1
|
Yılmaz HÖ, Meriç ÇS, Yabancı Ayhan N. Comparing the effects of dietary sugars on cognitive performance and reaction time: A randomized, placebo- controlled and double-blind experimental trial. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-9. [PMID: 37453741 DOI: 10.1080/23279095.2023.2232911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The aim of the study was to compare the effects of acute intake dietary sugars on cognitive performance and reaction time. This study was, randomized, placebo-controlled, double-blind experimental design, conducted with 75 healthy adults. At the beginning of the study, the participants (36 male, 39 female; 21.6 ± 1.3 years of age; body mass index: 21.59 ± 1.94 kg/m2) were randomly divided into equal five groups (n:15) (glucose (10 g), fructose (10 g), sucrose (10 g), saccharin (0.24 g), placebo), and received dietary sugars dissolved in 200 mL of water. Cognitive performance was determined with Cancelation Test, and the Simple Response Time and Ruler Drop Tests were used in order to response and reaction time of participants, respectively. General score of cognitive performance (0.93 ± 0.1), reaction (295 ± 20 ms), and response (204 ms) were highest in glucose and lowest in placebo (0.63 ± 0.1; 368 ± 22 ms; 251 ms, respectively) (p < .001). Saccharin groups had a higher reaction (312 ± 22 ms) and response (216 ms) time score compared to consumed fructose (316 ± 39; 227 ms), sucrose (354 ± 26; 246 ms), and placebo (368 ± 22; 251 ms) groups, respectively (p < .001). These findings show that differences in the absorption pattern and sweetness levels of sugar types may have different effects on cognitive performance and reaction time.
Collapse
Affiliation(s)
- Hacı Ömer Yılmaz
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Çağdaş Salih Meriç
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Türkiye
| | | |
Collapse
|
2
|
A Simple Taste Test for Clinical Assessment of Taste and Oral Somatosensory Function-The "Seven-iTT". LIFE (BASEL, SWITZERLAND) 2022; 13:life13010059. [PMID: 36676008 PMCID: PMC9865728 DOI: 10.3390/life13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Taste dysfunctions may occur, for example, after viral infection, surgery, medications, or with age. In clinical practice, it is important to assess patients' taste function with rapidity and reliability. This study aimed to develop a test that assesses human gustatory sensitivity together with somatosensory functions of astringency and spiciness. A total of 154 healthy subjects and 51 patients with chemosensory dysfunction rated their gustatory sensitivity. They underwent a whole-mouth identification test of 12 filter-paper strips impregnated with low and high concentrations of sweet, sour, salty, bitter (sucrose, citric acid, NaCl, quinine), astringency (tannin), and spiciness (capsaicin). The percentage of correct identifications for high-concentrated sweet and sour, and for low-concentrated salty, bitter and spicy was lower in patients as compared with healthy participants. Interestingly, a lower identification in patients for both astringent concentrations was found. Based on the results, we proposed the Seven-iTT to assess chemo/somatosensory function, with a cut-off of 6 out of 7. The test score discriminated patients from healthy controls and showed gender differences among healthy controls. This quantitative test seems to be suitable for routine clinical assessment of gustatory and trigeminal function. It also provides new evidence on the mutual interaction between the two sensory systems.
Collapse
|
3
|
Hsieh JW, Daskalou D, Macario S, Voruz F, Landis BN. How to Manage Taste Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:385-392. [PMID: 36158900 PMCID: PMC9490708 DOI: 10.1007/s40136-022-00428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
Purpose of the Review This study aims to summarize the current state of the art of how taste disorders are clinically best managed. Recent Findings Taste disorders are distressing for the concerned patients since eating and drinking become bothersome or impossible. Apart from nutritional problems, quality of life is impaired. Still, diagnosis and treatment of taste disorders are elusive, and general knowledge about taste and its affection is little within the population and the medical community. This review stresses the importance of accurate workup and diagnosis of taste disorders in order to offer an effective treatment. Yet unclear aspects of taste disorders are discussed, and interesting findings regarding the treatment of taste disorders are reviewed. A special focus is given to current pharmacological options on how to treat taste disorders. Summary Despite impressive insights into the gustatory function and molecular logic of taste receptor cells, there is currently poor clinical knowledge on the pathophysiology of taste disorders in humans. Diagnosing, measuring, and treating gustatory disorders remain restricted to a handful of specialized smell and taste centers worldwide. Despite interesting work on potential drugs treating taste disorders, many of the reported medications lack controlled and randomized trials confirming their efficacy in taste dysfunction. Future efforts need to be focused on the treatment of taste disorders.
Collapse
Affiliation(s)
- Julien Wen Hsieh
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Dimitrios Daskalou
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Sonia Macario
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Francois Voruz
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Basile Nicolas Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Wu B, Zhou X, Blank I, Liu Y. Investigating the influence of monosodium L-glutamate on brain responses via scalp-electroencephalogram (scalp-EEG). FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Ponticorvo S, Prinster A, Cantone E, Di Salle F, Esposito F, Canna A. Sex differences in the taste-evoked functional connectivity network. Chem Senses 2022; 47:6617558. [PMID: 35749468 DOI: 10.1093/chemse/bjac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central gustatory pathway encompasses multiple subcortical and cortical regions whose neural functional connectivity can be modulated by taste stimulation. While gustatory perception has been previously linked to sex, whether and how the gustatory network differently responds to basic tastes between men and women is unclear. Here, we defined the regions of the central gustatory network by a meta-analysis of 35 fMRI taste activation studies and then analyzed the taste-evoked functional connectivity between these regions in 44 subjects (19 women) in a separate 3 Tesla activation study where sweet and bitter solutions, at five concentrations each, were administered during scanning. From the meta-analysis, a network model was set up, including bilateral anterior, middle and inferior insula, thalamus, precentral gyrus, left amygdala, caudate and dorsolateral prefrontal cortex. Higher functional connectivity than in women was observed in men between the right middle insula and bilateral thalami for bitter taste. Men exhibited higher connectivity than women at low bitter concentrations and middle-high sweet concentrations between bilateral thalamus and insula. A graph-based analysis expressed similar results in terms of nodal characteristics of strength and centrality. Our findings add new insights into the mechanisms of taste processing by highlighting sex differences in the functional connectivity of the gustatory network as modulated by the perception of sweet and bitter tastes. These results shed more light on the neural origin of sex-related differences in gustatory perception and may guide future research on the pathophysiology of taste perception in humans.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Elena Cantone
- Section of ENT, Department of Neuroscience, Federico II University, Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Scuola Medica Salernitana, Salerno, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonietta Canna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
8
|
Paff M, Boutet A, Germann J, Elias GJB, Chow CT, Loh A, Kucharczyk W, Fasano A, Schwartz ML, Lozano AM. Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurol Clin Pract 2021; 11:e497-e503. [PMID: 34484947 DOI: 10.1212/cpj.0000000000001013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/24/2020] [Indexed: 11/15/2022]
Abstract
Objective Focused ultrasound thalamotomy is an effective treatment for tremor; however, side effects may occur. The purpose of the present study was to investigate the spatial relationship between thalamotomies and specific sensory side effects and their functional connectivity with somatosensory cortex and relationship to the medial lemniscus (ML). Methods Sensory adverse effects were categorized into 4 groups based on the location of the disturbance: face/mouth/tongue numbness/paresthesia, hand-only paresthesia, hemibody/limb paresthesia, and dysgeusia. Then, areas of significant risk (ASRs) for each category were defined using voxel-wise mass univariate analysis and overlaid on corresponding odds ratio maps. The ASR associated with the maximum risk was used as a region of interest in a normative functional connectome to determine side effect-specific functional connectivity. Finally, each ASR was overlaid on the ML derived from normative template. Results Of 103 patients, 17 developed sensory side effects after thalamotomy persisting 3 months after the procedures. Lesions producing sensory side effects extended posteriorly into the principle sensory nucleus of the thalamus or below the thalamus in the ML. The topography of sensory adverse effects followed the known somatotopy of the ML and the sensory nucleus. Functional connectivity patterns between each sensory-specific thalamic seed and the primary somatosensory areas supported the role of the middle insula in processing of gustatory information and in multisensory integration. Conclusions Distinct regions in the sensory thalamus and its afferent connections rise to specific sensory disturbances. These findings demonstrate the relationship between the sensory thalamus, ML, and bilateral sensory cortical areas.
Collapse
Affiliation(s)
- Michelle Paff
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Alexandre Boutet
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Jürgen Germann
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Gavin J B Elias
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Clement T Chow
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Aaron Loh
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Michael L Schwartz
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- University Health Network (MP, AB, JG, GJBE, CTC, AL, WK, AML), Toronto; Joint Department of Medical Imaging (AB, WK), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (AF), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, and Division of Neurology (AF), University of Toronto; Krembil Brain Institute (AF); Division of Neurosurgery (MLS), Sunnybrook Health Sciences Center, University of Toronto; and Division of Neurosurgery (AML), Department of Surgery, Toronto Western Hospital and University of Toronto, Ontario, Canada
| |
Collapse
|
9
|
Suen JLK, Yeung AWK, Wu EX, Leung WK, Tanabe HC, Goto TK. Effective Connectivity in the Human Brain for Sour Taste, Retronasal Smell, and Combined Flavour. Foods 2021; 10:foods10092034. [PMID: 34574144 PMCID: PMC8466623 DOI: 10.3390/foods10092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
The anterior insula and rolandic operculum are key regions for flavour perception in the human brain; however, it is unclear how taste and congruent retronasal smell are perceived as flavours. The multisensory integration required for sour flavour perception has rarely been studied; therefore, we investigated the brain responses to taste and smell in the sour flavour-processing network in 35 young healthy adults. We aimed to characterise the brain response to three stimulations applied in the oral cavity—sour taste, retronasal smell of mango, and combined flavour of both—using functional magnetic resonance imaging. Effective connectivity of the flavour-processing network and modulatory effect from taste and smell were analysed. Flavour stimulation activated middle insula and olfactory tubercle (primary taste and olfactory cortices, respectively); anterior insula and rolandic operculum, which are associated with multisensory integration; and ventrolateral prefrontal cortex, a secondary cortex for flavour perception. Dynamic causal modelling demonstrated that neural taste and smell signals were integrated at anterior insula and rolandic operculum. These findings elucidated how neural signals triggered by sour taste and smell presented in liquid form interact in the brain, which may underpin the neurobiology of food appreciation. Our study thus demonstrated the integration and synergy of taste and smell.
Collapse
Affiliation(s)
- Justin Long Kiu Suen
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Andy Wai Kan Yeung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Tazuko K. Goto
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Correspondence:
| |
Collapse
|
10
|
Mag Uidhir F, Sivagnanaratnam A. Bilateral loss of taste from a unilateral thalamic infarct. Pract Neurol 2021; 21:518-520. [PMID: 34433684 DOI: 10.1136/practneurol-2021-003054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/04/2022]
Abstract
Loss of sense of taste (hypogeusia) involving a part of the tongue can follow acute stroke. We describe a woman with a small right thalamic acute infarct causing bilateral (mainly left-sided) hypogeusia. Her problem remains sufficiently severe to cause distress and nutritional deficit. The anatomical distribution of her problem-cheiro-oral syndrome with concurrent hypogeusia-suggested involvement of adjacent relevant thalamic fibres. We address key considerations in examining taste in research and in practice and discuss issues to address in people with hypogeusia, including swallow deficits, psychological elements of the poststroke condition and nutrition. Dietetic management should include optimising taste stimuli and nutritional support. Introducing more detailed taste assessments into standard practice would likely improve stroke unit care.
Collapse
|
11
|
Osimo SA, Piretti L, Ionta S, Rumiati RI, Aiello M. The neural substrates of subliminal attentional bias and reduced inhibition in individuals with a higher BMI: A VBM and resting state connectivity study. Neuroimage 2021; 229:117725. [PMID: 33484850 DOI: 10.1016/j.neuroimage.2021.117725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence is scarce as to whether the attentional bias is present even before stimuli are consciously recognized. Moreover, it is not known whether or not differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (age M = 23.2, SD = 2.9, 13 males) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of stimulus (food or nonfood, p = 0.001, εp2 = 0.17). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex [t = 4.55, p = 0.003], the right temporal areas [t = 4.18, p = 0.002], the operculum and insula [t = 4.14, p = 0.005] only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task [p = 0.02, εp2 = 0.02], which is associated with lower GM density in reward brain regions [orbital gyrus, t = 4.97, p = 0.005, and parietal operculum, t = 5.14, p < 0.001] and lower resting-state connectivity of the orbital gyrus to visual areas [fusiform gyrus, t = -4.64, p < 0.001 and bilateral occipital cortex, t = -4.51, p < 0.001 and t = -4.34, p < 0.001]. Therefore, a higher BMI is predictive of non food-specific slower visual subliminal processing, which is linked to morphological alterations of key areas involved in awareness, high-level sensory integration, and reward. At a late, conscious stage of visual processing a higher BMI is associated with a specific bias towards food and with lower GM density in reward brain regions. Finally, independently of BMI, volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances.
Collapse
Affiliation(s)
- S A Osimo
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy.
| | - L Piretti
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy; Department of Psychology and Cognitive Sciences, University of Trento, corso Bettini 84, 38068 Rovereto, Italy; Fondazione ONLUS Marica De Vincenzi, via Alessandro Manzoni, 11, 38122 Rovereto, Italy
| | - S Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Av. de France 15, 1002 Lausanne, Switzerland
| | - R I Rumiati
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - M Aiello
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
12
|
Bales MB, Spector AC. Chemospecific deficits in taste sensitivity following bilateral or right hemispheric gustatory cortex lesions in rats. J Comp Neurol 2020; 528:2729-2747. [PMID: 32671857 PMCID: PMC8008699 DOI: 10.1002/cne.24928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Our prior studies showed bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts (NaCl and KCl) and quinine ("bitter") but not to sucrose ("sweet"). The range of qualitative tastants tested here has been extended in a theoretically relevant way to include the maltodextrin, Maltrin, a preferred stimulus by rats thought to represent a unique taste quality, and the "sour" stimulus citric acid; NaCl was also included as a positive control. Male rats (Sprague-Dawley) with histologically confirmed neurotoxin-induced bilateral (BGCX, n = 13), or right (RGCX, n = 13) or left (LGCX, n = 9) unilateral GC lesions and sham-operated controls (SHAM, n = 16) were trained to discriminate a tastant from water in an operant two-response detection task. A mapping system was used to determine placement, size, and symmetry (when bilateral) of the lesion. BGCX significantly impaired taste sensitivity to NaCl, as expected, but not to Maltrin or citric acid, emulating our prior results with sucrose. However, in the case of citric acid, there was some disruption in performance at higher concentrations. Interestingly, RGCX, but not LGCX, also significantly impaired taste sensitivity, but only to NaCl, suggesting some degree of lateralized function. Taken together with our prior findings, extensive bilateral lesions in GC do not disrupt basic taste signal detection to all taste stimuli uniformly. Moreover, GC lesions do not preclude the ability of rats to learn and perform the task, clearly demonstrating that, in its absence, other brain regions are able to maintain sensory-discriminative taste processing, albeit with attenuated sensitivity for select stimuli.
Collapse
Affiliation(s)
- Michelle B Bales
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
13
|
Borghei A, Cothran T, Brahimaj B, Sani S. Role of massa intermedia in human neurocognitive processing. Brain Struct Funct 2020; 225:985-993. [DOI: 10.1007/s00429-020-02050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/13/2020] [Indexed: 01/17/2023]
|
14
|
A new gustometer: Template for the construction of a portable and modular stimulator for taste and lingual touch. Behav Res Methods 2020; 51:2733-2747. [PMID: 30511156 DOI: 10.3758/s13428-018-1145-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Taste research has been hampered by technical difficulties, mostly because liquid taste stimuli are difficult to control in terms of timing and application area. Exact stimulus control requires a gustometer, but the existing devices are either not well-documented or rather inflexible. We designed a gustometer based on a computer-controlled, modular pump system, which can be extended via additional hardware modules-for example, for heating of the stimuli or sending and receiving triggers. All components are available for purchase "off the shelf." The pumps deliver liquids through plastic tubing and can be connected to commercially available or custom-made mouthpieces. We determined the temporal precision of the device. Onset delays showed minuscule variation within pumps (SD < 3 ms) and small differences between pumps (< 4.5 ms). The rise time was less than 2 ms (SD < 2 ms), and the dosage volume bias was only 2%. To test whether hemitongues could be stimulated independently, we conducted a behavioral experiment. A total of 18 participants received tasteless stimuli to the left, right, or both sides of the tongue. The side of stimulation was correctly identified on 91% of trials, indicating that the setup is suitable for lateralized stimulation. Electroencephalographic responses to water and salty stimuli were recorded from two participants; the stimulation successfully evoked event-related responses, demonstrating the suitability of the device for use in electrophysiological investigations. We provide a Python-based open-source software package and a Web interface to easily operate the system. We thereby hope to facilitate access to state-of-the-art taste research methods and to increase reproducibility across laboratories.
Collapse
|
15
|
Kure Liu C, Joseph PV, Feldman DE, Kroll DS, Burns JA, Manza P, Volkow ND, Wang GJ. Brain Imaging of Taste Perception in Obesity: a Review. Curr Nutr Rep 2019; 8:108-119. [PMID: 30945140 PMCID: PMC6486899 DOI: 10.1007/s13668-019-0269-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We summarize neuroimaging findings related to processing of taste (fat, salt, umami, bitter, and sour) in the brain and how they influence hedonic responses and eating behaviors and their role in obesity. RECENT FINDINGS Neuroimaging studies in obese individuals have revealed alterations in reward/motivation, executive control/self-regulation, and limbic/affective circuits that are implicated in food and drug addiction. Psychophysical studies show that sensory properties of food ingredients may be associated with anthropometric and neurocognitive outcomes in obesity. However, few studies have examined the neural correlates of taste and processing of calories and nutrient content in obesity. The literature of neural correlated of bitter, sour, and salty tastes remains sparse in obesity. Most published studies have focused on sweet, followed by fat and umami taste. Studies on calorie processing and its conditioning by preceding taste sensations have started to delineate a dynamic pattern of brain activation associated with appetition. Our expanded understanding of taste processing in the brain from neuroimaging studies is poised to reveal novel prevention and treatment targets to help address overeating and obesity.
Collapse
Affiliation(s)
- Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, National Institutes of Health, 31 Center Drive, Rm 5B03, Bethesda, MD 20892-2178 USA
| | - Dana E. Feldman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Danielle S. Kroll
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Jamie A. Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581 USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| |
Collapse
|
16
|
Cecchini MP, Knaapila A, Hoffmann E, Boschi F, Hummel T, Iannilli E. A cross-cultural survey of umami familiarity in European countries. Food Qual Prefer 2019. [DOI: 10.1016/j.foodqual.2019.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ohla K, Yoshida R, Roper SD, Di Lorenzo PM, Victor JD, Boughter JD, Fletcher M, Katz DB, Chaudhari N. Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chem Senses 2019; 44:237-247. [PMID: 30788507 PMCID: PMC6462759 DOI: 10.1093/chemse/bjz013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a "best stimulus" for a given neuron, leading to the suggestion that taste exhibits "labeled line coding." In the extreme, a strict "labeled line" requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, "across-fiber," "combinatorial," or "ensemble" coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, "temporal coding" models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting "labeled lines." Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.
Collapse
Affiliation(s)
- Kathrin Ohla
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Ryusuke Yoshida
- Section of Oral Neuroscience and OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, Japan
| | - Stephen D Roper
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Max Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Donald B Katz
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions. Brain Imaging Behav 2019; 12:425-436. [PMID: 28321607 PMCID: PMC5880857 DOI: 10.1007/s11682-017-9710-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.
Collapse
|
19
|
Wilton M, Stancak A, Giesbrecht T, Thomas A, Kirkham T. Intensity expectation modifies gustatory evoked potentials to sweet taste: Evidence of bidirectional assimilation in early perceptual processing. Psychophysiology 2018; 56:e13299. [PMID: 30444000 PMCID: PMC6392116 DOI: 10.1111/psyp.13299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022]
Abstract
Expectations can affect subjective sensory and hedonic ratings of tastes, but it is unclear whether they also shape sensory experience at a perceptual level. The neural correlates of the taste‐expectancy relationship were explored through EEG analysis. Using a trial‐by‐trial cueing paradigm, lingual delivery of 0.05 M or 0.3 M sucrose solutions was preceded by congruent or incongruent visual cues designed to promote anticipation of either a low‐sweet or high‐sweet solution. When participants were cued to expect low‐sweet, but received high‐sweet (incongruent cue), intensity ratings for high‐sweet decreased. Likewise, expectation of high‐sweet increased intensity ratings of low‐sweet solutions. Taste‐dependent, right central‐parietal gustatory ERPs were detected, with greater P1 (associated with greater right insula activation) and P2 peak amplitudes for high‐sweet tastes. Valid cue‐taste pairings led to specific reduced right‐lateralized N400 responses (associated with an attenuation in right insula activation) compared with invalid cue‐taste pairings. Finally, P1 amplitudes following invalidly cued low‐sweet tastes closely matched those generated by expected high‐sweet tastes, and P1 amplitudes for invalidly cued high‐sweet tastes resembled those generated by low‐sweet tastes. We conclude that, as well as modifying subjective ratings toward the anticipated intensity level, expectations affect cortical activity in a top‐down manner to induce bidirectional assimilation in the early perceptual processing of sweet taste and modulate N400 ERP components not previously associated with gustatory stimulation.
Collapse
Affiliation(s)
- Moon Wilton
- Department of Psychological Sciences, Eleanor Rathbone Building, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Andrej Stancak
- Department of Psychological Sciences, Eleanor Rathbone Building, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Timo Giesbrecht
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, CH63 3JW, UK
| | - Anna Thomas
- Unilever Research and Development, Port Sunlight, Quarry Road East, Bebington, CH63 3JW, UK
| | - Tim Kirkham
- Department of Psychological Sciences, Eleanor Rathbone Building, University of Liverpool, Liverpool, L69 7ZA, UK
| |
Collapse
|
20
|
Iannilli E, Gudziol V. Gustatory pathway in humans: A review of models of taste perception and their potential lateralization. J Neurosci Res 2018; 97:230-240. [DOI: 10.1002/jnr.24318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Emilia Iannilli
- Smell & Taste Clinic, Department of Otorhinolaryngology; TU Dresden; Dresden Germany
- National Center for Adaptive Neurotechnologies, Wadsworth Center; NYS Department of Health; Albany New York
| | - Volker Gudziol
- Smell & Taste Clinic, Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| |
Collapse
|
21
|
Fat perception in the human frontal operculum, insular and somatosensory cortex. Sci Rep 2018; 8:11825. [PMID: 30087417 PMCID: PMC6081453 DOI: 10.1038/s41598-018-30366-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Here, we combined magnetic resonance imaging with lesion-symptom mapping in patients with chronic brain lesions to investigate brain representations of sugar and fat perception. Patients and healthy controls rated chocolate milkshakes that only differed in sugar or fat content. As compared to controls, patients showed an impaired fat, but not sugar perception. Impairments in fat perception overlapped with the anterior insula and frontal operculum, together assumed to underpin gustatory processing. We also identified the mid-dorsal insula as well as the primary and secondary somatosensory cortex - regions previously assumed to integrate oral-sensory inputs. These findings suggest that fat perception involves a specific set of brain regions that were previously reported to underpin gustatory processing and oral-sensory integration processes.
Collapse
|
22
|
Han P, Mohebbi M, Unrath M, Hummel C, Hummel T. Different Neural Processing of Umami and Salty Taste Determined by Umami Identification Ability Independent of Repeated Umami Exposure. Neuroscience 2018; 383:74-83. [DOI: 10.1016/j.neuroscience.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
|
23
|
Prinster A, Cantone E, Verlezza V, Magliulo M, Sarnelli G, Iengo M, Cuomo R, Di Salle F, Esposito F. Cortical representation of different taste modalities on the gustatory cortex: A pilot study. PLoS One 2017; 12:e0190164. [PMID: 29281722 PMCID: PMC5744997 DOI: 10.1371/journal.pone.0190164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background Right insular cortex is involved in taste discrimination, but its functional organization is still poorly known. In general, sensory cortices represent the spatial prevalence of relevant features for each sensory modality (visual, auditory, somatosensory) in an ordered way across the cortical space. Following this analogy, we hypothesized that primary taste cortex is organized in similar ordered way in response to six tastes with known receptorial mechanisms (sweet, bitter, sour, salt, umami, CO2). Design Ten normal subjects were enrolled in a pilot study. We used functional magnetic resonance imaging (fMRI), a high resolution cortical registration method, and specialized procedures of feature prevalence localization, to map fMRI responses within the right insular cortex, to water solutions of quinine hydrochloride (bitter), Acesulfamate K (sweet), sodium chloride (salt), mono potassium glutamate + inosine 5' mono phosphate (Umami), citric acid (sour) and carbonated water (CO2). During an fMRI scan delivery of the solutions was applied in pseudo-random order interleaved with cleaning water. Results Two subjects were discarded due to excessive head movements. In the remaining subjects, statistically significant activations were detected in the fMRI responses to all tastes in the right insular cortex (p<0.05, family-wise corrected for multiple comparisons). Cortical representation of taste prevalence highlighted two spatially segregated clusters, processing two and three tastes coupled together (sweet-bitter and salt-umami-sour), with CO2 in between. Conclusions Cortical representation of taste prevalence within the right primary taste cortex appears to follow the ecological purpose of enhancing the discrimination between safe nutrients and harmful substances.
Collapse
Affiliation(s)
- Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
- * E-mail:
| | - Elena Cantone
- Section of ENT, Department of Neuroscience, "Federico II" University, Naples, Italy
| | - Viviana Verlezza
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, “Federico II” University, Naples, Italy
| | - Mario Magliulo
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Giovanni Sarnelli
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, “Federico II” University, Naples, Italy
| | - Maurizio Iengo
- Section of ENT, Department of Neuroscience, "Federico II" University, Naples, Italy
| | - Rosario Cuomo
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, “Federico II” University, Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (Salerno), Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (Salerno), Italy
| |
Collapse
|
24
|
Mazzola L, Royet JP, Catenoix H, Montavont A, Isnard J, Mauguière F. Gustatory and olfactory responses to stimulation of the human insula. Ann Neurol 2017; 82:360-370. [DOI: 10.1002/ana.25010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Laure Mazzola
- Neurology Department; University Hospital; Saint-Étienne
- Central Integration of Pain Team, Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028; National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Jean Monnet University; Saint-Étienne
| | - Jean-Pierre Royet
- Olfaction: From Coding to Memory Team, Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028, National Center for Scientific Research Mixed Unit of Research 5292; University of Lyon; Lyon
- Claude Bernard University Lyon 1; University of Lyon; Lyon
| | - Hélène Catenoix
- Functional Neurology and Epilepsy Department, Neurological Hospital; Civil Hospices of Lyon; Lyon France
| | - Alexandra Montavont
- Functional Neurology and Epilepsy Department, Neurological Hospital; Civil Hospices of Lyon; Lyon France
| | - Jean Isnard
- Central Integration of Pain Team, Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028; National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Functional Neurology and Epilepsy Department, Neurological Hospital; Civil Hospices of Lyon; Lyon France
| | - François Mauguière
- Central Integration of Pain Team, Lyon Neuroscience Research Center, National Institute of Health and Medical Research Unit 1028; National Center for Scientific Research Mixed Unit of Research 5292; Lyon
- Claude Bernard University Lyon 1; University of Lyon; Lyon
- Functional Neurology and Epilepsy Department, Neurological Hospital; Civil Hospices of Lyon; Lyon France
| |
Collapse
|
25
|
Iannilli E, Broy F, Kunz S, Hummel T. Age-related changes of gustatory function depend on alteration of neuronal circuits. J Neurosci Res 2017; 95:1927-1936. [PMID: 28493338 DOI: 10.1002/jnr.24071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/14/2023]
Abstract
Studies on age-related gustatory function report a reduction of the taste function, but the degeneration of the peripheral papillae alone cannot explain this reduction. In the present study, we apply psychophysics and gustatory event-related potentials (gERPs) to explore age-related differences in the processing of gustatory information as indicated by the cerebral sources of the gERP. A total of 96 subjects (47 female), subdivided into four groups with increasing age, participated in the study. After olfactory and gustatory screening for normal function, the subjects were invited to two sessions of gERP acquisition. They received a randomized combination of five isointense basic tastants that were presented at a medium level. At the same time, we recorded scalp electroencephalography (EEG) from 128 scalp locations. Psychophysical testing for smell and taste function exhibited a significant decrease with age. Topographical analyses of the EEG delineated four basic topographical maps that explained the processing of taste in the pre-decline age range, with sources inside the relevant gustatory areas. The age-related change of gustatory processing was associated with the absence of a specific map with sources inside the cerebellum and posterior insula, and the temporal broadening of a map with sources in the bilateral inferior frontal gyrus. These results confirm the hypothesis that the reduction of taste function with aging is not only due to degradation of gustatory peripheral tissues but is also related to different neural signatures in the central nervous system.
Collapse
Affiliation(s)
- Emilia Iannilli
- Interdisciplinary Center "Smell & Taste," Department of Otorhinolaryngology, TU Dresden, Dresden, Germany.,National Center for Adaptive Neurotechnologies, Wadsworth Center, Albany, New York
| | - Franziska Broy
- Interdisciplinary Center "Smell & Taste," Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Severine Kunz
- Interdisciplinary Center "Smell & Taste," Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center "Smell & Taste," Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Kumar S, Grundeis F, Brand C, Hwang HJ, Mehnert J, Pleger B. Differences in Insula and Pre-/Frontal Responses during Reappraisal of Food in Lean and Obese Humans. Front Hum Neurosci 2016; 10:233. [PMID: 27458355 PMCID: PMC4937815 DOI: 10.3389/fnhum.2016.00233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Brain regions involved in the reappraisal of tasty but unhealthy foods are of special interest for the development of new therapeutic interventions for obesity, such as non-invasive brain stimulation or neurofeedback. Here, we visually presented food items (i.e., high/low caloric) to obese and lean individuals during electroencephalogram (EEG) recordings, while they either admitted or regulated their food desire. During admitting the desire for low and high calorie foods, obese as well as lean individuals showed higher activity in the left dorsolateral prefrontal cortex (DLPFC), whereas the right frontal operculum was involved in the reappraisal of the same foods, suggesting interplay between executive control and gustatory regions. Only in lean participants, we found an interaction between calorie content and the regulate/admit conditions in bilateral anterior insular cortices, suggesting that the anterior insula, assumed to primarily host gustatory processes, also underpins higher cognitive processes involved in food choices, such as evaluating the foods' calorie content for its reappraisal.
Collapse
Affiliation(s)
- Saurabh Kumar
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| | - Felicitas Grundeis
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| | - Cristin Brand
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| | - Han-Jeong Hwang
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany; Kumoh National Institute of Technology, Department of Medical IT Convergence EngineeringGumi, South Korea
| | - Jan Mehnert
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany; Department of System Neuroscience, Universal Medical Center Hamburg-EppendorfHamburg, Germany
| | - Burkhard Pleger
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany; Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University BochumBochum, Germany
| |
Collapse
|
27
|
Taste intensity modulates effective connectivity from the insular cortex to the thalamus in humans. Neuroimage 2016; 135:214-22. [PMID: 27132544 DOI: 10.1016/j.neuroimage.2016.04.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022] Open
Abstract
Evaluation of taste intensity is one of the most important perceptual abilities in our daily life. In contrast with extensive research findings regarding the spatial representation of taste in the insula and thalamus, little is known about how the thalamus and insula communicate and reciprocally influence their activities for processing taste intensity. To examine this neurophysiological relationship, we investigated the modulatory effect of intensity of saltiness on connections in the network processing taste signals in the human brain. These "effective connectivity" relationships refer to the neurophysiological influence (including direction and strength of influence) of one brain region on another. Healthy adults (N=34), including 17 males and 17 females (mean age=21.3years, SD=2.4; mean body mass index (BMI)=20.2kg/m(2), SD=2.1) underwent functional magnetic resonance imaging as they tasted three concentrations of sodium chloride solutions. By effective connectivity analysis with dynamic causal modeling, we show that taste intensity enhances top-down signal transmission from the insular cortex to the thalamus. These results are the first to demonstrate the modulatory effect of taste intensity on the taste network in the human brain.
Collapse
|
28
|
Heinze JM, Preissl H, Fritsche A, Frank S. Controversies in fat perception. Physiol Behav 2015; 152:479-93. [PMID: 26340857 DOI: 10.1016/j.physbeh.2015.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
Nutritional fat is one of the most controversial topics in nutritional research, particularly against the background of obesity. Studies investigating fat taste perception have revealed several associations with sensory, genetic, and personal factors (e.g. BMI). However, neuronal activation patterns, which are known to be highly sensitive to different tastes as well as to BMI differences, have not yet been included in the scheme of fat taste perception. We will therefore provide a comprehensive survey of the sensory, genetic, and personal factors associated with fat taste perception and highlight the benefits of applying neuroimaging research. We will also give a critical overview of studies investigating sensory fat perception and the challenges resulting from multifaceted methodological approaches. In conclusion, we will discuss a multifactorial approach to fat perception to gain a better understanding of the underlying mechanisms that cause varying fat sensitivity which could be responsible for overeating. Such knowledge might be beneficial in new treatment strategies for obesity and overweight.
Collapse
Affiliation(s)
- Jaana M Heinze
- Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Hubert Preissl
- Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany.
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Otfried Müller Str. 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany; German Center for Diabetes Research, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Sabine Frank
- Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Mascioli G, Berlucchi G, Pierpaoli C, Salvolini U, Barbaresi P, Fabri M, Polonara G. Functional MRI cortical activations from unilateral tactile-taste stimulations of the tongue. Physiol Behav 2015. [PMID: 26220466 DOI: 10.1016/j.physbeh.2015.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) was used for revealing activations in the human brain by lateralized tactile-gustatory stimulations of the tongue. Salt, a basic taste stimulus, and water, now recognized as an independent taste modality, were applied to either hemitongues with pads similar to the taste strips test for the clinical psychophysical evaluation of taste. With both stimuli, the observed cortical patterns of activations could be attributed to a combined somatosensory and gustatory stimulation of the tongue, with no significant differences between salt and water. Stimulation of each hemitongue evoked a bilateral activation of the anterior insula-frontal operculum, ascribable to the gustatory component of the stimulation, and a bilateral activation of the inferior part of the postcentral gyrus, ascribable to the tactile component of the stimulation. The results are in line with the notion that the representation of the tongue in the cerebral hemispheres in both the touch and the taste modalities is bilateral. Clinical and brain stimulation findings indicate that this bilaterality depends primarily on a partial crossing of the afferent pathways, perhaps with a predominance of the crossed pathway in the touch modality and the uncrossed pathway in the taste modality. Previous evidence suggests that the corpus callosum is not indispensible for this bilateral representation, but can contribute to it by interhemispheric transfer of information in both modalities.
Collapse
Affiliation(s)
- Giulia Mascioli
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Berlucchi
- Dipartimento di Scienze Neurologiche e del Movimento, Università degli Studi di Verona, Italy; National Institute of Neuroscience, Italy
| | - Chiara Pierpaoli
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Ugo Salvolini
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Barbaresi
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Mara Fabri
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy.
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
30
|
Cerebral processing of umami: A pilot study on the effects of familiarity. Brain Res 2015; 1614:67-74. [DOI: 10.1016/j.brainres.2015.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 03/11/2015] [Accepted: 04/11/2015] [Indexed: 01/26/2023]
|
31
|
Rolls ET, Kellerhals MB, Nichols TE. Age differences in the brain mechanisms of good taste. Neuroimage 2015; 113:298-309. [PMID: 25842291 PMCID: PMC6529355 DOI: 10.1016/j.neuroimage.2015.03.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | | | - Thomas E Nichols
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
32
|
Iannilli E, Bult JHF, Roudnitzky N, Gerber J, de Wijk RA, Hummel T. Oral texture influences the neural processing of ortho- and retronasal odors in humans. Brain Res 2014; 1587:77-87. [PMID: 25175838 DOI: 10.1016/j.brainres.2014.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Eating implies mutual interactions between different senses. In the present work we aimed at studying relations between food texture and food odor, using both psychophysical and imaging techniques. Eighteen right-handed healthy human subjects participated to both behavioral and fMRI sessions. Fresh, sweetened milk and a more thickened version were delivered orally; in addition, a buttery-cream aroma was presented ortho- or retronasally. Stimuli were applied using a gustometer and or an air-dilution olfactometer, both computer-controlled. In each session subjects rated separately odor-, taste- and thickness intensities of the stimuli. The behavioral data show that odors, presented through either retro- or orthonasal path, induce a significant flavor enhancement with respect to the no-odor condition. Brain functional data indicated a significant enhancement of the activation of olfactory eloquent areas in favor of ortho-nasal odor presentation while activations of mechanosensory areas were favored by the retro-nasal odor route. As effect of oral stimuli we found a significant correlation between the texture intensity rating vs. the BOLD signal in the supplementary motor area, known to drive subconsciously primed movement, putatively associated in this case with the tongue movement required with the handling of the stimulus. Moreover, we found inhibition of the signal in different sensory specific areas as an effect of the mutual interaction between stimulus qualities. In conclusion, ortho- and retronasal odors differentially affect the neural processing of the texture of oral stimuli.
Collapse
Affiliation(s)
- Emilia Iannilli
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany.
| | - Johannes H F Bult
- TI Food & Nutrition, Wageningen, The Netherlands; NIZO Food Research, Ede, The Netherlands
| | - Natacha Roudnitzky
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Rene A de Wijk
- TI Food & Nutrition, Wageningen, The Netherlands; Department of Food & Biobased Research, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
33
|
Iannilli E, Noennig N, Hummel T, Schoenfeld A. Spatio-temporal correlates of taste processing in the human primary gustatory cortex. Neuroscience 2014; 273:92-9. [DOI: 10.1016/j.neuroscience.2014.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/23/2014] [Accepted: 05/11/2014] [Indexed: 12/18/2022]
|
34
|
Frank S, Linder K, Fritsche L, Hege MA, Kullmann S, Krzeminski A, Fritsche A, Schieberle P, Somoza V, Hinrichs J, Veit R, Preissl H. Olive oil aroma extract modulates cerebral blood flow in gustatory brain areas in humans. Am J Clin Nutr 2013; 98:1360-6. [PMID: 24025630 DOI: 10.3945/ajcn.113.062679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Low- and high-fat meals affect homeostatic and gustatory brain areas differentially. In a previous study, we showed that a high-fat meal decreased cerebral blood flow (CBF) in homeostatic brain areas (hypothalamus), whereas a low-fat meal increased CBF in gustatory regions (anterior insula). OBJECTIVE The aim of this study was to investigate the long-lasting effect of fat-free flavor-active compounds of olive oil on the brain and whether those aroma components can trigger fat-associated brain responses in homeostatic and gustatory regions. DESIGN Eleven healthy male subjects participated in a functional magnetic resonance imaging study. On 2 measurement days, subjects consumed single-blinded a plain low-fat yogurt or low-fat yogurt mixed with a fat-free aroma extract of olive oil. Resting CBF was measured before and 30 and 120 min after yogurt intake. Hunger was rated before each measurement. Blood samples were collected at 6 time points. RESULTS The extract-containing yogurt elicited higher CBF in the frontal operculum 30 and 120 min after a meal. Furthermore, the activity change in the anterior insula after 30 min correlated positively with the glucose change in the extract condition only. No effects were observed in the hypothalamus. CONCLUSIONS The anterior insula and the frontal operculum are regarded as the primary taste cortex. Modulation of the frontal operculum by the yogurt containing the olive oil extract suggests that it might be possible to simulate fat-triggered sensations in the brain on the gustatory level, possibly by ingredients the body implicitly associates with fat. This trial was registered at clinicaltrials.gov as NCT01716286.
Collapse
Affiliation(s)
- Sabine Frank
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany (HP, MAH, RV, SF, and SK); the fMEG Center, University of Tübingen, Tübingen, Germany (HP, MAH, RV, SF, and SK); the Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany (AF, KL, and LF); the Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany (AF, HP, and SK); the German Center for Diabetes Research, Neuherberg, Germany (AF, HP, and SK); the Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany (AK and JH); the German Research Center for Food Chemistry, Freising, Germany (PS); and the Department of Nutritional and Physiological Chemistry, University of Vienna, Vienna, Austria (VS)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stevenson RJ, Miller LA, McGrillen K. The lateralization of gustatory function and the flow of information from tongue to cortex. Neuropsychologia 2013; 51:1408-16. [DOI: 10.1016/j.neuropsychologia.2013.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
36
|
Schmidt A, Borgwardt S. Abnormal effective connectivity in the psychosis high-risk state. Neuroimage 2013; 81:119-120. [PMID: 23685160 DOI: 10.1016/j.neuroimage.2013.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022] Open
Abstract
In a recently published fMRI study (Dauvermann et al., 2013), nonlinear dynamic causal modeling (DCM) was used to examine condition-specific effective connectivity in subjects at high genetic risk of schizophrenia. The authors concluded that nonlinear DCM could lead to new insights in the development of psychotic symptoms and functional and effective dysconnection at the network level in subjects at high familial risk. In this paper, we place these interesting findings in the context of recent evidence from bilinear DCM studies in subjects at high clinical risk with an at-risk mental state (ARMS) for psychosis by considering their consistency and potential differences with implications for future research in the field of emerging psychosis.
Collapse
Affiliation(s)
- André Schmidt
- Department of Psychiatry (UPK), University of Basel, Petersgraben 4, Basel 4031, Switzerland; Medical Image Analysis Centre, University Hospital Basel, Schanzenstrasse 55, Basel 4031, Switzerland.
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Petersgraben 4, Basel 4031, Switzerland; Medical Image Analysis Centre, University Hospital Basel, Schanzenstrasse 55, Basel 4031, Switzerland; King's College London, Institute of Psychiatry, Department of Psychosis Studies, UK
| |
Collapse
|
37
|
Nakamura Y, Tokumori K, Tanabe HC, Yoshiura T, Kobayashi K, Nakamura Y, Honda H, Yoshiura K, Goto TK. Localization of the primary taste cortex by contrasting passive and attentive conditions. Exp Brain Res 2013; 227:185-97. [PMID: 23604572 DOI: 10.1007/s00221-013-3499-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
Abstract
The primary taste cortex is located in the insula. However, exactly where in the insula the human primary taste cortex is located remains a controversial issue. Human neuroimaging studies have shown prominent variation concerning the location of taste-responsive activation within the insula. A standard protocol for gustatory testing in neuroimaging studies has not been developed, which might underlie such variations. In order to localize the primary taste cortex in an fMRI experiment, we used a taste delivery system to suppress non-taste stimuli and psychological effects. Then, we compared brain response to taste solution during a passive tasting task condition and a taste quality identification task condition to verify whether this cognitive task affected the location of taste-responsive activation within the insula. To examine which part of insula is the primary taste area, we performed dynamic causal modeling (DCM) to verify the neural network of the taste coding-related region and random-effects Bayesian model selection (BMS) at the family level to reveal the optimal input region. Passive tasting resulted in activation of the right middle insula (MI), and the most favorable model selected by DCM analysis showed that taste effect directly influenced the MI. Additionally, BMS results at the family level suggested that the taste inputs entered into the MI. Taken together, our results suggest that the human primary taste cortex is located in the MI.
Collapse
Affiliation(s)
- Yuko Nakamura
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|