1
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
2
|
Torres EB, Smith B, Mistry S, Brincker M, Whyatt C. Neonatal Diagnostics: Toward Dynamic Growth Charts of Neuromotor Control. Front Pediatr 2016; 4:121. [PMID: 27933283 PMCID: PMC5120129 DOI: 10.3389/fped.2016.00121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 11/15/2022] Open
Abstract
The current rise of neurodevelopmental disorders poses a critical need to detect risk early in order to rapidly intervene. One of the tools pediatricians use to track development is the standard growth chart. The growth charts are somewhat limited in predicting possible neurodevelopmental issues. They rely on linear models and assumptions of normality for physical growth data - obscuring key statistical information about possible neurodevelopmental risk in growth data that actually has accelerated, non-linear rates-of-change and variability encompassing skewed distributions. Here, we use new analytics to profile growth data from 36 newborn babies that were tracked longitudinally for 5 months. By switching to incremental (velocity-based) growth charts and combining these dynamic changes with underlying fluctuations in motor performance - as the transition from spontaneous random noise to a systematic signal - we demonstrate a method to detect very early stunting in the development of voluntary neuromotor control and to flag risk of neurodevelopmental derail.
Collapse
Affiliation(s)
| | - Beth Smith
- University of Southern California , Los Angeles, CA , USA
| | | | | | | |
Collapse
|
3
|
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015; 1622:81-90. [PMID: 26119917 DOI: 10.1016/j.brainres.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Austin Oder Rosner
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
4
|
Venkatesan L, Barlow SM, Popescu M, Popescu A. Integrated approach for studying adaptation mechanisms in the human somatosensory cortical network. Exp Brain Res 2014; 232:3545-54. [PMID: 25059913 DOI: 10.1007/s00221-014-4043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
Abstract
Magnetoencephalography and independent component analysis (ICA) was utilized to study and characterize neural adaptation in the somatosensory cortical network. Repetitive punctate tactile stimuli were applied unilaterally to the dominant hand and face using a custom-built pneumatic stimulator called the TAC-Cell. ICA-based source estimation from the evoked neuromagnetic responses indicated cortical activity in the contralateral primary somatosensory cortex (SI) for face stimulation, while hand stimulation resulted in robust contralateral SI and posterior parietal cortex (PPC) activation. Activity was also observed in the secondary somatosensory cortical area (SII) with reduced amplitude and higher variability across subjects. There was a significant difference in adaptation rate between SI and higher-order somatosensory cortices for hand stimulation. Adaptation was significantly dependent on stimulus frequency and pulse index within the stimulus train for both hand and face stimulation. The peak latency of the activity was significantly dependent on stimulation site (hand vs. face) and cortical area (SI vs. PPC). The difference in the peak latency of activity in SI and PPC is presumed to reflect a hierarchical serial-processing mechanism in the somatosensory cortex.
Collapse
Affiliation(s)
- Lalit Venkatesan
- Communication Neuroscience Laboratories, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE, 68583, USA,
| | | | | | | |
Collapse
|
5
|
Gastl M, Brünner YF, Wiesmann M, Freiherr J. Depicting the inner and outer nose: the representation of the nose and the nasal mucosa on the human primary somatosensory cortex (SI). Hum Brain Mapp 2014; 35:4751-66. [PMID: 24659451 DOI: 10.1002/hbm.22509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/01/2014] [Accepted: 03/05/2014] [Indexed: 11/08/2022] Open
Abstract
The nose is important not only for breathing, filtering air, and perceiving olfactory stimuli. Although the face and hands have been mapped, the representation of the internal and external surface of the nose on the primary somatosensory cortex (SI) is still poorly understood. To fill this gap functional magnetic resonance imaging (fMRI) was used to localize the nose and the nasal mucosa in the Brodman areas (BAs) 3b, 1, and 2 of the human postcentral gyrus (PG). Tactile stimulation during fMRI was applied via a customized pneumatically driven device to six stimulation sites: the alar wing of the nose, the lateral nasal mucosa, and the hand (serving as a reference area) on the left and right side of the body. Individual representations could be discriminated for the left and right hand, for the left nasal mucosa and left alar wing of the nose in BA 3b and BA 1 by comparing mean activation maxima and Euclidean distances. Right-sided nasal conditions and conditions in BA 2 could further be separated by different Euclidean distances. Regarding the alar wing of the nose, the results concurred with the classic sensory homunculus proposed by Penfield and colleagues. The nasal mucosa was not only determined an individual and bilateral representation, its position on the somatosensory cortex is also situated closer to the caudal end of the PG compared to that of the alar wing of the nose and the hand. As SI is commonly activated during the perception of odors, these findings underscore the importance of the knowledge of the representation of the nasal mucosa on the primary somatosensory cortex, especially for interpretation of results of functional imaging studies about the sense of smell.
Collapse
Affiliation(s)
- Mareike Gastl
- Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
6
|
Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants. Pediatr Res 2014; 75:85-92. [PMID: 24129553 PMCID: PMC4005474 DOI: 10.1038/pr.2013.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/16/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcomes. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency fc = 90% (SEF-90), which is derived from EEG recordings in preterm infants. METHODS A total of 22 preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at ~32 wk postmenstrual age. The SEF-90 was derived from two-channel EEG recordings. RESULTS Compared with the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (P = 0.005) and right (P < 0.0001) hemispheres. Notably, the left and right hemispheres showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short-term cortical adaptation and a long-term neural adaptation manifested as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. CONCLUSION This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants.
Collapse
|
7
|
Lim M, Kim JS, Chung CK. Modulation of somatosensory evoked magnetic fields by intensity of interfering stimuli in human somatosensory cortex: An MEG study. Neuroimage 2012; 61:660-9. [DOI: 10.1016/j.neuroimage.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
|
8
|
Popescu EA, Barlow SM, Venkatesan L, Wang J, Popescu M. Adaptive changes in the neuromagnetic response of the primary and association somatosensory areas following repetitive tactile hand stimulation in humans. Hum Brain Mapp 2012; 34:1415-26. [PMID: 22331631 DOI: 10.1002/hbm.21519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 11/11/2022] Open
Abstract
Cortical adaptation in the primary somatosensory cortex (SI) has been probed using different stimulation modalities and recording techniques, in both human and animal studies. In contrast, considerably less knowledge has been gained about the adaptation profiles in other areas of the cortical somatosensory network. Using magnetoencephalography (MEG), we examined the patterns of short-term adaptation for evoked responses in SI and somatosensory association areas during tactile stimulation applied to the glabrous skin of the hand. Cutaneous stimuli were delivered as trains of serial pulses with a constant frequency of 2 Hz and 4 Hz in separate runs, and a constant inter-train interval of 5 s. The unilateral stimuli elicited transient responses to the serial pulses in the train, with several response components that were separated by independent component analysis. Subsequent source reconstruction techniques identified regional generators in the contralateral SI and somatosensory association areas in the posterior parietal cortex (PPC). Activity in the bilateral secondary somatosensory cortex (i.e., SII/PV) was also identified, although less consistently across subjects. The dynamics of the evoked activity in each area and the frequency-dependent adaptation effects were assessed from the changes in the relative amplitude of serial responses in each train. We show that the adaptation profiles in SI and PPC areas can be quantitatively characterized from neuromagnetic recordings using tactile stimulation, with the sensitivity to repetitive stimulation increasing from SI to PPC. A similar approach for SII/PV has proven less straightforward, potentially due to the tendency of these areas to respond selectively to certain stimuli.
Collapse
Affiliation(s)
- Elena Anda Popescu
- Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|