
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chen G, Hu J, Ran H, Nie L, Tang W, Li X, Li Q, He Y, Liu J, Song G, Xu G, Liu H, Zhang T. Alterations of Cerebral Perfusion and Functional Connectivity in Children With Idiopathic Generalized Epilepsy. Front Neurosci 2022; 16:918513. [PMID: 35769697 PMCID: PMC9236200 DOI: 10.3389/fnins.2022.918513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Studies have demonstrated that adults with idiopathic generalized epilepsy (IGE) have functional abnormalities; however, the neuropathological pathogenesis differs between adults and children. This study aimed to explore alterations in the cerebral blood flow (CBF) and functional connectivity (FC) to comprehensively elucidate the neuropathological mechanisms of IGE in children. Methods We obtained arterial spin labeling (ASL) and resting state functional magnetic resonance imaging data of 28 children with IGE and 35 matched controls. We used ASL to determine differential CBF regions in children with IGE. A seed-based whole-brain FC analysis was performed for regions with significant CBF changes. The mean CBF and FC of brain areas with significant group differences was extracted, then its correlation with clinical variables in IGE group was analyzed by using Pearson correlation analysis. Results Compared to controls, children with IGE had CBF abnormalities that were mainly observed in the right middle temporal gyrus, right middle occipital gyrus (MOG), right superior frontal gyrus (SFG), left inferior frontal gyrus (IFG), and triangular part of the left IFG (IFGtriang). We observed that the FC between the left IFGtriang and calcarine fissure (CAL) and that between the right MOG and bilateral CAL were decreased in children with IGE. The CBF in the right SFG was correlated with the age at IGE onset. FC in the left IFGtriang and left CAL was correlated with the IGE duration. Conclusion This study found that CBF and FC were altered simultaneously in the left IFGtriang and right MOG of children with IGE. The combination of CBF and FC may provide additional information and insight regarding the pathophysiology of IGE from neuronal and vascular integration perspectives.
Collapse
|
9
|
Network connectivity in primary generalized tonic-clonic seizures. Clin Neurophysiol 2022; 138:97-107. [DOI: 10.1016/j.clinph.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
|
10
|
Moon JU, Lee JY, Kim KY, Eom TH, Kim YH, Lee IG. Comparative analysis of background EEG activity in juvenile myoclonic epilepsy during valproic acid treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study. BMC Neurol 2022; 22:48. [PMID: 35139806 PMCID: PMC8827290 DOI: 10.1186/s12883-022-02577-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background By definition, the background EEG is normal in juvenile myoclonic epilepsy (JME) patients and not accompanied by other developmental and cognitive problems. However, some recent studies using quantitative EEG (qEEG) reported abnormal changes in the background activity. QEEG investigation in patients undergoing anticonvulsant treatment might be a useful approach to explore the electrophysiology and anticonvulsant effects in JME. Methods We investigated background EEG activity changes in patients undergoing valproic acid (VPA) treatment using qEEG analysis in a distributed source model. In 17 children with JME, non-parametric statistical analysis using standardized low-resolution brain electromagnetic tomography was performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between untreated and treated conditions. Results VPA reduced background EEG activity in the low-frequency (delta-theta) bands across the frontal, parieto-occipital, and limbic lobes (threshold log-F-ratio = ±1.414, p < 0.05; threshold log-F-ratio= ±1.465, p < 0.01). In the delta band, comparative analysis revealed significant current density differences in the occipital, parietal, and limbic lobes. In the theta band, the analysis revealed significant differences in the frontal, occipital, and limbic lobes. The maximal difference was found in the delta band in the cuneus of the left occipital lobe (log-F-ratio = −1.840) and the theta band in the medial frontal gyrus of the left frontal lobe (log-F-ratio = −1.610). Conclusions This study demonstrated the anticonvulsant effects on the neural networks involved in JME. In addition, these findings suggested the focal features and the possibility of functional deficits in patients with JME.
Collapse
Affiliation(s)
- Ja-Un Moon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo-Young Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang-Yeon Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Hoon Eom
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Young-Hoon Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li T, Niu S, Qiu X, Zhai Z, Yang L, Chen L, Zhang XM. Altered Cerebral Blood Flow is Linked to Disease Duration in Patients with Generalized tonic‒clonic Seizures. Neuropsychiatr Dis Treat 2022; 18:2649-2659. [PMID: 36387946 PMCID: PMC9662018 DOI: 10.2147/ndt.s386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics in individuals with generalized tonic‒clonic seizures (GTCS) during the interictal phase using voxel-based analysis of 3D pseudocontinuous arterial spin labeling (PCASL). PATIENTS AND METHODS Patients with GTCS (GTCS group) (during the interictal period) and healthy volunteers (control group) underwent head MR imaging with a 3.0T MR scanner with a 3D PCASL sequence. CBF was compared between the two groups. Spearman correlations of CBF in regions of interest (ROIs) in GTCS patients with the duration of disease and age of onset were analyzed and corrected using the false discovery rate (FDR). RESULTS Twenty patients with GTCS (GTCS group) and twenty healthy volunteers (control group) were recruited for this study. On 3D PCASL, (1) GTCS patients had lower CBF in the brainstem, right cerebellum, right inferior temporal gyrus, parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, triangular part of inferior frontal gyrus, left temporal pole of superior temporal gyrus and thalamus and had higher CBF in the bilateral superior parietal gyri, precuneus, precentral gyri, postcentral gyri, and left dorsolateral superior frontal gyrus than controls. (2) The CBF of the right temporal pole of the middle temporal gyrus was negatively correlated with the duration of disease (PFDRcorrected<0.05), with a correlation coefficient r of -0.7333 and a PFDRcorrected value of 0.04. CONCLUSION Voxel-based analysis of 3D PCASL imaging can be used to sensitively detect brain perfusion differences in GTCS patients. The decrease in CBF in the right temporal pole of the middle temporal gyrus may be associated with disease onset. These findings may offer new perspectives on the pathogenesis of GTCS and the underlying pathophysiological changes associated with perfusion.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Shaowei Niu
- Department of Infection, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiang Qiu
- Department of Radiology, Integrated TCM & Western Medicine Hospital Affiliated to Chengdu University of TCM, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Zhaohua Zhai
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Li Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiao Ming Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
12
|
Seneviratne U, Cook M, D'Souza W. Brainwaves beyond diagnosis: Wider applications of electroencephalography in idiopathic generalized epilepsy. Epilepsia 2021; 63:22-41. [PMID: 34755907 DOI: 10.1111/epi.17119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Electroencephalography (EEG) has long been used as a versatile and noninvasive diagnostic tool in epilepsy. With the advent of digital EEG, more advanced applications of EEG have emerged. Compared with technologically advanced practice in focal epilepsies, the utilization of EEG in idiopathic generalized epilepsy (IGE) has been lagging, often restricted to a simple diagnostic tool. In this narrative review, we provide an overview of broader applications of EEG beyond this narrow scope, discussing how the current clinical and research applications of EEG may potentially be extended to IGE. The current literature, although limited, suggests that EEG can be used in syndromic classification, guiding antiseizure medication therapy, predicting prognosis, unraveling biorhythms, and investigating functional brain connectivity of IGE. We emphasize the need for longer recordings, particularly 24-h ambulatory EEG, to capture discharges reflecting circadian and sleep-wake cycle-associated variations for wider EEG applications in IGE. Finally, we highlight the challenges and limitations of the current body of literature and suggest future directions to encourage and enhance more extensive applications of this potent tool.
Collapse
Affiliation(s)
- Udaya Seneviratne
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Mark Cook
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Wendyl D'Souza
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Magnetic evoked potential polyphasia in idiopathic/genetic generalized epilepsy: An endophenotype not associated with treatment response. Clin Neurophysiol 2021; 132:1499-1504. [PMID: 34023629 DOI: 10.1016/j.clinph.2021.02.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Increased Motor Evoked Potential (MEP) polyphasia was recently described in idiopathic/genetic generalized epilepsy (IGE). Here, we studied the association of MEP polyphasia with treatment response and other clinical characteristics in patients with IGE. METHODS MEPs were recorded from the biceps brachii, flexor carpi radialis and interosseus dorsalis muscles bilaterally during tonic contraction in IGE patients (n = 72) and historical controls (n = 54) after single pulse transcranial magnetic stimulation. Detailed clinical data was available for all IGE patients; predefined endpoint was the association of MEP polyphasia with treatment response. RESULTS The mean number of phases was higher in the interosseus dorsalis muscle (2.33 vs. 2.13, p = 0.002) in IGE patients as compared to normal controls, as was the proportion of MEPs with more than two phases in at least one test (59.4% vs. 30%, p < 0.002). MEP polyphasia did not differ between IGE patients and controls in the biceps brachii or the flexor carpi radialis muscles and was not associated with treatment response. Extensive exploratory analyses unveiled fewer phases under valproic acid treatment (p = 0.04) but no additional associations of MEP polyphasia in the interosseous muscle with other clinical characteristics. CONCLUSION MEP polyphasia is a subclinical symptom of IGE patients but is not associated with treatment response or other routinely assessed clinical characteristics. SIGNIFICANCE MEP polyphasia is a fixed feature of IGE not modified by clinical variables.
Collapse
|
14
|
Ur Özçelik E, Kurt E, Şirin NG, Eryürek K, Ulaşoglu Yıldız Ç, Harı E, Ay U, Bebek N, Demiralp T, Baykan B. Functional connectivity disturbances of ascending reticular activating system and posterior thalamus in juvenile myoclonic epilepsy in relation with photosensitivity: A resting-state fMRI study. Epilepsy Res 2021; 171:106569. [PMID: 33582535 DOI: 10.1016/j.eplepsyres.2021.106569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is typified by the occurrence of myoclonic seizures after awakening, though another common trait is myoclonic seizures triggered by photic stimulation. We aimed to investigate the functional connectivity (FC) of nuclei in the ascending reticular activating system (ARAS), thalamus and visual cortex in JME with and without photosensitivity. METHODS We examined 29 patients with JME (16 photosensitive (PS), 13 non- photosensitive-(NPS)) and 28 healthy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). Seed-to-voxel FC analyses were performed using 25 seeds, including the thalamus, visual cortex, and ARAS nuclei. RESULTS Mesencephalic reticular formation seed revealed significant hyperconnectivity between the bilateral paracingulate gyrus and anterior cingulate cortex in JME group, and in both JME-PS and JME-NPS subgroups compared to HCs (pFWE-corr < 0.001; pFWE-corr < 0.001; pFWE-corr = 0.002, respectively). Locus coeruleus seed displayed significant hyperconnectivity with the bilateral lingual gyri, intracalcarine cortices, occipital poles and left occipital fusiform gyrus in JME-PS group compared to HCs (pFWE-corr <0.001). Additionally, locus coeruleus seed showed significant hyperconnectivity in JME-PS group compared to JME-NPS group with a cluster corresponding to the bilateral lingual gyri and right intracalcarine cortex (pFWE-corr < 0.001). Lastly, the right posterior nuclei of thalamus revealed significant hyperconnectivity with the right superior lateral occipital cortex in JME-PS group compared to HCs (pFWE-corr < 0.002). CONCLUSIONS In JME, altered functional connectivity of the arousal networks might contribute to the understanding of myoclonia after awakening, whereas increased connectivity of posterior thalamus might explain photosensitivity.
Collapse
Affiliation(s)
- Emel Ur Özçelik
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey; Department of Neurology, Istanbul Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, University of Health Sciences, Zuhuratbaba Mahallesi, Dr. Tevfik Sağlam Cad. 25/2, 34147, Bakırkoy, Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey.
| | - Nermin Görkem Şirin
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| | - Kardelen Eryürek
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Çiğdem Ulaşoglu Yıldız
- Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Emre Harı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Ulaş Ay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey; Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Betül Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| |
Collapse
|
15
|
Routley B, Shaw A, Muthukumaraswamy SD, Singh KD, Hamandi K. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity. Epilepsy Res 2020; 163:106324. [PMID: 32335503 PMCID: PMC7684644 DOI: 10.1016/j.eplepsyres.2020.106324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
We investigated whole brain source space connectivity in JME using across standard MEG frequency bands. Connectivity was increased in posterior theta and alpha bands in JME, and decreased in sensorimotor beta band. Our findings highlight altered interactions between posterior networks of arousal and attention and the motor system in JME.
Background Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation. Methods We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1−4 Hz), theta (4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz) and gamma (40−60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of ‘virtual sensors’ for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons. Results We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls. Conclusions Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta – the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.
Collapse
Affiliation(s)
- Bethany Routley
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Alexander Shaw
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Krish D Singh
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom; The Wales Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, United Kingdom.
| |
Collapse
|
16
|
Caciagli L, Wandschneider B, Xiao F, Vollmar C, Centeno M, Vos SB, Trimmel K, Sidhu MK, Thompson PJ, Winston GP, Duncan JS, Koepp MJ. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 2019; 142:2670-2687. [PMID: 31365054 PMCID: PMC6776114 DOI: 10.1093/brain/awz215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
Juvenile myoclonic epilepsy is the most common genetic generalized epilepsy syndrome, characterized by a complex polygenetic aetiology. Structural and functional MRI studies demonstrated mesial or lateral frontal cortical derangements and impaired fronto-cortico-subcortical connectivity in patients and their unaffected siblings. The presence of hippocampal abnormalities and associated memory deficits is controversial, and functional MRI studies in juvenile myoclonic epilepsy have not tested hippocampal activation. In this observational study, we implemented multi-modal MRI and neuropsychological data to investigate hippocampal structure and function in 37 patients with juvenile myoclonic epilepsy, 16 unaffected siblings and 20 healthy controls, comparable for age, gender, handedness and hemispheric dominance as assessed with language laterality indices. Automated hippocampal volumetry was complemented by validated qualitative and quantitative morphological criteria to detect hippocampal malrotation, assumed to represent a neurodevelopmental marker. Neuropsychological measures of verbal and visuo-spatial learning and an event-related verbal and visual memory functional MRI paradigm addressed mesiotemporal function. We detected a reduction of mean left hippocampal volume in patients and their siblings compared with controls (P < 0.01). Unilateral or bilateral hippocampal malrotation was identified in 51% of patients and 50% of siblings, against 15% of controls (P < 0.05). For bilateral hippocampi, quantitative markers of verticalization had significantly larger values in patients and siblings compared with controls (P < 0.05). In the patient subgroup, there was no relationship between structural measures and age at disease onset or degree of seizure control. No overt impairment of verbal and visual memory was identified with neuropsychological tests. Functional mapping highlighted atypical patterns of hippocampal activation, pointing to abnormal recruitment during verbal encoding in patients and their siblings [P < 0.05, familywise error (FWE)-corrected]. Subgroup analyses indicated distinct profiles of hypoactivation along the hippocampal long axis in juvenile myoclonic epilepsy patients with and without malrotation; patients with malrotation also exhibited reduced frontal recruitment for verbal memory, and more pronounced left posterior hippocampal involvement for visual memory. Linear models across the entire study cohort indicated significant associations between morphological markers of hippocampal positioning and hippocampal activation for verbal items (all P < 0.05, FWE-corrected). We demonstrate abnormalities of hippocampal volume, shape and positioning in patients with juvenile myoclonic epilepsy and their siblings, which are associated with reorganization of function and imply an underlying neurodevelopmental mechanism with expression during the prenatal stage. Co-segregation of abnormal hippocampal morphology in patients and their siblings is suggestive of a genetic imaging phenotype, independent of disease activity, and can be construed as a novel endophenotype of juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| |
Collapse
|
17
|
Abstract
Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy.
Collapse
Affiliation(s)
- Aminu T Abdullahi
- Department of Psychiatry, Aminu Kano Teaching Hospital, Kano, Nigeria
| | | |
Collapse
|
18
|
Kuo CC, Tucker DM, Luu P, Jenson K, Tsai JJ, Ojemann JG, Holmes MD. EEG source imaging of epileptic activity at seizure onset. Epilepsy Res 2018; 146:160-171. [DOI: 10.1016/j.eplepsyres.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023]
|
19
|
Garibotto V, Wissmeyer M, Giavri Z, Goldstein R, Seimbille Y, Seeck M, Ratib O, Haller S, Picard F. Nicotinic receptor abnormalities as a biomarker in idiopathic generalized epilepsy. Eur J Nucl Med Mol Imaging 2018; 46:385-395. [PMID: 30269157 DOI: 10.1007/s00259-018-4175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Mutations of cholinergic neuronal nicotinic receptors have been identified in the autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), associated with changes on PET images using [18F]-F-85380-A (F-A-85380), an α4β2 nicotinic receptor ligand. The aim of the present study was to evaluate potential changes in nicotinic receptor availability in other types of epilepsy. METHODS We included 34 male participants, 12 patients with idiopathic generalized epilepsy (IGE), 10 with non-lesional diurnal focal epilepsy, and 12 age-matched healthy controls. All patients underwent PET/CT using F-A-85380 and [18F]-fluorodeoxyglucose (FDG), 3D T1 MRI and diffusion tensor imaging (DTI). F-A-85380 and FDG images were compared with the control group using a voxel-wise (SPM12) and a volumes of interest (VOI) analysis. RESULTS In the group of patients with IGE, the voxel-wise and VOI analyses showed a significant increase of F-A-85380 ratio index of binding potential (BPRI, corresponding to the receptor availability) in the anterior cingulate cortex (ACC), without structural changes on MRI. At an individual level, F-A-85380 BPRI increase in the ACC could distinguish IGE patients from controls and from patients with focal epilepsy with good accuracy. CONCLUSIONS We observed focal changes of density/availability of nicotinic receptors in IGE, namely an increase in the ACC. These data suggest that the modulation of α4β2 nicotinic receptors plays a role not only in ADNFLE, but also in other genetic epileptic syndromes such as IGE and could serve as a biomarker of epilepsy syndromes with a genetic background.
Collapse
Affiliation(s)
- Valentina Garibotto
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland. .,Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.
| | - Michael Wissmeyer
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Zoi Giavri
- Advantis Medical Imaging, Eindhoven, The Netherlands
| | - Rachel Goldstein
- EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Yann Seimbille
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Margitta Seeck
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.,EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Osman Ratib
- Nuclear Medicine and Molecular Imaging Division, Department of Medical Imaging, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Sven Haller
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland.,CIRD - Centre d'Imagerie Rive Droite, Rue Chantepoulet 21, 1201, Genève, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Fabienne Picard
- Faculty of Medicine, Geneva University, 1211, Geneva, Switzerland. .,EEG and Epilepsy Unit, Department of Neurology, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.
| |
Collapse
|
20
|
Sezikli S, Pulat TA, Tekin B, Ak PD, Keskinkılıç C, Ataklı D. Frontal lobe cognitive functions and electroencephalographic features in juvenile myoclonic epilepsy. Epilepsy Behav 2018; 86:102-107. [PMID: 30017834 DOI: 10.1016/j.yebeh.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The study aimed to examine the relationship between frontal lobe functions and interictal electroencephalography (EEG) discharge characteristics of patients with juvenile myoclonic epilepsy (JME). METHOD Thirty patients with JME who had EEG with asymmetrical generalized discharge (aEEG), 15 patients with JME who had EEG with symmetrical generalized discharge (sEEG), and 15 healthy controls were included in the study. To evaluate attention, the digit span and Corsi block tests were used; to evaluate memory, we applied verbal and visual memory tests; to evaluate frontal lobe functions, we used clock drawing, verbal fluency, the Stroop test, trail making, mental control, and antisaccadic eye movement tests as well as the continuous performance (CPT) tests. ETHICAL CONSIDERATIONS The research was approved by the Research Ethics Committee of the Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, with protocol number: 41340010/4891-262, date: 05.02.2013. RESULTS The mean age of the 45 patients with JME was 22.89 ± 6.77 years, and 34 (75.6%) were female. The age at onset of seizures and disease duration of the patients with JME was 15.56 ± 4.06 years (range, 9-26 years) and 7.20 ± 5.59 years (range, 1-25 years), respectively. All patients were under valproate (VPA) treatment, and the mean VPA dosage was 783.33 ± 379.14 mg/day. Patients with JME scored worse than the control group in attention, memory, and frontal lobe functions. In patients with aEEG, scores of attention, memory, and frontal lobe function tests were lower than in patients with sEEG; however, with the exception of CPT, they were not statistically significant. CONCLUSION Cognitive functions in JME have been shown to be impaired. Furthermore, we concluded that the frontal lobe cognitive functions may be worse in patients with aEEG than in patients with sEEG. Further studies in patients with JME with aEEG abnormalities may lead to a better understanding of the pathophysiology of JME.
Collapse
Affiliation(s)
- Senem Sezikli
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Tuğba Argün Pulat
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey.
| | - Betül Tekin
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Pelin Doğan Ak
- Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Cahit Keskinkılıç
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| | - Dilek Ataklı
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
21
|
Kim JH. Grey and White Matter Alterations in Juvenile Myoclonic Epilepsy: A Comprehensive Review. J Epilepsy Res 2017; 7:77-88. [PMID: 29344465 PMCID: PMC5767493 DOI: 10.14581/jer.17013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) has been classified as a syndrome of idiopathic generalized epilepsy and is characterized by a strong genetic basis, age-specific onset of seizures, specific types of seizures, generalized spike-wave discharges on electroencephalography, and a lack of focal abnormality on magnetic resonance imaging (MRI). Recently, a wide range of advanced neuroimaging techniques have been utilized to elucidate the neuroanatomical substrates and pathophysiological mechanisms underlying JME. Specifically, a number of quantitative MRI studies have reported focal or regional abnormalities of the subcortical and cortical grey matter, particularly the thalamus and frontal cortex, in JME patients. In addition, diffusion tensor imaging studies have pointed to disrupted microstructural integrity of the corpus callosum and multiple frontal white matter tracts as well as thalamofrontal dysconnectivity in JME patients. Converging evidence from neuroimaging studies strongly suggests that JME is a predominantly thalamofrontal network epilepsy, challenging the traditional concept of JME as a generalized epilepsy. There is also limited evidence indicating extrafrontal and extrathalamic involvement in JME. This systematic review outlines the main findings from currently available MRI studies focusing on grey and white matter alterations, and discusses their contributions to the etiology and pathophysiology of JME. The clinical utility, advantages, and drawbacks of each imaging modality are briefly described as well.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Kim JH, Kim JB, Suh SI, Kim DW. Subcortical grey matter changes in juvenile myoclonic epilepsy. NEUROIMAGE-CLINICAL 2017; 17:397-404. [PMID: 29159052 PMCID: PMC5683808 DOI: 10.1016/j.nicl.2017.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging studies have provided converging evidence of structural and functional abnormalities of the thalamus in patients with juvenile myoclonic epilepsy (JME). There has also been limited evidence indicating involvement of the subcortical grey matter structures other than thalamus in JME, but with inconsistent findings across the studies. In the present study, we combined volumetric MRI and diffusion tensor imaging analyses to investigate macrostructural and microstructural alterations of the subcortical grey matter in 64 JME patients compared to 58 matched control subjects. Raw volume, fractional anisotropy (FA), and mean diffusivity (MD) of 6 subcortical grey matter structures (amygdala, hippocampus, caudate, pallidum, putamen, thalamus) were measured in both hemispheres. Between-group (controls versus patients) comparisons of normalized volume, FA, and MD, as well as within-group (patients) correlation analyses between structural changes and clinical variables were carried out. Compared to controls, JME patients exhibited significant volume reductions in left pallidum and bilateral putamen and thalamus. Duration of epilepsy negatively correlated with bilateral putamen volumes. Patients and controls did not differ in FA values of all structures. Compared to controls, JME patients showed significant MD increases in left pallidum and bilateral hippocampus, putamen, and thalamus. Significant positive correlations were found between duration of epilepsy and MD values of bilateral hippocampus and thalamus. We have provided evidence that macrostructural and microstructural abnormalities may not only be confined to the thalamus but also affect basal ganglia and hippocampus in JME. Our findings could further support the pathophysiological hypothesis of striato-thalamo-frontal network abnormality underlying JME, and may implicate disease progression. Reduced volumes of left pallidum and bilateral putamen and thalamus in JME patients Negative correlation between disease duration and putamen volumes Increased MD of left pallidum and bilateral hippocampus, putamen, and thalamus in JME patients Positive correlation between disease duration and MD of bilateral hippocampus and thalamus Structural changes may not only be confined to the thalamus but also affect basal ganglia and hippocampus in JME.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jung Bin Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Microstructural white matter changes and their relation to neuropsychological deficits in patients with juvenile myoclonic epilepsy. Epilepsy Behav 2017; 76:56-62. [PMID: 28927715 DOI: 10.1016/j.yebeh.2017.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is the most common idiopathic generalized epilepsy syndrome. Neuropsychological, electrophysiological, and neuroimaging studies have led to the hypothesis that JME is related to dysfunction of frontal brain regions and mainly frontal thalamocortical networks. METHODS We investigated possible microstructural white matter abnormalities of 20 patients with JME as compared with 20 healthy control subjects using diffusion tensor imaging (DTI). We analyzed whole-head DTI scans without an a-priori hypothesis using Tract-Based Spatial Statistics (TBSS). To analyze associated gray matter changes, we applied voxel-based morphometry (VBM) to a 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequence. Neuropsychological testing and personality trait tests were performed to bridge the gap between structure and function. RESULTS In patients, DTI revealed microstructural white matter changes in anterior parts of the Corpus callosum, anterior parts of the cingulate gyrus, and widespread frontal white matter bilaterally as well as in anterior parts of the right thalamus, which were not accompanied by gray matter changes in VBM. Microstructural changes in the cingulum correlated with personality traits. Neuropsychological test results showed impaired attention and executive functions and reduced short-term memory in the patient group. Also, there was a tendency toward alexithymia and significantly higher scores on depression. SIGNIFICANCE The present study results showed neuropsychological deficits including frontal lobe cognitive performance and a tendency toward alexithymia as well as accompanying microstructural neuroimaging changes in patients with JME, which all point to alterations in frontal brain regions and frontal thalamocortical networks in these patients.
Collapse
|
24
|
Seneviratne U, Cook MJ, D'Souza WJ. Electroencephalography in the Diagnosis of Genetic Generalized Epilepsy Syndromes. Front Neurol 2017; 8:499. [PMID: 28993753 PMCID: PMC5622315 DOI: 10.3389/fneur.2017.00499] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
Genetic generalized epilepsy (GGE) consists of several syndromes diagnosed and classified on the basis of clinical features and electroencephalographic (EEG) abnormalities. The main EEG feature of GGE is bilateral, synchronous, symmetric, and generalized spike-wave complex. Other classic EEG abnormalities are polyspikes, epileptiform K-complexes and sleep spindles, polyspike-wave discharges, occipital intermittent rhythmic delta activity, eye-closure sensitivity, fixation-off sensitivity, and photoparoxysmal response. However, admixed with typical changes, atypical epileptiform discharges are also commonly seen in GGE. There are circadian variations of generalized epileptiform discharges. Sleep, sleep deprivation, hyperventilation, intermittent photic stimulation, eye closure, and fixation-off are often used as activation techniques to increase the diagnostic yield of EEG recordings. Reflex seizure-related EEG abnormalities can be elicited by the use of triggers such as cognitive tasks and pattern stimulation during the EEG recording in selected patients. Distinct electrographic abnormalities to help classification can be identified among different electroclinical syndromes.
Collapse
Affiliation(s)
- Udaya Seneviratne
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neuroscience, Monash Medical Centre, Melbourne, VIC, Australia
| | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Wendyl Jude D'Souza
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Gong J, Chang X, Jiang S, Klugah-Brown B, Tan S, Yao D, Luo C. Microstructural alterations of white matter in juvenile myoclonic epilepsy. Epilepsy Res 2017; 135:1-8. [DOI: 10.1016/j.eplepsyres.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/08/2017] [Accepted: 04/02/2017] [Indexed: 12/21/2022]
|
26
|
Zerouali Y, Ghaziri J, Nguyen DK. Multimodal investigation of epileptic networks: The case of insular cortex epilepsy. PROGRESS IN BRAIN RESEARCH 2017; 226:1-33. [PMID: 27323937 DOI: 10.1016/bs.pbr.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy.
Collapse
Affiliation(s)
- Y Zerouali
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | - J Ghaziri
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - D K Nguyen
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; CHUM-Hôpital Notre-Dame, Montreal, QC, Canada.
| |
Collapse
|
27
|
Decrease of global current source density predicts successful treatment in absence and juvenile myoclonic epilepsies. Epilepsy Res 2017; 133:1-5. [PMID: 28391029 DOI: 10.1016/j.eplepsyres.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate relationship between treatment efficiency and EEG background activity changes in absence epilepsy (AE) and juvenile myoclonic epilepsy (JME) patients. PATIENTS AND METHODS EEGs of 31 patients were analysed before treatment and after six months of treatment. Three minutes of artifact-free waking EEG background activity (without epileptiform potentials) were analysed for each patient in both conditions. All the EEG samples were processed to LORETA (Low Resolution Electromagnetic Tomography). Average of all the voxel-wise current source density (CSD) values within the 0.5-8.0Hz frequency range was computed for each EEG. Fischer's exact test was used to investigate association between the global CSD changes and the therapeutic outcome. RESULTS Tight connection was demonstrated between seizure freedom and decreased CSD, and between persisting seizures and increased CSD (p<0.001). SIGNIFICANCE An EEG-based biomarker that predicts successful drug treatment was described.
Collapse
|
28
|
Kim SH, Lim SC, Yang DW, Cho JH, Son BC, Kim J, Hong SB, Shon YM. Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 2017; 13:2607-2619. [PMID: 29089767 PMCID: PMC5655132 DOI: 10.2147/ndt.s148617] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the centromedian thalamic nucleus (CM) can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS. METHODS To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG) and diffusion tensor imaging (DTI) to 10 medically intractable patients - three generalized epilepsy (GE) and seven multifocal epilepsy (MFE) patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz). Structural connections between the CM and the cortical activation spots were assessed using DTI. RESULTS We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months). EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively. From DTI data, we confirmed concrete structural connections between CM and those maximal activation spots identified from EEG data. CONCLUSION These results suggest that the anterior cingulate can be a core cortical structure for the bilateral propagation of CM stimulation. Our DTI findings also indicate that the propagation of CM stimulation may rely upon integrity of structural connections between CM and these key cortical regions. Structures and their connections found in this study may be relevant in the interpretation of the clinical outcomes of CM DBS.
Collapse
Affiliation(s)
| | | | | | | | - Byung-Chul Son
- Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul
| | - Jiyeon Kim
- Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Anastasopoulou S, Kurth F, Luders E, Savic I. Generalized epilepsy syndromes and callosal thickness: Differential effects between patients with juvenile myoclonic epilepsy and those with generalized tonic-clonic seizures alone. Epilepsy Res 2016; 129:74-78. [PMID: 27923174 DOI: 10.1016/j.eplepsyres.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/14/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE The definition of two well-studied genetic generalized epilepsy syndromes (GGE) - juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures alone (GTCS) - suggests the absence of structural cerebral abnormalities. Nevertheless, there are various reports of such abnormalities (especially in JME), where effects mainly occur within thalamus and mesial prefrontal regions. This raises the question of whether JME is particularly linked to midline structure abnormalities, which may also involve the corpus callosum. METHOD We studied callosal morphology in a well-matched sample of 22 JME patients, 15 GTCS patients, and 42 controls (CTL) for all of whom we obtained T1-weighted data on a 3T MRI scanner. More specifically, we measured callosal thickness at 100 equidistant points across the callosal surface, and subsequently compared the three groups (JME, GTCS, and CTL) against each other. RESULTS Significant differences between JME patients and controls were observed within the callosal genu, anterior midbody, and isthmus, with thinner regions in JME patients. There were no significant differences between GTCS patients and controls, and also not between JME patients and GTCS patients. CONCLUSION The present outcomes point to callosal abnormalities in JME patients suggesting an impairment of interhemisperic communication between prefrontal, motor, parietal and temporal cortices. These findings further support the notion that structural aberrations are present and differentiated across GGE syndromes, with significant callosal deviations from normality in JME.
Collapse
Affiliation(s)
| | - Florian Kurth
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Eileen Luders
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Ivanka Savic
- Karolinska Institute and Karolinska Hospital and Neurology Clinic, Karolinska University Hospital Stockholm, Sweden.
| |
Collapse
|
30
|
Gadad V, Sinha S, Mariyappa N, Chaithanya G, Jayabal V, Saini J, Thennarasu K, Satishchandra P. Source localization of epileptiform discharges in juvenile myoclonic epilepsy (JME) using magnetoencephalography (MEG). Epilepsy Res 2016; 129:67-73. [PMID: 27918962 DOI: 10.1016/j.eplepsyres.2016.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study is to localize the sources of epileptiform discharges (EDs), in juvenile myoclonic epilepsy (JME) using Magnetoencephalography (MEG), at three different time instances and analyze the propagation of EDs, from onset to offset, for inferring the cortical and subcortical region of involvement. METHODS Twenty patients (age 23.5±6.3years old) with JME were recruited in this prospective study. MEG source analysis was performed on the independently collected EDs of each patient. The distributed source model was employed for source localization using low resolution electromagnetic brain tomography (LORETA). In each EDs, the onset (leading edge of the spike from baseline), peak and offset (trailing edge of the spike), with time window of 8ms, were subjected for source localization in order to study the propagation of the EDs. The obtained source location coordinates, from each individual MRI, were transformed in Talairach space and the distribution of region of source involvement was analysed. RESULTS The frequency pattern of lobar distribution at onset, peak and offset respectively suggest that discharges most commonly localized at onset from sublobar region, at peak from frontal lobe and at offset from the sublobar region. It was observed that the maximum involvement of sources from the sublobar, limbic and frontal lobes at different time instances. It indicates that the restricted cortical-subcortical involvement during the generation and propagation of EDs in JME. SIGNIFICANCE This MEG study supported the cortical-subcortical region of involvement and provided further insights in our understanding the network involvement in generation and propagation of EDs in JME.
Collapse
Affiliation(s)
- Veeranna Gadad
- Departments of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- MEG research centre, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India; Departments of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India.
| | - Narayanan Mariyappa
- MEG research centre, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Ganne Chaithanya
- Departments of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Velmurugan Jayabal
- MEG research centre, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- NIIR, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Kandivel Thennarasu
- Biostatistics, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Parthasarathy Satishchandra
- MEG research centre, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India; Departments of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| |
Collapse
|
31
|
Chen G, Lei D, Ren J, Zuo P, Suo X, Wang DJJ, Wang M, Zhou D, Gong Q. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study. Sci Rep 2016; 6:28867. [PMID: 27374369 PMCID: PMC4931466 DOI: 10.1038/srep28867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Collapse
Affiliation(s)
- Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Department of Radiology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Panli Zuo
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital &the People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Park KM, Kim TH, Han YH, Mun CW, Shin KJ, Ha SY, Park JS, Kim SE. Brain morphology in juvenile myoclonic epilepsy and absence seizures. Acta Neurol Scand 2016; 133:111-118. [PMID: 25950250 DOI: 10.1111/ane.12436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We evaluated the differences in brain morphology among patients with juvenile myoclonic epilepsy according to the occurrence of absence seizures. MATERIALS AND METHODS Twenty-one juvenile myoclonic epilepsy patients with (n = 6) and without (n = 15) absence seizures were enrolled. We analyzed whole-brain T1-weighted magnetic resonance imaging using FreeSurfer 5.1. Measures of cortical morphology, such as thickness, surface area, volume, and curvature, and the volumes of subcortical structures, the cerebellum, and cerebrum, were compared between the groups. Moreover, we quantified correlations between clinical variables and each measures of abnormal brain morphology. RESULTS Compared to normal controls, patients without absence seizures demonstrated thinning of the cortical thickness in the right hemisphere, including the post-central, lingual, orbitofrontal, and lateral occipital cortex. Compared to normal controls, patients with absence seizures had more widespread thinning of the cortical thickness, including the right post-central, lingual, orbitofrontal, and lateral occipital cortexes as well as the right inferior temporal cortex. Additionally, the volume of cerebellar white matter in patients without absence seizures was significantly smaller than that in normal controls. Patients with absence seizures had a much smaller cerebellar white matter volume than normal controls or patients without absence seizures. Moreover, there was significantly positive correlation between the age of seizure onset and the volume of cerebellar white matter in patients with juvenile myoclonic epilepsy. CONCLUSIONS We demonstrated that there were significant brain morphology differences in patients with juvenile myoclonic epilepsy according to the presence of absence seizures. These findings support the hypothesis that juvenile myoclonic epilepsy may be a heterogeneous syndrome.
Collapse
Affiliation(s)
- K. M. Park
- Department of Neurology; Haeundae Paik Hospital; Inje University College of Medicine; Busan Korea
| | - T. H. Kim
- Department of Health Science and Technology; Inje University; Gimhae Korea
| | - Y. H. Han
- Centre for Molecular and Cellular Imaging; Samsung Biomedical Research Institute; Seoul Korea
| | - C. W. Mun
- Department of Health Science and Technology; Inje University; Gimhae Korea
- Department of Biomedical Engineering/u-HARC; Inje University; Gimhae Korea
| | - K. J. Shin
- Department of Neurology; Haeundae Paik Hospital; Inje University College of Medicine; Busan Korea
| | - S. Y. Ha
- Department of Neurology; Haeundae Paik Hospital; Inje University College of Medicine; Busan Korea
| | - J. S. Park
- Department of Neurology; Haeundae Paik Hospital; Inje University College of Medicine; Busan Korea
| | - S. E. Kim
- Department of Neurology; Haeundae Paik Hospital; Inje University College of Medicine; Busan Korea
| |
Collapse
|
33
|
Kim SH, Lim SC, Kim W, Kwon OH, Jeon S, Lee JM, Shon YM. Extrafrontal structural changes in juvenile myoclonic epilepsy: A topographic analysis of combined structural and microstructural brain imaging. Seizure 2015. [DOI: 10.1016/j.seizure.2015.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Japaridze N, Muthuraman M, Reinicke C, Moeller F, Anwar AR, Mideksa KG, Pressler R, Deuschl G, Stephani U, Siniatchkin M. Neuronal Networks during Burst Suppression as Revealed by Source Analysis. PLoS One 2015; 10:e0123807. [PMID: 25927439 PMCID: PMC4415810 DOI: 10.1371/journal.pone.0123807] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/06/2015] [Indexed: 12/04/2022] Open
Abstract
Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies.
Collapse
Affiliation(s)
- Natia Japaridze
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
- * E-mail:
| | | | - Christine Reinicke
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Abdul Rauf Anwar
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | - Ronit Pressler
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Günther Deuschl
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
35
|
Paulus FM, Krach S, Blanke M, Roth C, Belke M, Sommer J, Müller-Pinzler L, Menzler K, Jansen A, Rosenow F, Bremmer F, Einhäuser W, Knake S. Fronto-insula network activity explains emotional dysfunctions in juvenile myoclonic epilepsy: Combined evidence from pupillometry and fMRI. Cortex 2015; 65:219-31. [DOI: 10.1016/j.cortex.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/31/2014] [Accepted: 01/27/2015] [Indexed: 01/14/2023]
|
36
|
da Silva Braga AM, Fujisao EK, Betting LE. Analysis of generalized interictal discharges using quantitative EEG. Epilepsy Res 2014; 108:1740-7. [DOI: 10.1016/j.eplepsyres.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/29/2014] [Accepted: 09/06/2014] [Indexed: 11/16/2022]
|
37
|
Valproate treatment normalizes EEG functional connectivity in successfully treated idiopathic generalized epilepsy patients. Epilepsy Res 2014; 108:1896-903. [PMID: 25454501 DOI: 10.1016/j.eplepsyres.2014.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
AIM To investigate the effect of chronic VPA treatment of EEG functional connectivity in successfully treated idiopathic generalized epilepsy (IGE) patients. PATIENTS AND METHODS 19-channel waking, resting-state EEG records of 26 IGE patients were analyzed before treatment (IGE) and after the 90th day of treatment (VPA), in seizure-free condition. Three minutes of artifact-free EEG background activity (without epileptiform potentials) was analyzed for each patient in both conditions. A group of 26 age-matched healthy normative control persons (NC) was analyzed in the same way. All the EEG samples were processed to LORETA (Low Resolution Electromagnetic Tomography) to localize multiple distributed sources of EEG activity. Current source density time series were generated for 33 regions of interest (ROI) in each hemisphere for four frequency bands. Pearson correlation coefficients (R) were computed between all ROIs in each hemisphere, for four bands across the investigated samples. R values corresponded to intrahemispheric, cortico-cortical functional EEG connectivity (EEGfC). Group and condition differences were analyzed by statistical parametric network method. MAIN RESULTS p<0.05, corrected for multiple comparisons: (1) The untreated IGE group showed increased EEGfC in the delta and theta bands, and decreased EEGfC in the alpha band (as compared to the NC group); (2) VPA treatment normalized EEGfC in the delta, theta and alpha bands; and (3) degree of normalization depended on frequency band and cortical region. CONCLUSIONS VPA treatment normalizes EEGfC in IGE patients.
Collapse
|
38
|
Jiang Y, Hu Y, Wang Y, Zhou N, Zhu L, Wang K. Empathy and emotion recognition in patients with idiopathic generalized epilepsy. Epilepsy Behav 2014; 37:139-44. [PMID: 25022822 DOI: 10.1016/j.yebeh.2014.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/12/2014] [Accepted: 06/04/2014] [Indexed: 12/30/2022]
Abstract
Patients with epilepsy have deficits in social cognition. In this study, we examined the changes in empathy and eye emotion recognition using the Interpersonal Reactivity Index and eye emotion recognition tasks. Forty-two patients with idiopathic generalized epilepsy and 47 healthy controls were involved. The eye emotion recognition and cognitive empathy abilities of the patients with IGE were impaired, but the affective empathy was intact. The cognitive empathy performance of the patients with IGE was positively correlated with their performance in sadness recognition, MoCA, verbal fluency, and the Stroop test. These results suggest that the empathy ability was impaired in patients with IGE, and this impairment may be caused by deficits in frontal lobe function.
Collapse
Affiliation(s)
- Yubao Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Ying Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Nong Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Li Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| |
Collapse
|
39
|
MacAllister WS, Vasserman M, Rosenthal J, Sherman E. Attention and Executive Functions in Children With Epilepsy: What, Why, and What to Do. APPLIED NEUROPSYCHOLOGY-CHILD 2014; 3:215-25. [PMID: 24559518 DOI: 10.1080/21622965.2013.839605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Lee C, Kim SM, Jung YJ, Im CH, Kim DW, Jung KY. Causal influence of epileptic network during spike-and-wave discharge in juvenile myoclonic epilepsy. Epilepsy Res 2014; 108:257-66. [DOI: 10.1016/j.eplepsyres.2013.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/07/2013] [Accepted: 11/03/2013] [Indexed: 11/16/2022]
|
41
|
van Luijtelaar G, Behr C, Avoli M. Is there such a thing as "generalized" epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:81-91. [PMID: 25012369 DOI: 10.1007/978-94-017-8914-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University Nijmegen, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | | | | |
Collapse
|
42
|
A meta-analysis of voxel-based morphometry studies on gray matter volume alteration in juvenile myoclonic epilepsy. Epilepsy Res 2013; 106:370-7. [DOI: 10.1016/j.eplepsyres.2013.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/26/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022]
|
43
|
Alhusaini S, Ronan L, Scanlon C, Whelan CD, Doherty CP, Delanty N, Fitzsimons M. Regional increase of cerebral cortex thickness in juvenile myoclonic epilepsy. Epilepsia 2013; 54:e138-41. [PMID: 23944956 DOI: 10.1111/epi.12330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
The goal of this study was to characterize cerebral cortex thickness patterns in juvenile myoclonic epilepsy (JME). Surface-based morphometry (SBM) was applied to process brain magnetic resonance images acquired from 24 patients with JME and 40 healthy controls and quantify cerebral cortex thickness. Differences in cortical thickness between patients and controls were determined using generalized linear model (covariates: age and gender). In patients with JME, thickness increase was detected bilaterally within localized regions in the orbitofrontal and mesial frontal cortices. Such thickness patterns coexisted with significant bilateral reduction in thalamic volume. These findings confirm that the underlying mechanisms in JME are related to aberrant corticothalamic structure and indicate that frontal cortex abnormalities are possibly linked to regional increase in cerebral cortical thickness.
Collapse
Affiliation(s)
- Saud Alhusaini
- Brain Morphometry Laboratory, Epilepsy Programme, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
44
|
Clemens B, Puskás S, Besenyei M, Spisák T, Opposits G, Hollódy K, Fogarasi A, Fekete I, Emri M. Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states. Epilepsy Res 2013; 106:357-69. [PMID: 23886656 DOI: 10.1016/j.eplepsyres.2013.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/10/2013] [Accepted: 06/28/2013] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The neuronal mechanisms of enduring seizure propensity and seizure precipitation in juvenile myoclonic epilepsy (JME) are not known. We investigated these issues, within the framework of the "network concept" of epilepsy. METHODS Design1: 19, unmedicated JME patients were compared with nineteen, age-, and sex-matched normal control persons (NC). A total of 120s, artifact-free, paroxysm-free, eyes-closed, resting state EEG background activity was analyzed for each person. Design2: interictal and immediate preictal periods of the JME patients were compared in order to explore interictal-preictal network differences. For both comparison designs, statistically significant differences of EEG functional connectivity (EEGfC), nodal and global graph parameters were evaluated. MAIN RESULTS Design1: maximum abnormalities were: increased delta, theta, alpha1 EEGfC and decreased alpha2 and beta EEGfC in the JME group as compared to the NC group, mainly among cortical areas that are involved in sensory-motor integration. Nodal degree and efficiency of three, medial, basal frontal nodes were greater in JME than in NC, in the alpha1 band. Design2: preictal delta EEGfC showed further increase in the above-mentioned areas, as compared to the interictal state. DISCUSSION Increased EEGfC indicates a hypercoupled state among the specified cortical areas. This interictal abnormality further increases in the preictal state. Nodal graph statistics indicates abnormal neuronal dynamics in the cortical area that is the ictal onset zone in JME. SIGNIFICANCE Interictal and preictal neuronal dysfunction has been described in terms of network dynamics and topography in JME patients. Forthcoming investigations of seizure precipitation and therapeutic drug effects are encouraged on this basis.
Collapse
Affiliation(s)
- B Clemens
- Kenézy Hospital Ltd., Department of Neurology, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Serafini A, Rubboli G, Gigli GL, Koutroumanidis M, Gelisse P. Neurophysiology of juvenile myoclonic epilepsy. Epilepsy Behav 2013; 28 Suppl 1:S30-9. [PMID: 23756477 DOI: 10.1016/j.yebeh.2012.11.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 11/19/2012] [Indexed: 10/26/2022]
Abstract
Juvenile myclonic epilepsy (JME) can be firmly diagnosed by a careful interview of the patient focusing on the seizures and by the EEG with the help, if necessary, of long-term video-EEG monitoring using sleep and/or sleep deprivation. Background activity is normal. The interictal EEG shows diffuse or generalized spike-wave (SW) and polyspike-wave (PSW) discharges. In some patients, non-specific changes or misleading features such as focal changes are found. Changes are mostly seen at sleep onset and at awakening. Provoked awakenings are more likely to activate interictal paroxysmal abnormalities than spontaneous awakenings. The presence of a photoparoxysmal response with or without myoclonic jerks (MJ) is common (30% of the cases). Myoclonic jerks are associated with a discharge of fast, irregular, generalized PSWs that predominate anteriorly. Myoclonic jerks appear to be associated with rhythmic EEG (spike) potentials at around 20Hz. These frequencies are in the range of movement-related fast sensorimotor cortex physiological rhythms. The application of jerk-locked averaging technique has provided findings consistent with a cortical origin of MJ. Paired TMS (transcranial magnetic stimulation) studies showed a defective intracortical inhibition, due to impaired GABA-A mediated mechanisms. In this review, we present the EEG characteristics of JME with particular emphasis on the pathophysiology of MJ and on the role of sleep deprivation on interictal and ictal changes.
Collapse
Affiliation(s)
- Anna Serafini
- Center of Sleep Medicine, Neurology Unit, University-Hospital S. Maria della Misericordia, Udine, Italy
| | | | | | | | | |
Collapse
|
46
|
Song J, Tucker DM, Gilbert T, Hou J, Mattson C, Luu P, Holmes MD. Methods for examining electrophysiological coherence in epileptic networks. Front Neurol 2013; 4:55. [PMID: 23720650 PMCID: PMC3654376 DOI: 10.3389/fneur.2013.00055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/30/2013] [Indexed: 11/13/2022] Open
Abstract
Epilepsy may reflect a focal abnormality of cerebral tissue, but the generation of seizures typically involves propagation of abnormal activity through cerebral networks. We examined epileptiform discharges (spikes) with dense array electroencephalography (dEEG) in five patients to search for the possible engagement of pathological networks. Source analysis was conducted with individual electrical head models for each patient, including sensor position measurement for registration with MRI with geodesic photogrammetry; tissue segmentation and skull conductivity modeling with an atlas skull warped to each patient's MRI; cortical surface extraction and tessellation into 1 cm(2) equivalent dipole patches; inverse source estimation with either minimum norm or cortical surface Laplacian constraints; and spectral coherence computed among equivalent dipoles aggregated within Brodmann areas with 1 Hz resolution from 1 to 70 Hz. These analyses revealed characteristic source coherence patterns in each patient during the pre-spike, spike, and post-spike intervals. For one patient with both spikes and seizure onset localized to a single temporal lobe, we observed a cluster of apparently abnormal coherences over the involved temporal lobe. For the other patients, there were apparently characteristic coherence patterns associated with the discharges, and in some cases these appeared to reflect abnormal temporal lobe synchronization, but the coherence patterns for these patients were not easily related to an unequivocal epileptogenic zone. In contrast, simple localization of the site of onset of the spike discharge, and/or the site of onset of the seizure, with non-invasive 256 dEEG was useful in predicting the characteristic site of seizure onset for those cases that were verified by intracranial EEG and/or by surgical outcome.
Collapse
|
47
|
Abstract
Freely available automated MR image analysis techniques are being increasingly used to investigate neuroanatomical abnormalities in patients with neurological disorders. It is important to assess the specificity and validity of automated measurements of structure volumes with respect to reliable manual methods that rely on human anatomical expertise. The thalamus is widely investigated in many neurological and neuropsychiatric disorders using MRI, but thalamic volumes are notoriously difficult to quantify given the poor between-tissue contrast at the thalamic gray-white matter interface. In the present study we investigated the reliability of automatically determined thalamic volume measurements obtained using FreeSurfer software with respect to a manual stereological technique on 3D T1-weighted MR images obtained from a 3 T MR system. Further to demonstrating impressive consistency between stereological and FreeSurfer volume estimates of the thalamus in healthy subjects and neurological patients, we demonstrate that the extent of agreeability between stereology and FreeSurfer is equal to the agreeability between two human anatomists estimating thalamic volume using stereological methods. Using patients with juvenile myoclonic epilepsy as a model for thalamic atrophy, we also show that both automated and manual methods provide very similar ratios of thalamic volume loss in patients. This work promotes the use of FreeSurfer for reliable estimation of global volume in healthy and diseased thalami.
Collapse
|
48
|
Abstract
In the International League Against Epilepsy's most recent revision of classification and terminology, the term idiopathic epilepsy, previously used to describe those epilepsies whose cause was unknown, but presumed genetic, has been removed. It has been replaced by the term genetic epilepsy, only to be used to describe epilepsy in which the etiology has a known or presumed genetic defect in which seizures are the core symptom of the disorder. The purpose of this article was to review the electroclinical spectrum of those epilepsies that would fall under this new designation of genetic epilepsies in the context of specific generalized epilepsy syndromes providing an update in the clinical, electroencephalographic, and genetic findings in these syndromes.
Collapse
|
49
|
Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol 2013; 4:8. [PMID: 23532203 PMCID: PMC3607195 DOI: 10.3389/fneur.2013.00008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/24/2013] [Indexed: 11/13/2022] Open
Abstract
The main objective of this paper is to examine evidence for the concept that epileptic activity should be envisaged in terms of functional connectivity and dynamics of neuronal networks. Basic concepts regarding structure and dynamics of neuronal networks are briefly described. Particular attention is given to approaches that are derived, or related, to the concept of causality, as formulated by Granger. Linear and non-linear methodologies aiming at characterizing the dynamics of neuronal networks applied to EEG/MEG and combined EEG/fMRI signals in epilepsy are critically reviewed. The relevance of functional dynamical analysis of neuronal networks with respect to clinical queries in focal cortical dysplasias, temporal lobe epilepsies, and "generalized" epilepsies is emphasized. In the light of the concepts of epileptic neuronal networks, and recent experimental findings, the dichotomic classification in focal and generalized epilepsy is re-evaluated. It is proposed that so-called "generalized epilepsies," such as absence seizures, are actually fast spreading epilepsies, the onset of which can be tracked down to particular neuronal networks using appropriate network analysis. Finally new approaches to delineate epileptogenic networks are discussed.
Collapse
Affiliation(s)
- Hermann Stefan
- Department of Neurology, University Hospital ErlangenErlangen, Bavaria, Germany
| | - Fernando H. Lopes da Silva
- Centre of Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Department of Bioengineering, Instituto Superior Técnico, Lisbon Technical UniversityLisbon, Portugal
| |
Collapse
|
50
|
O'Muircheartaigh J, Vollmar C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. ACTA ACUST UNITED AC 2013; 135:3635-44. [PMID: 23250883 PMCID: PMC3525058 DOI: 10.1093/brain/aws296] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Juvenile myoclonic epilepsy is the most common idiopathic generalized epilepsy, characterized by frequent myoclonic jerks, generalized tonic-clonic seizures and, less commonly, absences. Neuropsychological and, less consistently, anatomical studies have indicated frontal lobe dysfunction in the disease. Given its presumed thalamo–cortical basis, we investigated thalamo–cortical structural connectivity, as measured by diffusion tensor imaging, in a cohort of 28 participants with juvenile myoclonic epilepsy and detected changes in an anterior thalamo–cortical bundle compared with healthy control subjects. We then investigated task-modulated functional connectivity from the anterior thalamic region identified using functional magnetic resonance imaging in a task consistently shown to be impaired in this group, phonemic verbal fluency. We demonstrate an alteration in task-modulated connectivity in a region of frontal cortex directly connected to the thalamus via the same anatomical bundle, and overlapping with the supplementary motor area. Further, we show that the degree of abnormal connectivity is related to disease severity in those with active seizures. By integrating methods examining structural and effective interregional connectivity, these results provide convincing evidence for abnormalities in a specific thalamo–cortical circuit, with reduced structural and task-induced functional connectivity, which may underlie the functional abnormalities in this idiopathic epilepsy.
Collapse
|