1
|
Gröschel M, Manchev T, Fröhlich F, Jansen S, Ernst A, Basta D. Neurodegeneration after repeated noise trauma in the mouse lower auditory pathway. Neurosci Lett 2024; 818:137571. [PMID: 38013120 DOI: 10.1016/j.neulet.2023.137571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
High intensity noise exposure leads to a permanent shift in auditory thresholds (PTS), affecting both peripheral (cochlear) tissue and the central auditory system. Studies have shown that a noise-induced hearing loss results in significant cell loss in several auditory structures. Degeneration can be demonstrated within hours after noise exposure, particularly in the lower auditory pathway, and continues to progress over days and weeks following the trauma. However, there is limited knowledge about the effects of recurring acoustic trauma. Repeated noise exposure has been demonstrated to increase neuroplasticity and neural activity. Thus, the present study aimed to investigate the influence of a second noise exposure on the cytoarchitecture of key structures of the auditory pathway, including spiral ganglion neurons (SGN), the ventral and dorsal cochlear nucleus (VCN and DCN, respectively), and the inferior colliculus (IC). In the experiments, young adult normal hearing mice were exposed to noise once or twice (with the second trauma applied one week after the initial exposure) for 3 h, using broadband white noise (5 - 20 kHz) at 115 dB SPL. The cell densities in the investigated auditory structures significantly decreased in response to the initial noise exposure compared to unexposed control animals. These findings are consistent with earlier research, which demonstrated degeneration in the auditory pathway within the first week after acoustic trauma. Additionally, cell densities were significantly decreased after the second trauma, but this effect was only observed in the VCN, with no similar effects seen in the SGN, DCN, or IC. These results illustrate how repeated noise exposure influences the cytoarchitecture of the auditory system. It appears that an initial noise exposure primarily damages the lower auditory pathway, but surviving cellular structures may develop resistance to additional noise-induced injury.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany.
| | - Tanyo Manchev
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Felix Fröhlich
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Sebastian Jansen
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Arne Ernst
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Dietmar Basta
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| |
Collapse
|
2
|
Harada S, Takano K, Fukasawa M, Shirakawa S, Yamada M. Manganese-enhanced magnetic resonance imaging detects activation of limbic structures in response to auditory stimuli of different frequencies. Magn Reson Imaging 2022; 94:89-97. [PMID: 36089180 DOI: 10.1016/j.mri.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE As we are exposed to stress on a daily basis, it is important to detect and treat stress during the subclinical period. However, methods to quantify and confirm stress are currently unavailable, and the detection of subclinical stressors is difficult. This study aimed to determine whether manganese-enhanced magnetic resonance imaging (MEMRI) could be used to assess stress in rat brains. METHODS We exposed male Wistar/ST rats bred in a specific pathogen-free environment to ultrasound stimuli (22 kHz and 55 kHz) for 10 days and then assessed brain activities using MEMRI, the light/dark box test, and ΔFosB immunohistochemical staining. RESULTS In the MEMRI assessments, exposure at 22 kHz activated the periaqueductal gray, while exposure at 55 kHz specifically enhanced activity in the nucleus accumbens core and the orbitofrontal cortex. The exploratory behavior of the 55-kHz group increased sharply, while that of the 22-kHz group showed a lower exploratory value. ΔFosB expression increased in the orbitofrontal cortex, nucleus accumbens, periaqueductal gray, and amygdaloid nucleus in the 22-kHz group. CONCLUSION Ultrasound stimuli at 22 kHz suppressed weight gain in rats and excessive ΔFosB induction in the nucleus accumbens caused excessive sensitization of the neural circuit, thereby contributing to pathological behavior. We thus demonstrated that MEMRI can be useful to objectively assess the pathophysiology of stress-related disorders.
Collapse
Affiliation(s)
- Shohei Harada
- Department of Radiology, Fujita Health University Hospital, Japan
| | - Kazuki Takano
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, Japan.
| | - Motoaki Fukasawa
- Department of Anatomy II, School of Medicine, Fujita Health University, Japan
| | - Seiji Shirakawa
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, Japan
| | - Masayuki Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Japan
| |
Collapse
|
3
|
Alrayashi R, Braun RD, Muca A, Kühl A, Hali M, Holt AG. Postmortem neuroimaging: Temporal and spatial sensitivity of manganese-enhanced magnetic resonance imaging (MEMRI) and impact of Mn 2+ uptake. Hear Res 2021; 407:108276. [PMID: 34107410 DOI: 10.1016/j.heares.2021.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
Magnetic resonance imaging data collection and analysis have been challenges in the field of auditory neuroscience. Recent studies have addressed these concerns by using manganese-enhanced magnetic resonance imaging (MEMRI). Basic challenges for in vivo application of MEMRI in rodents includes how to set inclusion criteria for adequate Mn2+ uptake and whether valid data can be collected from brains postmortem. Since brain Mn2+ uptake is complete within 2-4 h and clearance can take 2-4 weeks, one assumption has been that Mn2+-enhanced R1 values continue to reliably reflect the degree of Mn2+-uptake for some indeterminate time after death. To address these issues, the impact of death on R1 values was determined in rats administered Mn2+ and rats that were not. Images of auditory nuclei were collected at fixed intervals from rats before and after death for up to 10 h postmortem. By taking a ratio of pituitary and muscle T1-W intensities (P/M), a reliable quantitative method for assessing adequate brain Mn2+ uptake was created and suggest that P/M ratios should be adopted to objectively measure the quality of the Mn2+ injection. Postmortem R1 values decreased in all brain regions in both the After Mn2+ and No Mn2+ groups. However, the time-course of postmortem changes in R1 was dependent on brain region and degree of Mn2+ uptake. Thus, postmortem R1 values not only differ after death, but vary with time and across brain regions. Postmortem R1 values in unfixed brain tissue, including the auditory nuclei, should be interpreted with caution.
Collapse
Affiliation(s)
- Rasheed Alrayashi
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; John D. Dingell VAMC, Detroit, MI, USA.
| |
Collapse
|
4
|
Fröhlich F, Gröschel M, Strübing I, Ernst A, Basta D. Apoptosis in the cochlear nucleus and inferior colliculus upon repeated noise exposure. Noise Health 2020; 20:223-231. [PMID: 31823909 PMCID: PMC6924190 DOI: 10.4103/nah.nah_30_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The time course of apoptosis and the corresponding neuronal loss was previously shown in central auditory pathway of mice after a single noise exposure. However, repeated acoustic exposure is a major risk factor for noise-induced hearing loss. The present study investigated apoptosis by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay after a second noise trauma in the ventral and dorsal cochlear nucleus and central nucleus of the inferior colliculus. Mice [Naval Medical Research Institute (NMRI) strain] were noise exposed [115 dB sound pressure level, 5-20 kHz, 3 h) at day 0. A double group received the identical noise exposure a second time at day 7 post-exposure and apoptosis was either analyzed immediately (7-day group-double) or 1 week later (14-day group-double). Corresponding single exposure groups were chosen as controls. No differences in TUNEL were seen between 7-day or 14-day single and double-trauma groups. Interestingly, independent of the second noise exposure, apoptosis increased significantly in the 14-day groups compared to the 7-day groups in all investigated areas. It seems that the first noise trauma has a long-lasting effect on apoptotic mechanisms in the central auditory pathway that were not largely influenced by a second trauma. Homeostatic mechanisms induced by the first trauma might protect the central auditory pathway from further damage during a specific time slot. These results might help to understand the underlying mechanisms of different psychoacoustic phenomena in noise-induced hearing loss.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| |
Collapse
|
5
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Gröschel M, Basta D, Ernst A, Mazurek B, Szczepek AJ. Acute Noise Exposure Is Associated With Intrinsic Apoptosis in Murine Central Auditory Pathway. Front Neurosci 2018; 12:312. [PMID: 29867323 PMCID: PMC5954103 DOI: 10.3389/fnins.2018.00312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Noise that is capable of inducing the hearing loss (NIHL) has a strong impact on the inner ear structures and causes early and most obvious pathophysiological changes in the auditory periphery. Several studies indicated that intrinsic apoptotic cell death mechanisms are the key factors inducing cellular degeneration immediately after noise exposure and are maintained for days or even weeks. In addition, studies demonstrated several changes in the central auditory system following noise exposure, consistent with early apoptosis-related pathologies. To clarify the underlying mechanisms, the present study focused on the noise-induced gene and protein expression of the pro-apoptotic protease activating factor-1 (APAF1) and the anti-apoptotic B-cell lymphoma 2 related protein a1a (BCL2A1A) in the cochlear nucleus (CN), inferior colliculus (IC) and auditory cortex (AC) of the murine central auditory pathway. The expression of Bcl2a1a mRNA was upregulated immediately after trauma in all tissues investigated, whereas the protein levels were significantly reduced at least in the auditory brainstem. Conversely, acute noise has decreased the expression of Apaf1 gene along the auditory pathway. The changes in APAF1 protein level were not statistically significant. It is tempting to speculate that the acoustic overstimulation leads to mitochondrial dysfunction and induction of apoptosis by regulation of proapoptotic and antiapoptotic proteins. The inverse expression pattern on the mRNA level of both genes might reflect a protective response to decrease cellular damage. Our results indicate the immediate presence of intrinsic apoptosis following noise trauma. This, in turn, may significantly contribute to the development of central structural deficits. Auditory pathway-specific inhibition of intrinsic apoptosis could be a therapeutic approach for the treatment of acute (noise-induced) hearing loss to prevent irreversible neuronal injury in auditory brain structures and to avoid profound deficits in complex auditory processing.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Gröschel M, Ernst A, Basta D. [Noise-induced neurodegeneration in the central auditory pathway : An overview of experimental studies in a mouse model]. HNO 2018; 66:258-264. [PMID: 29464271 DOI: 10.1007/s00106-018-0485-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A noise trauma induces central nervous system pathologies, which generate deficits in hearing and perception of sound. OBJECTIVE Are degenerative mechanisms in the central auditory system a direct impact of overstimulation or an effect of acoustic deprivation? MATERIALS AND METHODS Detection of cell death in a mouse model of noise-induced hearing loss at different times after single or repeated noise exposure. RESULTS A single noise exposure (3 h, 115 dB SPL, 5-20 kHz) induces acute (≤1 day) and long-term (observation period 14 days) degeneration, particularly in subcortical structures. Repeated noise trauma is followed by pathologies in the auditory thalamus and cortex. CONCLUSION Noise has a direct impact on basal structures of the central auditory system; a protection of cortical areas is possibly due to inhibitory neuronal projections. Degenerative mechanisms in higher structures of the pre-damaged system point to an increased impairment of complex processing of acoustic information.
Collapse
Affiliation(s)
- M Gröschel
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Str. 7, 12683, Berlin, Deutschland.
| | - A Ernst
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Str. 7, 12683, Berlin, Deutschland
| | - D Basta
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Str. 7, 12683, Berlin, Deutschland
| |
Collapse
|
8
|
Apoptotic mechanisms after repeated noise trauma in the mouse medial geniculate body and primary auditory cortex. Exp Brain Res 2017; 235:3673-3682. [DOI: 10.1007/s00221-017-5091-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022]
|
9
|
Fröhlich F, Basta D, Strübing I, Ernst A, Gröschel M. Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 2017; 19:133-139. [PMID: 28615543 PMCID: PMC5501023 DOI: 10.4103/nah.nah_10_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that acoustic overstimulation induces cell death and extensive cell loss in key structures of the central auditory pathway. A correlation between noise-induced apoptosis and cell loss was hypothesized for the cochlear nucleus and colliculus inferior. To determine the role of cell death in noise-induced cell loss in thalamic and cortical structures, the present mouse study (NMRI strain) describes the time course following noise exposure of cell death mechanisms for the ventral medial geniculate body (vMGB), medial MGB (mMGB), and dorsal MGB (dMGB) and the six histological layers of the primary auditory cortex (AI 1-6). Therefore, a terminal deoxynucleotidyl transferase dioxyuridine triphosphate nick-end labeling assay (TUNEL) was performed in these structures 24 h, 7 days, and 14 days after noise exposure (3 h, 115 dB sound pressure level, 5-20 kHz), as well as in unexposed controls. In the dMGB, TUNEL was statistically significant elevated 24 h postexposure. AI-1 showed a decrease in TUNEL after 14 days. There was no statistically significant difference between groups for the other brain areas investigated. dMGB's widespread connection within the central auditory pathway and its nontonotopical organization might explain its prominent increase in TUNEL compared to the other MGB subdivisions and the AI. It is assumed that the onset and peak of noise-induced cell death is delayed in higher areas of the central auditory pathway and takes place between 24 h and 7 days postexposure in thalamic and cortical structures.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| |
Collapse
|
10
|
Wolak T, Cieśla K, Rusiniak M, Piłka A, Lewandowska M, Pluta A, Skarżyński H, Skarżyński PH. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study. Med Sci Monit 2016; 22:4623-4635. [PMID: 27893698 PMCID: PMC5132427 DOI: 10.12659/msm.897929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Mateusz Rusiniak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Adam Piłka
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Monika Lewandowska
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland
| | - Piotr H Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw/Kajetany, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016; 44:173-184. [DOI: 10.1016/j.neurobiolaging.2016.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
|
12
|
Gröschel M, Götze R, Müller S, Ernst A, Basta D. Central Nervous Activity upon Systemic Salicylate Application in Animals with Kanamycin-Induced Hearing Loss--A Manganese-Enhanced MRI (MEMRI) Study. PLoS One 2016; 11:e0153386. [PMID: 27078034 PMCID: PMC4831817 DOI: 10.1371/journal.pone.0153386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effect of systemic salicylate on central auditory and non-auditory structures in mice. Since cochlear hair cells are known to be one major target of salicylate, cochlear effects were reduced by using kanamycin to remove or impair hair cells. Neuronal brain activity was measured using the non-invasive manganese-enhanced magnetic resonance imaging technique. For all brain structures investigated, calcium-related neuronal activity was increased following systemic application of a sodium salicylate solution: probably due to neuronal hyperactivity. In addition, it was shown that the central effect of salicylate was not limited to the auditory system. A general alteration of calcium-related activity was indicated by an increase in manganese accumulation in the preoptic area of the anterior hypothalamus, as well as in the amygdala. The present data suggest that salicylate-induced activity changes in the auditory system differ from those shown in studies of noise trauma. Since salicylate action is reversible, central pharmacological effects of salicylate compared to those of (permanent) noise-induced hearing impairment and tinnitus might induce different pathophysiologies. These should therefore, be treated as different causes with the same symptoms.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Romy Götze
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Susanne Müller
- Neuroscience Research Center (NWFZ), Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Jareño-Flores T, Miller JM, Juiz JM. Noise-Induced "Toughening" Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation. Front Neuroanat 2016; 10:19. [PMID: 27065815 PMCID: PMC4815363 DOI: 10.3389/fnana.2016.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this "toughening" effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with "toughening" and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Tania Jareño-Flores
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
14
|
Novák O, Zelenka O, Hromádka T, Syka J. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. J Neurophysiol 2016; 115:1860-74. [PMID: 26823513 DOI: 10.1152/jn.00810.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/28/2016] [Indexed: 02/02/2023] Open
Abstract
Exposure to loud sounds damages the auditory periphery and induces maladaptive changes in central parts of the auditory system. Diminished peripheral afferentation and altered inhibition influence the processing of sounds in the auditory cortex. It is unclear, however, which types of inhibitory interneurons are affected by acoustic trauma. Here we used single-unit electrophysiological recording and two-photon calcium imaging in anesthetized mice to evaluate the effects of acute acoustic trauma (125 dB SPL, white noise, 5 min) on the response properties of neurons in the core auditory cortex. Electrophysiological measurements suggested the selective impact of acoustic trauma on inhibitory interneurons in the auditory cortex. To further investigate which interneuronal types were affected, we used two-photon calcium imaging to record the activity of neurons in cortical layers 2/3 and 4, specifically focusing on parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. Spontaneous and pure-tone-evoked firing rates of SST+ interneurons increased in layer 4 immediately after acoustic trauma and remained almost unchanged in layer 2/3. Furthermore, PV+ interneurons with high best frequencies increased their evoked-to-spontaneous firing rate ratios only in layer 2/3 and did not change in layer 4. Finally, acoustic trauma unmasked low-frequency excitatory inputs only in layer 2/3. Our results demonstrate layer-specific changes in the activity of auditory cortical inhibitory interneurons within minutes after acoustic trauma.
Collapse
Affiliation(s)
- Ondřej Novák
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Zelenka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hromádka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
15
|
Zou J, Pyykkö I. Calcium Metabolism Profile in Rat Inner Ear Indicated by MRI After Tympanic Medial Wall Administration of Manganese Chloride. Ann Otol Rhinol Laryngol 2015; 125:53-62. [DOI: 10.1177/0003489415597916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: To evaluate the efficacy of the novel method for the targeted delivery of Mn++ to the inner ear and monitor calcium metabolism activity in the inner ear. Materials and Methods: Dynamic signal changes of Mn++ in the rat inner ear were followed using T1-weighted magnetic resonance imaging (MRI) after administration of 2.5 µl MnCl2 (500 mM) to the medial wall of the middle ear cavity. Results: Mn++ passed through both the oval and round windows and distributed in the perilymphatic compartments, where it formed bright sharp lines along the fluid-cellular borders 12 minutes post administration and entered the endolymph sufficiently after 45 minutes. After 6 hours, the distribution of Mn++ shifted from a fluid-dominant pattern to a cell-dominant pattern. Mn++ concentrated in the area of the basilar membrane, periphery process, and soma of the spiral ganglion on day 2; became more distinguishable on day 4; declined on day 8; and remained detectable for 16 days post administration. Conclusions: The novel targeted delivery method efficiently introduced Mn++ into the inner ear. The dynamic distribution pattern of Mn++ in the inner ear shown by MRI indicates that this method can be used to monitor calcium metabolism activity in the inner ear.
Collapse
Affiliation(s)
- Jing Zou
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
16
|
Gröschel M, Hubert N, Müller S, Ernst A, Basta D. Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 2014; 58:235-43. [DOI: 10.1016/j.exger.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
17
|
Acute and long-term effects of noise exposure on the neuronal spontaneous activity in cochlear nucleus and inferior colliculus brain slices. BIOMED RESEARCH INTERNATIONAL 2014; 2014:909260. [PMID: 25110707 PMCID: PMC4119618 DOI: 10.1155/2014/909260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is still discussed if the observed effects are related to changes of peripheral input or evoked within the central auditory system. The present study should describe the intrinsic temporal patterns of single-unit activity upon noise-induced hearing loss of the dorsal and ventral cochlear nucleus (DCN and VCN) and the inferior colliculus (IC) in adult mouse brain slices. Recordings showed a slight, but significant, elevation in spontaneous firing rates in DCN and VCN immediately after noise trauma, whereas no differences were found in IC. One week postexposure, neuronal responses remained unchanged compared to controls. At 14 days after noise trauma, intrinsic long-term hyperactivity in brain slices of the DCN and the IC was detected for the first time. Therefore, increase in spontaneous activity seems to develop within the period of two weeks, but not before day 7. The results give insight into the complex temporal neurophysiological alterations after noise trauma, leading to a better understanding of central mechanisms in noise-induced hearing loss.
Collapse
|
18
|
Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus). Neuroscience 2014; 269:302-17. [DOI: 10.1016/j.neuroscience.2014.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
|
19
|
Manganese enhanced magnetic resonance imaging (MEMRI): a powerful new imaging method to study tinnitus. Hear Res 2014; 311:49-62. [PMID: 24583078 DOI: 10.1016/j.heares.2014.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 12/31/2022]
Abstract
Manganese enhanced magnetic resonance imaging (MEMRI) is a method used primarily in basic science experiments to advance the understanding of information processing in central nervous system pathways. With this mechanistic approach, manganese (Mn(2+)) acts as a calcium surrogate, whereby voltage-gated calcium channels allow for activity driven entry of Mn(2+) into neurons. The detection and quantification of neuronal activity via Mn(2+) accumulation is facilitated by "hemodynamic-independent contrast" using high resolution MRI scans. This review emphasizes initial efforts to-date in the development and application of MEMRI for evaluating tinnitus (the perception of sound in the absence of overt acoustic stimulation). Perspectives from leaders in the field highlight MEMRI related studies by comparing and contrasting this technique when tinnitus is induced by high-level noise exposure and salicylate administration. Together, these studies underscore the considerable potential of MEMRI for advancing the field of auditory neuroscience in general and tinnitus research in particular. Because of the technical and functional gaps that are filled by this method and the prospect that human studies are on the near horizon, MEMRI should be of considerable interest to the auditory research community. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
20
|
Kou ZZ, Qu J, Zhang DL, Li H, Li YQ. Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex. Front Neuroanat 2013; 7:25. [PMID: 23908607 PMCID: PMC3726868 DOI: 10.3389/fnana.2013.00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023] Open
Abstract
Noise overexposure may induce permanent noise-induced hearing loss (NIHL). The cochlear nucleus complex (CNC) is the entry point for sensory information in the central auditory system. Impairments in gamma-aminobutyric acid (GABA)—mediated synaptic transmission in the CNC have been implicated in the pathogenesis of auditory disorders. However, the role of protein kinase C (PKC) signaling pathway in GABAergic inhibition in the CNC in NIHL remains elusive. Thus, we investigated the alterations of glutamic acid decarboxylase 67 (GAD67, the chemical marker for GABA-containing neurons), PKC γ subunit (PKCγ) and GABAB receptor (GABABR) expression in the CNC using transgenic GAD67-green fluorescent protein (GFP) knock-in mice, BALB/c mice and C57 mice. Immunohistochemical results indicate that the GFP-labeled GABAergic neurons were distributed in the molecular layer (ML) and fusiform cell layer (FCL) of the dorsal cochlear nucleus (DCN). We found that 69.91% of the GFP-positive neurons in the DCN were immunopositive for both PKCγ and GABABR1. The GAD67-positive terminals made contacts with PKCγ/GABABR1 colocalized neurons. Then we measured the changes of auditory thresholds in mice after noise exposure for 2 weeks, and detected the GAD67, PKCγ, and GABABR expression at mRNA and protein levels in the CNC. With noise over-exposure, there was a reduction in GABABR accompanied by an increase in PKCγ expression, but no significant change in GAD67 expression. In summary, our results demonstrate that alterations in the expression of PKCγ and GABABRs may be involved in impairments in GABAergic inhibition within the CNC and the development of NIHL.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | | | | | | | | |
Collapse
|
21
|
Kueny-Stotz M, Garofalo A, Felder-Flesch D. Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101163] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|