1
|
Schnaufer L, Gschaidmeier A, Heimgärtner M, Driever PH, Hauser TK, Wilke M, Lidzba K, Staudt M. Atypical language organization following perinatal infarctions of the left hemisphere is associated with structural changes in right-hemispheric grey matter. Dev Med Child Neurol 2024; 66:353-361. [PMID: 37691416 DOI: 10.1111/dmcn.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
AIM To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization. WHAT THIS PAPER ADDS Perinatal stroke leads to decreased grey matter in the contralesional hemisphere. Atypical language organization is associated with grey matter increases in contralesional language areas.
Collapse
Affiliation(s)
- Lukas Schnaufer
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Alisa Gschaidmeier
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Germany
| | - Magdalena Heimgärtner
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Pablo Hernáiz Driever
- Department of Paediatric Oncology and Haematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Karen Lidzba
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Division of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin Staudt
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Palliative Care, University Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Doll A, Wegrzyn M, Woermann FG, Labudda K, Bien CG, Kissler J. MRI evidence for material-specific encoding deficits and mesial-temporal alterations in presurgical frontal lobe epilepsy patients. Epilepsia Open 2024; 9:355-367. [PMID: 38093701 PMCID: PMC10839294 DOI: 10.1002/epi4.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Neuroimaging studies reveal frontal lobe (FL) contributions to memory encoding. Accordingly, memory impairments are documented in frontal lobe epilepsy (FLE). Still, little is known about the structural or functional correlates of such impairments. Particularly, material specificity of functional changes in cerebral activity during memory encoding in FLE is unclear. METHODS We compared 24 FLE patients (15 right-sided) undergoing presurgical evaluation with 30 healthy controls on a memory fMRI-paradigm of learning scenes, faces, and words followed by an out-of-scanner recognition task as well as regarding their mesial temporal lobe (mTL) volumes. We also addressed effects of FLE lateralization and performance level (normal vs. low). RESULTS FLE patients had poorer memory performance and larger left hippocampal volumes than controls. Volume increase seemed, however, irrelevant or even dysfunctional for memory performance. Further, functional changes in FLE patients were right-sided for scenes and faces and bilateral for words. In detail, during face encoding, FLE patients had, regardless of their performance level, decreased mTL activation, while during scene and word encoding only low performing FLE patients had decreased mTL along with decreased FL activation. Intact verbal memory performance was associated with higher right frontal activation in FLE patients but not in controls. SIGNIFICANCE Pharmacoresistant FLE has a distinct functional and structural impact on the mTL. Effects vary with the encoded material and patients' performance levels. Thus, in addition to the direct effect of the FL, memory impairment in FLE is presumably to a large part due to functional mTL changes triggered by disrupted FL networks. PLAIN LANGUAGE SUMMARY Frontal lobe epilepsy (FLE) patients may suffer from memory impairment. Therefore, we asked patients to perform a memory task while their brain was scanned by MRI in order to investigate possible changes in brain activation during learning. FLE patients showed changes in brain activation during learning and also structural changes in the mesial temporal lobe, which is a brain region especially relevant for learning but not the origin of the seizures in FLE. We conclude that FLE leads to widespread changes that contribute to FLE patients' memory impairment.
Collapse
Affiliation(s)
- Anna Doll
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Martin Wegrzyn
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Friedrich G. Woermann
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Kirsten Labudda
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Johanna Kissler
- Department of PsychologyBielefeld UniversityBielefeldGermany
- Center for Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
3
|
Pasquini L, Jenabi M, Peck KK, Holodny AI. Language reorganization in patients with left-hemispheric gliomas is associated with increased cortical volume in language-related areas and in the default mode network. Cortex 2022; 157:245-255. [PMID: 36356409 PMCID: PMC10201933 DOI: 10.1016/j.cortex.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/02/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Language function may reorganize to overcome focal impairment; however, the relation between functional and structural changes in patients with brain tumors remains unclear. We investigated the cortical volume of atypical language dominant (AD) patients with left frontal-insular high-grade (HGG) and low-grade glioma (LGG). We hypothesized atypical language being associated with areas of increased cortical volume in the right hemisphere, including language areas homologues. METHODS Patient were recruited following the criteria: left frontal-insular glioma; functional MRI and 3DT1-weighted images; no artifacts. We calculated an hemispheric language laterality index (LI), defined as: AD if LI < .2; left-dominant (LD) if LI ≥ .2. We measured cortical volume in three voxel-based morphometry (VBM) analyses: total AD vs. LD patients; AD vs. LD in HGG; AD vs. LD in LGG. We repeated the analysis in AD vs. LD healthy controls (HC). A minimum threshold of t > 2 and corrected p < .025 (Bonferroni) was employed. RESULTS We recruited 119 patients (44LGG, 75HGG). Hemispheric LI demonstrated 64/119AD and 55/119LD patients. The first VBM analysis demonstrated significantly increased cortical volume in AD patients in the right inferior frontal gyrus (IFG), right superior temporal gyrus (STG), right insula, right fusiform gyrus (FG), right precentral gyrus, right temporal-parietal junction, right posterior cingulate cortex (PCC), right hippocampus, right- and left cerebellum. AD patients with HGG showed the same areas of significantly increased cortical volume. AD patients with LGG displayed significantly increased cortical volume in right IFG, right STG, right insula, right FG, right anterior cingulate cortex, right PCC, right dorsal-lateral prefrontal cortex. HC showed no significant results. CONCLUSION Right-sided (atypical) language activations in patients with left-hemispheric gliomas are associated with areas of increased cortical volume. Additionally, default mode network nodes showed greater cortical volume in AD patients regardless of the tumor grade, supporting the idea of these cortices participating in the development of language plasticity.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome 00189, Italy.
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyung K Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrei I Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA; Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
4
|
Pasquini L, Di Napoli A, Rossi-Espagnet MC, Visconti E, Napolitano A, Romano A, Bozzao A, Peck KK, Holodny AI. Understanding Language Reorganization With Neuroimaging: How Language Adapts to Different Focal Lesions and Insights Into Clinical Applications. Front Hum Neurosci 2022; 16:747215. [PMID: 35250510 PMCID: PMC8895248 DOI: 10.3389/fnhum.2022.747215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity. Different lesions may induce different patterns of reorganization depending on pathologic features, location in the brain, and timing of onset. Neuroimaging provides insights into language plasticity due to its non-invasiveness, ability to image the whole brain, and large-scale implementation. This review provides an overview of language plasticity on MRI with insights for patient care. First, we describe the structural and functional language network as depicted by neuroimaging. Second, we explore language reorganization triggered by stroke, brain tumors, and epileptic lesions and analyze applications in clinical diagnosis and treatment planning. By comparing different focal lesions, we investigate determinants of language plasticity including lesion location and timing of onset, longitudinal evolution of reorganization, and the relationship between structural and functional changes.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Hospital, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Emiliano Visconti
- Neuroradiology Unit, Cesena Surgery and Trauma Department, M. Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, United States
| |
Collapse
|
5
|
Cwik JC, Vahle N, Woud ML, Potthoff D, Kessler H, Sartory G, Seitz RJ. Reduced gray matter volume in the left prefrontal, occipital, and temporal regions as predictors for posttraumatic stress disorder: a voxel-based morphometric study. Eur Arch Psychiatry Clin Neurosci 2020; 270:577-588. [PMID: 30937515 DOI: 10.1007/s00406-019-01011-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
The concept of acute stress disorder (ASD) was introduced as a diagnostic entity to improve the identification of traumatized people who are likely to develop posttraumatic stress disorder (PTSD). Neuroanatomical models suggest that changes in the prefrontal cortex, amygdala, and hippocampus play a role in the development of PTSD. Using voxel-based morphometry, this study aimed to investigate the predictive power of gray matter volume (GMV) alterations for developing PTSD. The GMVs of ASD patients (n = 21) were compared to those of PTSD patients (n = 17) and healthy controls (n = 18) in whole-brain and region-of-interest analyses. The GMV alterations seen in ASD patients shortly after the traumatic event (T1) were also correlated with PTSD symptom severity and symptom clusters 4 weeks later (T2). Compared with healthy controls, the ASD patients had significantly reduced GMV in the left visual cortex shortly after the traumatic event (T1) and in the left occipital and prefrontal regions 4 weeks later (T2); no significant differences in GMV were seen between the ASD and PTSD patients. Furthermore, a significant negative association was found between the GMV reduction in the left lateral temporal regions seen after the traumatic event (T1) and PTSD hyperarousal symptoms 4 weeks later (T2). Neither amygdala nor hippocampus alterations were predictive for the development of PTSD. These data suggest that gray matter deficiencies in the left hemispheric occipital and temporal regions in ASD patients may predict a liability for developing PTSD.
Collapse
Affiliation(s)
- Jan Christopher Cwik
- Department of Clinical Psychology and Psychotherapy, Faculty of Human Sciences, Universität zu Köln, Pohligstr. 1, 50969, Cologne, Germany. .,Faculty of Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany.
| | - Nils Vahle
- Department of Psychology and Psychotherapy, University Witten/Herdecke, Witten, Germany
| | - Marcella Lydia Woud
- Faculty of Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Denise Potthoff
- Department of Neurology, Center for Neurology and Neuropsychiatry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Henrik Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-Universität Bochum, Bochum, Germany
| | - Gudrun Sartory
- Department of Clinical Psychology and Psychotherapy, School of Human and Social Sciences, Bergische Universität Wuppertal, Wuppertal, Germany
| | - Rüdiger J Seitz
- Department of Neurology, Center for Neurology and Neuropsychiatry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Balter S, Lin G, Leyden KM, Paul BM, McDonald CR. Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy. BRAIN AND LANGUAGE 2019; 193:31-44. [PMID: 27393391 PMCID: PMC5215985 DOI: 10.1016/j.bandl.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/27/2016] [Accepted: 06/15/2016] [Indexed: 06/02/2023]
Abstract
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions.
Collapse
Affiliation(s)
- S Balter
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - G Lin
- Palo Alto University, Palo Alto, CA, United States
| | - K M Leyden
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States
| | - B M Paul
- Department of Neurology, University of California, San Francisco, CA, United States; UCSF Comprehensive Epilepsy Center, United States
| | - C R McDonald
- Multimodal Imaging Laboratory, University of California, San Diego, CA, United States; Department of Psychiatry, University of California, San Diego, CA, United States.
| |
Collapse
|
7
|
Fang J, Chen S, Luo C, Gong Q, An D, Zhou D. Altered language network in benign childhood epilepsy patients with spikes from non-dominant side: A resting-state fMRI study. Epilepsy Res 2017; 136:109-114. [PMID: 28822871 DOI: 10.1016/j.eplepsyres.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023]
Abstract
Benign childhood epilepsy with centrotemporal spikes (BECTS) is one of the most common childhood epilepsy syndromes, and language deficits associated with BECTS have become a hot topic. This study investigated alterations of the language network in BECTS children with spikes from the non-dominant side in comparison with healthy controls. Twenty-three children with BECTS and 20 age-matched healthy controls were enrolled. Region of interest -based whole brain functional connectivity analysis was used to identify the potential differences in the functional connectivity of the Broca's area between the two groups. Increased positive functional connectivity within the Broca's region was detected mainly at the left superior frontal gyrus (Brodmann area 8), bilateral insula, and anterior and posterior cingulate in the BECTS group. No regions showed significantly decreased connection in the BECTS patients compared to the controls. This study suggested alterations in the language network that was related with the Broca's area in children with BECTS from the non-dominant side. Further studies with longitudinal assessments from the perceptive of functional neuroimaging are needed to illustrate the dynamic course of language development and corresponding neuroimaging evidence.
Collapse
Affiliation(s)
- Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
| | - Sihan Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Luo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Chang YHA, Kemmotsu N, Leyden KM, Kucukboyaci NE, Iragui VJ, Tecoma ES, Kansal L, Norman MA, Compton R, Ehrlich TJ, Uttarwar VS, Reyes A, Paul BM, McDonald CR. Multimodal imaging of language reorganization in patients with left temporal lobe epilepsy. BRAIN AND LANGUAGE 2017; 170:82-92. [PMID: 28432987 PMCID: PMC5507363 DOI: 10.1016/j.bandl.2017.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/09/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
This study explored the relationships among multimodal imaging, clinical features, and language impairment in patients with left temporal lobe epilepsy (LTLE). Fourteen patients with LTLE and 26 controls underwent structural MRI, functional MRI, diffusion tensor imaging, and neuropsychological language tasks. Laterality indices were calculated for each imaging modality and a principal component (PC) was derived from language measures. Correlations were performed among imaging measures, as well as to the language PC. In controls, better language performance was associated with stronger left-lateralized temporo-parietal and temporo-occipital activations. In LTLE, better language performance was associated with stronger right-lateralized inferior frontal, temporo-parietal, and temporo-occipital activations. These right-lateralized activations in LTLE were associated with right-lateralized arcuate fasciculus fractional anisotropy. These data suggest that interhemispheric language reorganization in LTLE is associated with alterations to perisylvian white matter. These concurrent structural and functional shifts from left to right may help to mitigate language impairment in LTLE.
Collapse
Affiliation(s)
- Yu-Hsuan A Chang
- Center for Multimodal Imaging and Genetics, University of California - San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Nobuko Kemmotsu
- Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Kelly M Leyden
- Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - N Erkut Kucukboyaci
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
| | - Vicente J Iragui
- Department of Neurosciences, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Evelyn S Tecoma
- Department of Neurosciences, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Leena Kansal
- Department of Neurosciences, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Marc A Norman
- Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Rachelle Compton
- Department of Neurosciences, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Tobin J Ehrlich
- Palo Alto University, 1971 Arastradero Drive, Palo Alto, CA 94304, USA.
| | - Vedang S Uttarwar
- Center for Multimodal Imaging and Genetics, University of California - San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California - San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
| | - Brianna M Paul
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA; UCSF Comprehensive Epilepsy Center, San Francisco, CA, USA.
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California - San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA.
| |
Collapse
|
9
|
Labudda K, Mertens M, Kalbhenn T, Schulz R, Woermann FG. Partial resection of presurgical fMRI activation is associated with a postsurgical loss of language function after frontal lobe epilepsy surgery. Neurocase 2017; 23:239-248. [PMID: 28952404 DOI: 10.1080/13554794.2017.1383445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe five patients with frontal lobe epilepsy who underwent electrocortical stimulation (ES) for language localization and language functional magnetic resonance imaging (fMRI) prior to epilepsy surgery. Six months after surgery, three patients suffered from a drop of verbal fluency. In all of them, frontal areas with presurgical language fMRI activity were resected. Our results suggest that resection in regions of areas with presurgical fMRI activation is not without risk for a postsurgical loss of function, even when ES results were negative for language function in these areas. Using fMRI activations might be specifically helpful to plan the resection when ES delivered inconclusive results.
Collapse
Affiliation(s)
- Kirsten Labudda
- a Department of Psychology, Clinical Neuropsychology and Epilepsy Research , University of Bielefeld , Bielefeld , Germany.,b Epilepsy Center Bethel , Bielefeld , Germany
| | | | | | | | | |
Collapse
|
10
|
Soares JM, Magalhães R, Moreira PS, Sousa A, Ganz E, Sampaio A, Alves V, Marques P, Sousa N. A Hitchhiker's Guide to Functional Magnetic Resonance Imaging. Front Neurosci 2016; 10:515. [PMID: 27891073 PMCID: PMC5102908 DOI: 10.3389/fnins.2016.00515] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community.
Collapse
Affiliation(s)
- José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Alexandre Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Department of Informatics, University of MinhoBraga, Portugal
| | - Edward Ganz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of MinhoBraga, Portugal
| | - Victor Alves
- Department of Informatics, University of MinhoBraga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal
- ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
- Clinical Academic Center – BragaBraga, Portugal
| |
Collapse
|
11
|
Takaya S, Liu H, Greve DN, Tanaka N, Leveroni C, Cole AJ, Stufflebeam SM. Altered anterior-posterior connectivity through the arcuate fasciculus in temporal lobe epilepsy. Hum Brain Mapp 2016; 37:4425-4438. [PMID: 27452151 DOI: 10.1002/hbm.23319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
How the interactions between cortices through a specific white matter pathway change during cognitive processing in patients with epilepsy remains unclear. Here, we used surface-based structural connectivity analysis to examine the change in structural connectivity with Broca's area/the right Broca's homologue in the lateral temporal and inferior parietal cortices through the arcuate fasciculus (AF) in 17 patients with left temporal lobe epilepsy (TLE) compared with 17 healthy controls. Then, we investigated its functional relevance to the changes in task-related responses and task-modulated functional connectivity with Broca's area/the right Broca's homologue during a semantic classification task of a single word. The structural connectivity through the AF pathway and task-modulated functional connectivity with Broca's area decreased in the left midtemporal cortex. Furthermore, task-related response decreased in the left mid temporal cortex that overlapped with the region showing a decrease in the structural connectivity. In contrast, the region showing an increase in the structural connectivity through the AF overlapped with the regions showing an increase in task-modulated functional connectivity in the left inferior parietal cortex. These structural and functional changes in the overlapping regions were correlated. The results suggest that the change in the structural connectivity through the left frontal-temporal AF pathway underlies the altered functional networks between the frontal and temporal cortices during the language-related processing in patients with left TLE. The left frontal-parietal AF pathway might be employed to connect anterior and posterior brain regions during language processing and compensate for the compromised left frontal-temporal AF pathway. Hum Brain Mapp 37:4425-4438, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigetoshi Takaya
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Douglas N Greve
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Naoaki Tanaka
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Catherine Leveroni
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew J Cole
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Stufflebeam
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 2016; 15:420-33. [PMID: 26925532 DOI: 10.1016/s1474-4422(15)00383-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/22/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023]
Abstract
Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross, UK.
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross, UK
| | - Sebastien Ourselin
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
13
|
Zhao F, Kang H, You L, Rastogi P, Venkatesh D, Chandra M. Neuropsychological deficits in temporal lobe epilepsy: A comprehensive review. Ann Indian Acad Neurol 2015; 17:374-82. [PMID: 25506156 PMCID: PMC4251008 DOI: 10.4103/0972-2327.144003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent form of complex partial seizures with temporal lobe origin of electrical abnormality. Studies have shown that recurrent seizures affect all aspects of cognitive functioning, including memory, language, praxis, executive functions, and social judgment, among several others. In this article, we will review these cognitive impairments along with their neuropathological correlates in a comprehensive manner. We will see that neuropsychological deficits are prevalent in TLE. Much of the effort has been laid on memory due to the notion that temporal lobe brain structures involved in TLE play a central role in consolidating information into memory. It seems that damage to the mesial structure of the temporal lobe, particularly the amygdale and hippocampus, has the main role in these memory difficulties and the neurobiological plausibility of the role of the temporal lobe in different aspects of memory. Here, we will cover the sub-domains of working memory and episodic memory deficits. This is we will further proceed to evaluate the evidences of executive function deficits in TLE and will see that set-shifting among other EFs is specifically affected in TLE as is social cognition. Finally, critical components of language related deficits are also found in the form of word-finding difficulties. To conclude, TLE affects several of cognitive function domains, but the etiopathogenesis of all these dysfunctions remain elusive. Further well-designed studies are needed for a better understanding of these disorders.
Collapse
Affiliation(s)
- Fengqing Zhao
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Hai Kang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Libo You
- Operating RoomYantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Priyanka Rastogi
- Department of Clinical Psychology, Ranchi Institute of Neuropsychiatry and Allied Sciences, Kanke, Ranchi, Jharkhand, India
| | - D Venkatesh
- Department of Physiology, M. S. Ramaiah Medical College, Mathikere, Bengaluru, Karnataka, India
| | - Mina Chandra
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, Formerly Willingdon Hospital, New Delhi, India
| |
Collapse
|
14
|
Chaudhary UJ, Duncan JS. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy. Neuroimaging Clin N Am 2014; 24:671-94. [PMID: 25441507 DOI: 10.1016/j.nic.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK; Queen Square Division, UCLH NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
15
|
Pahs G, Rankin P, Helen Cross J, Croft L, Northam GB, Liegeois F, Greenway S, Harrison S, Vargha-Khadem F, Baldeweg T. Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy. ACTA ACUST UNITED AC 2013; 136:3163-75. [PMID: 24022474 PMCID: PMC4038779 DOI: 10.1093/brain/awt225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reorganization of eloquent cortex enables rescue of language functions in patients who sustain brain injury. Individuals with left-sided, early-onset focal epilepsy often show atypical (i.e. bilateral or right-sided) language dominance. Surprisingly, many patients fail to show such interhemispheric shift of language despite having major epileptogenic lesions in close proximity to eloquent cortex. Although a number of epilepsy-related factors may promote interhemispheric plasticity, it has remained unexplored if neuroanatomical asymmetries linked to human language dominance modify the likelihood of atypical lateralization. Here we examined the asymmetry of the planum temporale, one of the most striking asymmetries in the human brain, in relation to language lateralization in children with left-sided focal epilepsy. Language functional magnetic resonance imaging was performed in 51 children with focal epilepsy and left-sided lesions and 36 healthy control subjects. We examined the association of language laterality with a range of potential clinical predictors and the asymmetry of the length of the planum temporale. Using voxel-based methods, we sought to determine the effect of lesion location (in the affected left hemisphere) and grey matter density (in the unaffected right hemisphere) on language laterality. Atypical language lateralization was observed in 19 patients (38%) and in four controls (11%). Language laterality was increasingly right-sided in patients who showed atypical handedness, a left perisylvian ictal electroencephalographic focus, and a lesion in left anterior superior temporal or inferior frontal regions. Most striking was the relationship between rightward asymmetry of the planum temporale and atypical language (R = 0.70, P < 0.0001); patients with a longer planum temporale in the right (unaffected) hemisphere were more likely to have atypical language dominance. Voxel-based regression analysis confirmed that increased grey matter density in the right temporo-parietal junction was correlated with right hemisphere lateralization of language. The length of the planum temporale in the right hemisphere was the main predictor of language lateralization in the epilepsy group, accounting for 48% of variance, with handedness accounting for only a further 5%. There was no correlation between language lateralization and planum temporale asymmetry in the control group. We conclude that asymmetry of the planum temporale may be unrelated to language lateralization in healthy individuals, but the size of the right, contra-lesional planum temporale region may reflect a ‘reserve capacity’ for interhemispheric language reorganization in the presence of a seizure focus and lesions within left perisylvian regions.
Collapse
Affiliation(s)
- Gerald Pahs
- 1 Developmental Cognitive Neuroscience Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Staniloiu A, Borsutzky S, Woermann FG, Markowitsch HJ. Social cognition in a case of amnesia with neurodevelopmental mechanisms. Front Psychol 2013; 4:342. [PMID: 23805111 PMCID: PMC3690456 DOI: 10.3389/fpsyg.2013.00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Episodic-autobiographical memory (EAM) is considered to emerge gradually in concert with the development of other cognitive abilities (such as executive functions, personal semantic knowledge, emotional knowledge, theory of mind (ToM) functions, language, and working memory). On the brain level its emergence is accompanied by structural and functional reorganization of different components of the so-called EAM network. This network includes the hippocampal formation, which is viewed as being vital for the acquisition of memories of personal events for long-term storage. Developmental studies have emphasized socio-cultural-linguistic mechanisms that may be unique to the development of EAM. Furthermore it was hypothesized that one of the main functions of EAM is the social one. In the research field, the link between EAM and social cognition remains however debated. Herein we aim to bring new insights into the relation between EAM and social information processing (including social cognition) by describing a young adult patient with amnesia with neurodevelopmental mechanisms due to perinatal complications accompanied by hypoxia. The patient was investigated medically, psychiatrically, and with neuropsychological and neuroimaging methods. Structural high resolution magnetic resonance imaging revealed significant bilateral hippocampal atrophy as well as indices for degeneration in the amygdalae, basal ganglia, and thalamus, when a less conservative threshold was applied. In addition to extensive memory investigations and testing other (non-social) cognitive functions, we employed a broad range of tests that assessed social information processing (social perception, social cognition, social regulation). Our results point to both preserved (empathy, core ToM functions, visual affect selection, and discrimination, affective prosody discrimination) and impaired domains of social information processing (incongruent affective prosody processing, complex social judgments). They support proposals for a role of the hippocampal formation in processing more complex social information that likely requires multimodal relational handling.
Collapse
Affiliation(s)
| | - Sabine Borsutzky
- Physiological Psychology, University of BielefeldBielefeld, Germany
| | | | - Hans J. Markowitsch
- Physiological Psychology, University of BielefeldBielefeld, Germany
- Institute for Advanced ScienceDelmenhorst, Germany
- Center of Excellence Cognitive Interaction Technology, University of BielefeldBielefeld, Germany
| |
Collapse
|
17
|
Altered hemispheric symmetry found in left-sided mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE/HS) but not found in right-sided MTLE/HS. Magn Reson Imaging 2013; 31:53-9. [DOI: 10.1016/j.mri.2012.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/27/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
|
18
|
Bartoli A, Vulliemoz S, Haller S, Schaller K, Seeck M. Imaging techniques for presurgical evaluation of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|