1
|
Al Dahhan NZ, Powanwe AS, Ismail M, Cox E, Tseng J, de Medeiros C, Laughlin S, Bouffet E, Lefebvre J, Mabbott DJ. Network connectivity underlying information processing speed in children: Application of a pediatric brain tumor survivor injury model. Neuroimage Clin 2024; 44:103678. [PMID: 39357471 PMCID: PMC11474185 DOI: 10.1016/j.nicl.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Elucidating how adaptive and maladaptive changes to the structural connectivity of brain networks influences neural synchrony, and how this structure-function coupling impacts cognition is an important question in human neuroscience. This study assesses these links in the default mode and executive control networks during resting state, a visual-motor task, and through computational modeling in the developing brain and in acquired brain injuries. Pediatric brain tumor survivors were used as an injury model as they are known to exhibit cognitive deficits, structural connectivity compromise, and perturbations in neural communication. Focusing on information processing speed to assess cognitive performance, we demonstrate that during the presence and absence of specific task demands, structural connectivity of these critical brain networks directly influences neural communication and information processing speed, and white matter compromise has an indirect adverse impact on reaction time via perturbed neural synchrony. Further, when our experimentally acquired structural connectomes simulated neural activity, the resulting functional simulations aligned with our empirical results and accurately predicted cognitive group differences. Overall, our synergistic findings further our understanding of the neural underpinnings of cognition and when it is perturbed. Further establishing alterations in structural-functional coupling as biomarkers of cognitive impairments could facilitate early intervention and monitoring of these deficits.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arthur S Powanwe
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Minarose Ismail
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Elizabeth Cox
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Julie Tseng
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Suzanne Laughlin
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jérémie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Donald J Mabbott
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
2
|
Gulati D, Ray S. Auditory and Visual Gratings Elicit Distinct Gamma Responses. eNeuro 2024; 11:ENEURO.0116-24.2024. [PMID: 38604776 PMCID: PMC11046261 DOI: 10.1523/eneuro.0116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.
Collapse
Affiliation(s)
- Divya Gulati
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Cox E, Tseng J, Bells S, Dockstader C, Laughlin S, Bouffet E, de Medeiros C, Mabbott DJ. Neural and cognitive function in a pediatric brain injury model: The impact of task complexity. Cortex 2022; 155:307-321. [DOI: 10.1016/j.cortex.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
4
|
Zheng X, Xu G, Du Y, Li H, Han C, Tian P, Li Z, Du C, Yan W, Zhang S. Does Oblique Effect Affect SSVEP-Based Visual Acuity Assessment? Front Neurosci 2022; 15:784888. [PMID: 35095398 PMCID: PMC8795862 DOI: 10.3389/fnins.2021.784888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore whether there was an effect on steady-state visual evoked potential (SSVEP) visual acuity assessment from the oblique effect or the stimulus orientation. SSVEPs were induced by seven visual stimuli, e.g., the reversal sinusoidal gratings with horizontal, two oblique, and vertical orientations, reversal checkerboards with vertical and oblique orientations, and oscillating expansion-contraction concentric-rings, at six spatial frequency steps. Ten subjects participated in the experiment. Subsequently, a threshold estimation criterion was used to determine the objective SSVEP visual acuity corresponding to each visual stimulus. Taking the SSVEP amplitude and signal-to-noise-ratio (SNR) of the fundamental reversal frequency as signal characteristics, both the SSVEP amplitude and SNR induced by the reversal sinusoidal gratings at 3.0 cpd among four stimulus orientations had no significant difference, and the same finding was also shown in the checkerboards between vertical and oblique orientation. In addition, the SSVEP visual acuity obtained by the threshold estimation criterion for all seven visual stimuli showed no significant difference. This study demonstrated that the SSVEPs induced by all these seven visual stimuli had a similarly good performance in evaluating visual acuity, and the oblique effect or the stimulus orientation had little effect on SSVEP response as well as the SSVEP visual acuity.
Collapse
Affiliation(s)
- Xiaowei Zheng
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Guanghua Xu,
| | - Yuhui Du
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Chengcheng Han
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Peiyuan Tian
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zejin Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Chenghang Du
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Wenqiang Yan
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Sicong Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Pagnotta MF, Pascucci D, Plomp G. Selective attention involves a feature-specific sequential release from inhibitory gating. Neuroimage 2021; 246:118782. [PMID: 34879253 DOI: 10.1016/j.neuroimage.2021.118782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
Selective attention is a fundamental cognitive mechanism that allows our brain to preferentially process relevant sensory information, while filtering out distracting information. Attention is thought to flexibly gate the communication of irrelevant information through top-down alpha-rhythmic (8-12 Hz) functional connections, which influence early visual processing. However, the dynamic effects of top-down influence on downstream visual processing remain unknown. Here, we used electroencephalography to investigate local and network effects of selective attention while subjects attended to distinct features of identical stimuli. We found that attention-related changes in the functional brain network organization emerge shortly after stimulus onset, accompanied by an overall decrease of functional connectivity. Signatures of attentional selection were evident from a sequential release from alpha-band parietal gating in feature-selective areas. The directed connectivity paths and temporal evolution of this release from gating were consistent with the sensory effect of each feature, providing a neural basis for how visual processing quickly prioritizes relevant information in functionally specialized areas.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| | - David Pascucci
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland; Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Genetic risk for schizophrenia is associated with altered visually-induced gamma band activity: evidence from a population sample stratified polygenic risk. Transl Psychiatry 2021; 11:592. [PMID: 34785639 PMCID: PMC8595678 DOI: 10.1038/s41398-021-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Gamma oscillations (30-90 Hz) have been proposed as a signature of cortical visual information processing, particularly the balance between excitation and inhibition, and as a biomarker of neuropsychiatric diseases. Magnetoencephalography (MEG) provides highly reliable visual-induced gamma oscillation estimates, both at sensor and source level. Recent studies have reported a deficit of visual gamma activity in schizophrenia patients, in medication naive subjects, and high-risk clinical participants, but the genetic contribution to such a deficit has remained unresolved. Here, for the first time, we use a genetic risk score approach to assess the relationship between genetic risk for schizophrenia and visual gamma activity in a population-based sample drawn from a birth cohort. We compared visual gamma activity in a group (N = 104) with a high genetic risk profile score for schizophrenia (SCZ-PRS) to a group with low SCZ-PRS (N = 99). Source-reconstructed V1 activity was extracted using beamformer analysis applied to MEG recordings using individual MRI scans. No group differences were found in the induced gamma peak amplitude or peak frequency. However, a non-parametric statistical contrast of the response spectrum revealed more robust group differences in the amplitude of high-beta/gamma power across the frequency range, suggesting that overall spectral shape carries important biological information beyond the individual frequency peak. Our findings show that changes in gamma band activity correlate with liability to schizophrenia and suggest that the index changes to synaptic function and neuronal firing patterns that are of pathophysiological relevance rather than consequences of the disorder.
Collapse
|
7
|
Nishat E, Dockstader C, Wheeler AL, Tan T, Anderson JAE, Mendlowitz S, Mabbott DJ, Arnold PD, Ameis SH. Visuomotor Activation of Inhibition-Processing in Pediatric Obsessive Compulsive Disorder: A Magnetoencephalography Study. Front Psychiatry 2021; 12:632736. [PMID: 33995145 PMCID: PMC8116532 DOI: 10.3389/fpsyt.2021.632736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Response inhibition engages the cortico-striato-thalamo-cortical (CSTC) circuit, which has been implicated in children, and youth with obsessive compulsive disorder (OCD). This study explored whether CSTC engagement during response inhibition, measured using magnetoencephalography (MEG), differed in a sample of medication-naïve youth with OCD, compared to typically developing controls (TDC). Methods: Data was analyzed in 17 medication-naïve children and youth with OCD (11.7 ± 2.2 SD years) and 13 TDC (12.6 ± 2.2 SD years). MEG was used to localize and characterize neural activity during a Go/No-Go task. Task performance on Go/No-Go conditions and regional differences in amplitude of activity during Go and No-Go condition between OCD vs. TDC were examined using two-sample t-tests. Post-hoc analysis with Bayesian t-tests was used to estimate the certainty of outcomes. Results: No differences in Go/No-Go performance were found between OCD and TDC groups. In response to the visual cue presented during the Go condition, participants with OCD showed significantly increased amplitude of activity in the primary motor (MI) cortex compared to TDC. In addition, significantly reduced amplitude of PCu was found following successful stopping to No-Go cues in OCD vs. TDC during No-Go task performance. Bayesian t-tests indicated high probability and large effect sizes for the differences in MI and PCu amplitude found between groups. Conclusion: Our preliminary study in a small medication-naïve sample extends previous work indicating intact response inhibition in pediatric OCD. While altered neural response in the current study was found during response inhibition performance in OCD, differences localized to regions outside of the CSTC. Our findings suggest that additional imaging research in medication-naïve samples is needed to clarify regional differences associated with OCD vs. influenced by medication effects, and suggest that MEG may be sensitive to detecting such differences.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Colleen Dockstader
- Department of Human Biology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Anne L Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas Tan
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John A E Anderson
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sandra Mendlowitz
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephanie H Ameis
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
8
|
Perry G, Taylor NW, Bothwell PCH, Milbourn CC, Powell G, Singh KD. The gamma response to colour hue in humans: Evidence from MEG. PLoS One 2020; 15:e0243237. [PMID: 33332389 PMCID: PMC7746285 DOI: 10.1371/journal.pone.0243237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
It has recently been demonstrated through invasive electrophysiology that visual stimulation with extended patches of uniform colour generates pronounced gamma oscillations in the visual cortex of both macaques and humans. In this study we sought to discover if this oscillatory response to colour can be measured non-invasively in humans using magnetoencephalography. We were able to demonstrate increased gamma (40–70 Hz) power in response to full-screen stimulation with four different colour hues and found that the gamma response is particularly strong for long wavelength (i.e. red) stimulation, as was found in previous studies. However, we also found that gamma power in response to colour was generally weaker than the response to an identically sized luminance-defined grating. We also observed two additional responses in the gamma frequency: a lower frequency response around 25–35 Hz that showed fewer clear differences between conditions than the gamma response, and a higher frequency response around 70–100 Hz that was present for red stimulation but not for other colours. In a second experiment we sought to test whether differences in the gamma response between colour hues could be explained by their chromatic separation from the preceding display. We presented stimuli that alternated between each of the three pairings of the three primary colours (red, green, blue) at two levels of chromatic separation defined in the CIELUV colour space. We observed that the gamma response was significantly greater to high relative to low chromatic separation, but that at each level of separation the response was greater for both red-blue and red-green than for blue-green stimulation. Our findings suggest that the stronger gamma response to red stimulation cannot be wholly explained by the chromatic separation of the stimuli.
Collapse
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Nathan W Taylor
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Philippa C H Bothwell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Colette C Milbourn
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Georgina Powell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Yap TP, Luu CD, Suttle C, Chia A, Boon MY. Effect of Stimulus Orientation on Visual Function in Children with Refractive Amblyopia. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32392311 PMCID: PMC7405838 DOI: 10.1167/iovs.61.5.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose We investigated and characterized the patterns of meridional anisotropies in newly diagnosed refractive amblyopes using pattern onset–offset visual evoked potentials (POVEPs) and psychophysical grating acuity (GA). Methods Twenty-five refractive amblyopes were recruited and compared with non-amblyopic controls from our previous study. Monocular POVEPs were recorded in response to sinewave 4 cycles per degree (cpd) grating stimuli oriented along each individual participants' principal astigmatic meridians, which were approximately horizontal (meridian 1) and vertical (meridian 2). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed along the same meridians using a two-alternative non-forced-choice technique. The C3 amplitudes and peak latencies of the POVEPs and GAs were compared across meridians for both groups (refractive amblyopes and controls) using linear mixed models (monocular) and ANOVA (binocular), and post hoc analysis was conducted to determine if meridional anisotropies in this cohort of amblyopes were related to low (≤1.50 diopters [D]), moderate (1.75–2.75 D) and high (≥3.00 D) astigmatism. Results In the newly diagnosed refractive amblyopes, there were no significant meridional anisotropies across all outcome measures, but the post hoc analysis demonstrated that C3 amplitude was significantly higher in those with low (P = 0.02) and moderate (P = 0.004) astigmatism compared to those with high astigmatism. Refractive amblyopes had poorer GA and C3 amplitudes compared to controls by approximately two lines on the logMAR chart (monocular: P = 0.013; binocular: P = 0.014) and approximately 6 µV (monocular: P = 0.009; binocular: P = 0.027), respectively. Conclusions Deleterious effects of high astigmatism was evident in newly diagnosed refractive amblyopes, but the neural deficits do not seem to be orientation-specific for the stimulus parameters investigated.
Collapse
|
10
|
Nested oscillations and brain connectivity during sequential stages of feature-based attention. Neuroimage 2020; 223:117354. [PMID: 32916284 DOI: 10.1016/j.neuroimage.2020.117354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We discuss how the results may reconcile several theories of selective attention, by showing how β rhythms support anticipatory information routing through increased network efficiency, while reactive α-band desynchronization patterns and increased α-γ coupling in task-specific sensory areas mediate stimulus-evoked processing of task-relevant signals.
Collapse
|
11
|
Cox E, Bells S, Timmons BW, Laughlin S, Bouffet E, de Medeiros C, Beera K, Harasym D, Mabbott DJ. A controlled clinical crossover trial of exercise training to improve cognition and neural communication in pediatric brain tumor survivors. Clin Neurophysiol 2020; 131:1533-1547. [PMID: 32403066 DOI: 10.1016/j.clinph.2020.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/10/2019] [Accepted: 03/21/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the efficacy of aerobic exercise training to improve controlled attention, information processing speed and neural communication during increasing task load and rest in pediatric brain tumor survivors (PBTS) treated with cranial radiation. METHODS Participants completed visual-motor Go and Go/No-Go tasks during magnetoencephalography recording prior to and following the completion of 12-weeks of exercise training. Exercise-related changes in response accuracy and visual-motor latency were evaluated with Linear Mixed models. The Phase Lag Index (PLI) was used to estimate functional connectivity during task performance and rest. Changes in PLI values after exercise training were assessed using Partial Least Squares analysis. RESULTS Exercise training predicted sustained (12-weeks) improvement in response accuracy (p<0.05) during No-Go trials. Altered functional connectivity was detected in theta (4-7Hz) alpha (8-12Hz) and high gamma (60-100Hz) frequency bands (p<0.001) during Go and Go/No-Go trials. Significant changes in response latency and resting state connectivity were not detected. CONCLUSION These findings support the efficacy of aerobic exercise to improve controlled attention and enhance functional mechanisms under increasing task load in participants. SIGNIFICANCE It may be possible to harness the beneficial effects of exercise as therapy to promote cognitive recovery and enhance brain function in PBTS.
Collapse
Affiliation(s)
- Elizabeth Cox
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Sonya Bells
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Brian W Timmons
- Department of Pediatrics, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada.
| | - Suzanne Laughlin
- Diagnostic Imaging, SickKids, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Eric Bouffet
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Cynthia de Medeiros
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Kiran Beera
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Diana Harasym
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Donald J Mabbott
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
12
|
Orekhova EV, Prokofyev AO, Nikolaeva AY, Schneiderman JF, Stroganova TA. Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response. PLoS One 2020; 15:e0228937. [PMID: 32053681 PMCID: PMC7018047 DOI: 10.1371/journal.pone.0228937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience &Physiology, Department of Clinical Neuroscience, Gothenburg, Sweden
- MedTech West, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andrey O. Prokofyev
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia
| | - Anastasia Yu. Nikolaeva
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia
| | - Justin F. Schneiderman
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience &Physiology, Department of Clinical Neuroscience, Gothenburg, Sweden
- MedTech West, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia
| |
Collapse
|
13
|
Neurophysiological basis of contrast dependent BOLD orientation tuning. Neuroimage 2020; 206:116323. [PMID: 31678228 DOI: 10.1016/j.neuroimage.2019.116323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
Recent work in early visual cortex of humans has shown that the BOLD signal exhibits contrast dependent orientation tuning, with an inverse oblique effect (oblique > cardinal) at high contrast and a horizontal effect (vertical > horizontal) at low contrast. This finding is at odds with decades of neurophysiological research demonstrating contrast invariant orientation tuning in primate visual cortex, yet the source of this discrepancy is unclear. We hypothesized that contrast dependent BOLD orientation tuning may arise due to contrast dependent influences of feedforward (FF) and feedback (FB) synaptic activity, indexed through gamma and alpha rhythms, respectively. To quantify this, we acquired EEG and BOLD in healthy humans to generate and compare orientation tuning curves across all neural frequency bands with BOLD. As expected, BOLD orientation selectivity in V1 was contrast dependent, preferring oblique orientations at high contrast and vertical at low contrast. On the other hand, EEG orientation tuning was contrast invariant, though frequency-specific, with an inverse-oblique effect in the gamma band (FF) and a horizontal effect in the alpha band (FB). Therefore, high-contrast BOLD orientation tuning closely matched FF activity, while at low contrast, BOLD best resembled FB orientation tuning. These results suggest that contrast dependent BOLD orientation tuning arises due to the reduced contribution of FF input to overall neurophysiological activity at low contrast, shifting BOLD orientation tuning towards the orientation preferences of FB at low contrast.
Collapse
|
14
|
Yap TP, Luu CD, Suttle CM, Chia A, Boon MY. Electrophysiological and Psychophysical Studies of Meridional Anisotropies in Children With and Without Astigmatism. Invest Ophthalmol Vis Sci 2019; 60:1906-1913. [PMID: 31042798 DOI: 10.1167/iovs.18-25924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated the pattern of meridional anisotropies, if any, for pattern onset-offset visual evoked potential (POVEPs) responses and psychophysical grating acuity (GA) in children with normal letter visual acuity (20/20 or better). Methods A total of 29 children (aged 3-9 years), nine of whom were astigmatic (AS), were recruited. Orientation-specific monocular POVEPs were recorded in response to sinewave grating stimuli oriented along the subjects' principal AS meridians. Horizontal and vertical gratings were designated Meridians 1 and 2, respectively, for nonastigmatic patients (Non-AS). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed monocularly and binocularly along the same meridians using the same stimuli by a 2-alternative-forced-choice staircase technique. The C3 amplitudes and peak latencies of the POVEP and GAs were compared across meridians using linear mixed models (monocular) and ANOVA (binocular). Results There were significant meridional anisotropies in monocular C3 amplitudes regardless of astigmatism status (P = 0.001): Meridian 2 (mean ± SE Non-AS, 30.13 ± 2.07 μV; AS, 26.53 ± 2.98 μV) was significantly higher than Meridian 1 (Non-AS, 26.14 ± 1.87 μV; AS, 21.68 ± 2.73 μV; P = 0.019), but no meridional anisotropies were found for GA or C3 latency. Binocular C3 amplitude in response to horizontally oriented stimuli (180°, 29.71 ± 3.06 μV) was significantly lower than the oblique (45°, 36.62 ± 3 .05 μV; P = 0.03 and 135°, 35.95 ± 2.92 μV; P = 0.04) and vertical (90°, 37.82 ± 3.65 μV; P = 0.02) meridians, and binocular C3 latency was significantly shorter in response to vertical than oblique gratings (P ≤ 0.001). Conclusions Meridional anisotropy was observed in children with normal vision. The findings suggest that horizontal gratings result in a small, but significantly lower POVEP amplitude than for vertical and oblique gratings.
Collapse
Affiliation(s)
- Tiong Peng Yap
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Chi D Luu
- Centre for Eye Research Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Suttle
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia.,Division of Optometry and Visual Sciences, School of Health Sciences, City, University of London, United Kingdom
| | - Audrey Chia
- Pediatric Ophthalmology and Adult Strabismus Department, Singapore National Eye Centre (SNEC), Singapore.,Pediatric Ophthalmology and Strabismus Department, KK Women's and Children's Hospital (KKH), Singapore
| | - Mei Ying Boon
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Jeye BM, MacEvoy SP, Karanian JM, Slotnick SD. Distinct regions of the hippocampus are associated with memory for different spatial locations. Brain Res 2018; 1687:41-49. [DOI: 10.1016/j.brainres.2018.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
|
16
|
Pantazis D, Fang M, Qin S, Mohsenzadeh Y, Li Q, Cichy RM. Decoding the orientation of contrast edges from MEG evoked and induced responses. Neuroimage 2017; 180:267-279. [PMID: 28712993 DOI: 10.1016/j.neuroimage.2017.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022] Open
Abstract
Visual gamma oscillations have been proposed to subserve perceptual binding, but their strong modulation by diverse stimulus features confounds interpretations of their precise functional role. Overcoming this challenge necessitates a comprehensive account of the relationship between gamma responses and stimulus features. Here we used multivariate pattern analyses on human MEG data to characterize the relationships between gamma responses and one basic stimulus feature, the orientation of contrast edges. Our findings confirmed we could decode orientation information from induced responses in two dominant frequency bands at 24-32 Hz and 50-58 Hz. Decoding was higher for cardinal than oblique orientations, with similar results also obtained for evoked MEG responses. In contrast to multivariate analyses, orientation information was mostly absent in univariate signals: evoked and induced responses in early visual cortex were similar in all orientations, with only exception an inverse oblique effect observed in induced responses, such that cardinal orientations produced weaker oscillatory signals than oblique orientations. Taken together, our results showed multivariate methods are well suited for the analysis of gamma oscillations, with multivariate patterns robustly encoding orientation information and predominantly discriminating cardinal from oblique stimuli.
Collapse
Affiliation(s)
- Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mingtong Fang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Qin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yalda Mohsenzadeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
17
|
Sysoeva OV, Davletshina MA, Orekhova EV, Galuta IA, Stroganova TA. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD). Front Neurosci 2016; 9:512. [PMID: 26834540 PMCID: PMC4720792 DOI: 10.3389/fnins.2015.00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the "oblique effect." Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7-15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity.
Collapse
Affiliation(s)
- Olga V. Sysoeva
- Autism Research Laboratory, Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and EducationMoscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Cichy RM, Ramirez FM, Pantazis D. Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans? Neuroimage 2015; 121:193-204. [DOI: 10.1016/j.neuroimage.2015.07.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022] Open
|
19
|
Maloney RT, Clifford CW. Orientation anisotropies in human primary visual cortex depend on contrast. Neuroimage 2015; 119:129-45. [DOI: 10.1016/j.neuroimage.2015.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022] Open
|
20
|
Perry G. The effects of cross-orientation masking on the visual gamma response in humans. Eur J Neurosci 2015; 41:1484-95. [DOI: 10.1111/ejn.12900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Imaging Centre (CUBRIC); School of Psychology; Cardiff University; 70 Park Place Cardiff CF10 3AT UK
- Institute of Psychological Medicine and Clinical Neurosciences; School of Medicine; Cardiff University; Cardiff UK
| |
Collapse
|
21
|
Perry G, Randle JM, Koelewijn L, Routley BC, Singh KD. Linear tuning of gamma amplitude and frequency to luminance contrast: evidence from a continuous mapping paradigm. PLoS One 2015; 10:e0124798. [PMID: 25906070 PMCID: PMC4408014 DOI: 10.1371/journal.pone.0124798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/18/2015] [Indexed: 02/02/2023] Open
Abstract
Individual differences in the visual gamma (30–100Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10–25Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.
Collapse
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - James M. Randle
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Loes Koelewijn
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Bethany C. Routley
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D. Singh
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Gamma deficits as a neural signature of cognitive impairment in children treated for brain tumors. J Neurosci 2014; 34:8813-24. [PMID: 24966381 DOI: 10.1523/jneurosci.5220-13.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment is consistently reported in children treated for brain tumors, particularly in the categories of processing speed, memory, and attention. Although tumor site, hydrocephalus, chemotherapy, and cranial radiation therapy (CRT) are all associated with poorer function, CRT predicts the greatest deficits. There is a particularly high correlation between CRT and slowed information-processing speed. Cortical gamma-band oscillations have been associated with processing behaviorally relevant information; however, their role in the maintenance of cognition in individuals with processing deficits is unclear. We examined gamma oscillations using magnetoencephalography (MEG) in children undergoing CRT to test whether gamma characteristics can be a signature of cognitive impairment in this population. We collected resting-state data as well as data from baseline and active periods during two visual-motor reaction time tasks of varying cognitive loads from 18 healthy children and 20 patients. We found that only high-gamma oscillations (60-100 Hz), and not low-gamma oscillations (30-59 Hz), showed significant group differences in absolute power levels. Overall, compared with healthy children, patients showed the following: (1) lower total high-gamma (60-100 Hz) power during the resting state, as well as during task-related baseline and performance measures; (2) no change in gamma reactivity to increases in cognitive load; and (3) slower processing speeds both inside and outside MEG. Our findings show that high-gamma oscillations are disrupted in children after treatment for a brain tumor. The temporal dynamic of the high-gamma response during information processing may index cognitive impairment in humans with neurological injury.
Collapse
|
23
|
Shigihara Y, Zeki S. Parallelism in the brain's visual form system. Eur J Neurosci 2013; 38:3712-20. [PMID: 24118503 PMCID: PMC3995019 DOI: 10.1111/ejn.12371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
Abstract
We used magnetoencephalography (MEG) to determine whether increasingly complex forms constituted from the same elements (lines) activate visual cortex with the same or different latencies. Twenty right-handed healthy adult volunteers viewed two different forms, lines and rhomboids, representing two levels of complexity. Our results showed that the earliest responses produced by lines and rhomboids in both striate and prestriate cortex had similar peak latencies (40 ms) although lines produced stronger responses than rhomboids. Dynamic causal modeling (DCM) showed that a parallel multiple input model to striate and prestriate cortex accounts best for the MEG response data. These results lead us to conclude that the perceptual hierarchy between lines and rhomboids is not mirrored by a temporal hierarchy in latency of activation and thus that a strategy of parallel processing appears to be used to construct forms, without implying that a hierarchical strategy may not be used in separate visual areas, in parallel.
Collapse
Affiliation(s)
- Yoshihito Shigihara
- Wellcome Laboratory of Neurobiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
24
|
Takács E, Sulykos I, Czigler I, Barkaszi I, Balázs L. Oblique effect in visual mismatch negativity. Front Hum Neurosci 2013; 7:591. [PMID: 24068991 PMCID: PMC3779865 DOI: 10.3389/fnhum.2013.00591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022] Open
Abstract
We investigated whether visual orientation anisotropies (known as oblique effect) exist in non-attended visual changes using event-related potentials (ERP). We recorded visual mismatch negativity (vMMN) which signals violation of sequential regularities. In the visual periphery unattended, task-irrelevant Gábor patches were displayed in an oddball sequence while subjects performed a tracking task in the central field. A moderate change (50°) in the orientation of stimuli revealed no consistent change-related components. However, we found orientation-related differences around 170 ms in occipito-temporal areas in the amplitude of the ERPs evoked by standard stimuli. In a supplementary experiment we determined the amount of orientation difference that is needed for change detection in an active, attended paradigm. Results exhibited the classical oblique effect; subjects detected 10° deviations from cardinal directions, while threshold from oblique directions was 17°. These results provide evidence that perception of change could be accomplished at significantly smaller thresholds, than what elicits vMMN. In Experiment 2 we increased the orientation change to 90°. Deviant-minus-standard difference was negative in occipito-parietal areas, between 120 and 200 ms after stimulus onset. VMMNs to changes from cardinal angles were larger and more sustained than vMMNs evoked by changes from oblique angles. Changes from cardinal orientations represent a more detectable signal for the automatic change detection system than changes from oblique angles, thus increased vMMN to these “larger” deviances might be considered a variant of the magnitude of deviance effect rarely observed in vMMN studies.
Collapse
Affiliation(s)
- Endre Takács
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Faculty of Education and Psychology, Eötvös Loránd University Budapest, Hungary
| | | | | | | | | |
Collapse
|
25
|
Feature-specific information processing precedes concerted activation in human visual cortex. J Neurosci 2013; 33:7691-9. [PMID: 23637162 DOI: 10.1523/jneurosci.3905-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current knowledge about the precise timing of visual input to the cortex relies largely on spike timings in monkeys and evoked-response latencies in humans. However, quantifying the activation onset does not unambiguously describe the timing of stimulus-feature-specific information processing. Here, we investigated the information content of the early human visual cortical activity by decoding low-level visual features from single-trial magnetoencephalographic (MEG) responses. MEG was measured from nine healthy subjects as they viewed annular sinusoidal gratings (spanning the visual field from 2 to 10° for a duration of 1 s), characterized by spatial frequency (0.33 cycles/degree or 1.33 cycles/degree) and orientation (45° or 135°); gratings were either static or rotated clockwise or anticlockwise from 0 to 180°. Time-resolved classifiers using a 20 ms moving window exceeded chance level at 51 ms (the later edge of the window) for spatial frequency, 65 ms for orientation, and 98 ms for rotation direction. Decoding accuracies of spatial frequency and orientation peaked at 70 and 90 ms, respectively, coinciding with the peaks of the onset evoked responses. Within-subject time-insensitive pattern classifiers decoded spatial frequency and orientation simultaneously (mean accuracy 64%, chance 25%) and rotation direction (mean 82%, chance 50%). Classifiers trained on data from other subjects decoded the spatial frequency (73%), but not the orientation, nor the rotation direction. Our results indicate that unaveraged brain responses contain decodable information about low-level visual features already at the time of the earliest cortical evoked responses, and that representations of spatial frequency are highly robust across individuals.
Collapse
|
26
|
Pavan TZ, Funabashi M, Carneiro JAO, Pontelli TEGDS, Tedeschi W, Colafêmina JF, Carneiro AAO. Software for subjective visual vertical assessment: an observational cross-sectional study. Braz J Otorhinolaryngol 2013; 78:51-8. [PMID: 23108820 PMCID: PMC9450785 DOI: 10.5935/1808-8694.20120008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/10/2012] [Indexed: 11/20/2022] Open
Abstract
Spatial orientation in relation to the gravitational axis is significantly important for the maintenance of the posture, gait and for most of the human's motor activities. The subjective visual vertical exam evaluates the individual's perception of vertical orientation. Objectives The aims of this study were (1) to develop a virtual system to evaluate the subjective visual vertical exam, (2) to provide a simple tool to clinical practice and (3) to assess the subjective visual vertical values of h ealthy subjects using the new software. Study Design: observational cross-sectional study. Methods Thirty healthy volunteers performed the subjective visual vertical exam in both static and dynamic conditions. The exam consisted in adjusting a virtual line in the vertical position using the computer mouse. For the static condition, the virtual line was projected in a white background. For the dynamic condition, black circles rotated in clockwise or counterclockwise directions. Six measurements were taken and the mean deviations in relation to the real vertical calculated. Results The mean values of subjective visual vertical measurements were: static −0.372°; ± 1.21; dynamic clockwise 1.53° ± 1.80 and dynamic counterclockwise −1.11° ± 2.46. Conclusion This software showed to be practical and accurate to be used in clinical routines.
Collapse
Affiliation(s)
- Theo Zeferino Pavan
- Department of Physics, School of Philosophy, Sciences, and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Quantitative comparison of the hemodynamic activation elicited by cardinal and oblique gratings with functional near-infrared spectroscopy. Neuroreport 2013; 24:354-8. [DOI: 10.1097/wnr.0b013e32835f680b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Koelewijn L, Rich AN, Muthukumaraswamy SD, Singh KD. Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex. Neuroimage 2013; 79:295-303. [PMID: 23651840 DOI: 10.1016/j.neuroimage.2013.04.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 11/16/2022] Open
Abstract
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range.
Collapse
Affiliation(s)
- Loes Koelewijn
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Park Place, Cardiff CF103AT, UK.
| | | | | | | |
Collapse
|
29
|
Heinrichs-Graham E, Wilson TW, Santamaria PM, Heithoff SK, Torres-Russotto D, Hutter-Saunders JAL, Estes KA, Meza JL, Mosley RL, Gendelman HE. Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson's disease. ACTA ACUST UNITED AC 2013; 24:2669-78. [PMID: 23645717 PMCID: PMC4153806 DOI: 10.1093/cercor/bht121] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with debilitating motor, posture, and gait abnormalities. Human studies recording local field potentials within the subthalamic nucleus and scalp-based electroencephalography have shown pathological beta synchronization throughout the cortical–basal ganglia motor network in PD. Suppression of such pathological beta synchronization has been associated with improved motor function, which may explain the effectiveness of deep-brain stimulation. We used magnetoencephalography (MEG) to investigate neural population-level beta responses, and other oscillatory activity, during a motor task in unmedicated patients with PD and a matched group of healthy adults. MEG is a noninvasive neurophysiological technique that permits the recording of oscillatory activity during movement planning, execution, and termination phases. Each of these phases was independently examined using beamforming to distinguish the brain areas and movement phases, where pathological oscillations exist during motor control. Patients with PD exhibited significantly diminished beta desynchronization compared with controls prior to and during movement, which paralleled reduced alpha desynchronization. This study is the first to systematically investigate neural oscillatory responses in PD during distinct stages of motor control (e.g. planning, execution, and termination) and indicates that these patients have significant difficulty suppressing cortical beta synchronization during movement planning, which may contribute to their diminished movement capacities.
Collapse
Affiliation(s)
| | - Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, Department of Neurological Sciences, Center for Magnetoencephalography
| | | | | | | | | | | | - Jane L Meza
- Department of Biostatistics, University of Nebraska Medical Center (UNMC), Omaha, NE, USA and
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience
| | | |
Collapse
|
30
|
Perry G, Hamandi K, Brindley LM, Muthukumaraswamy SD, Singh KD. The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. Neuroimage 2012; 68:83-92. [PMID: 23220427 DOI: 10.1016/j.neuroimage.2012.11.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022] Open
Abstract
The role of gamma-band (typically 30-100 Hz) oscillations in visual processing is a topic of increasing interest. One hypothesis is that gamma oscillations reflect the action of GABAergic inhibitory processes in the visual cortex responsible for surround-suppression. Evidence from primate neurophysiology [Gieselmann & Thiele, A., 2008. European Journal of Neuroscience 28, 447-459.] suggests that the amplitude of the gamma-band response increases as a visual grating stimulus expands outside of the classical receptive field into the inhibitory surround; with the amplitude of the response increasing, and the frequency of the response decreasing, monotonically with stimulus size. In this study, we tested the relationship between the gamma-band response and the size of visual grating stimuli in humans using MEG. In two initial experiments we found that, while the absolute magnitude of the gamma-band response varied considerably across participants, in all cases the amplitude of the response had a monotonically increasing relationship with size. In contrast, we did not find any relationship between the frequency of the response and the size of the stimulus. Previously, the frequency of the visual gamma-band response has been found to correlate across individuals with the surface area of cortical area V1 [Schwarzkopf et al., 2012. Journal of Neuroscience 32, 1507-12.] We, however, were unable to find any correlation between the frequency or the magnitude of the gamma-band response and the dimensions of V1 cortical gray matter as measured from participants' MR images. Consistent with a saturation of the gamma-band response found for some individuals in the first two experiments, in a third experiment we found that the magnitude of the response to our largest stimulus (8°) was less than that predicted from the response to the stimulus' parts.
Collapse
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| | | | | | | | | |
Collapse
|
31
|
Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli. Vision Res 2012; 60:95-100. [DOI: 10.1016/j.visres.2012.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/02/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
|
32
|
Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI. Clin Neurophysiol 2012; 123:1536-48. [PMID: 22305306 DOI: 10.1016/j.clinph.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/30/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. METHODS We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. RESULTS Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. CONCLUSIONS These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. SIGNIFICANCE Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI.
Collapse
|
33
|
Towards a resolution of conflicting models of illusory contour processing in humans. Neuroimage 2012; 59:2808-17. [DOI: 10.1016/j.neuroimage.2011.09.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
|
34
|
Perry G, Adjamian P, Thai NJ, Holliday IE, Hillebrand A, Barnes GR. Retinotopic mapping of the primary visual cortex - a challenge for MEG imaging of the human cortex. Eur J Neurosci 2011; 34:652-61. [PMID: 21749494 PMCID: PMC3178797 DOI: 10.1111/j.1460-9568.2011.07777.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.
Collapse
Affiliation(s)
- Gavin Perry
- The Wellcome Trust Laboratory for MEG Studies, School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Hamandi K, Singh KD, Muthukumaraswamy S. Reduced movement-related β desynchronisation in juvenile myoclonic epilepsy: a MEG study of task specific cortical modulation. Clin Neurophysiol 2011; 122:2128-38. [PMID: 21571587 DOI: 10.1016/j.clinph.2011.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 04/10/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We investigated differences in task induced responses in occipital and sensorimotor cortex between patients with juvenile myclonic epilepsy (JME) and healthy controls . METHODS Twelve patients with JME and 12 age-matched non-epilepsy volunteers performed visual and motor tasks during MEG. We used synthetic aperture magnetometry to localise areas of task-related oscillatory modulations, performed time-frequency analyses on the locations of peak task related power changes and compared power and frequency modulation at these locations between patients and controls. RESULTS Patients with JME had significantly reduced pre-movement beta event-related desynchronisation in the motor task compared to controls. No significant differences were seen in other motor-related responses, or visual oscillatory responses. CONCLUSIONS Altered beta event-related desynchronisation may represent network specific dysfunction in JME possibly through GABAergic dysfunction. SIGNIFICANCE Characterising task specific cortical responses in epilepsy offers the potential to understand the patho-physiological basis of seizures and provide a window on disease and treatment effects.
Collapse
Affiliation(s)
- Khalid Hamandi
- The Epilepsy Unit, University Hospital of Wales, Cardiff CF14 4XW, UK.
| | | | | |
Collapse
|