1
|
Merisaari H, Karlsson L, Scheinin NM, Shulist SJ, Lewis JD, Karlsson H, Tuulari JJ. Effect of number of diffusion encoding directions in neonatal diffusion tensor imaging using Tract-Based Spatial Statistical analysis. Eur J Neurosci 2023; 58:3827-3837. [PMID: 37641861 DOI: 10.1111/ejn.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to study the developing brain in early childhood, infants and in utero studies. In infants, number of used diffusion encoding directions has traditionally been smaller in earlier studies down to the minimum of 6 orthogonal directions. Whereas the more recent studies often involve more directions, number of used directions remain an issue when acquisition time is optimized without compromising on data quality and in retrospective studies. Variability in the number of used directions may introduce bias and uncertainties to the DTI scalar estimates that affect cross-sectional and longitudinal study of the brain. We analysed DTI images of 133 neonates, each data having 54 directions after quality control, to evaluate the effect of number of diffusion weighting directions from 6 to 54 with interval of 6 to the DTI scalars with Tract-Based Spatial Statistics (TBSS) analysis. The TBSS analysis was applied to DTI scalar maps, and the mean region of interest (ROI) values were extracted using JHU atlas. We found significant bias in ROI mean values when only 6 directions were used (positive in fractional anisotropy [FA] and negative in fractional anisotropy [MD], axial diffusivity [AD] and fractional anisotropy [RD]), while when using 24 directions and above, the difference to scalar values calculated from 54 direction DTI was negligible. In repeated measures voxel-wise analysis, notable differences to 54 direction DTI were observed with 6, 12 and 18 directions. DTI measurements from data with at least 24 directions may be used in comparisons with DTI measurements from data with higher numbers of directions.
Collapse
Affiliation(s)
- Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Radiology, Turku University Central Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu J Shulist
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Central Hospital and University of Turku, Turku, Finland
- Turku Collegium of Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Aho L, Sairanen V, Lönnberg P, Wolford E, Lano A, Metsäranta M. Visual alertness and brain diffusion tensor imaging at term age predict neurocognitive development at preschool age in extremely preterm-born children. Brain Behav 2023; 13:e3048. [PMID: 37165734 PMCID: PMC10338808 DOI: 10.1002/brb3.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Cognitive development is characterized by the structural and functional maturation of the brain. Diffusion-weighted magnetic resonance imaging (dMRI) provides methods of investigating the brain structure and connectivity and their correlations with the neurocognitive outcome. Our aim was to examine the relationship between early visual abilities, brain white matter structures, and the later neurocognitive outcome. METHODS This study included 20 infants who were born before 28 gestational weeks and followed until the age of 6.5 years. At term age, visual alertness was evaluated and dMRI was used to investigate the brain white matter structure using fractional anisotropy (FA) in tract-based spatial statistics analysis. The JHU DTI white matter atlas was used to locate the findings. The neuropsychological assessment was used to assess neurocognitive performance at 6.5 years. RESULTS Optimal visual alertness at term age was significantly associated with better visuospatial processing (p < .05), sensorimotor functioning (p < .05), and social perception (p < .05) at 6.5 years of age. Optimal visual alertness related to higher FA values, and further, the FA values positively correlated with the neurocognitive outcome. The tract-based spatial differences in FA values were detected between children with optimal and nonoptimal visual alertness according to performance at 6.5 years. CONCLUSION We provide neurobiological evidence for the global and tract-based spatial differences in the white matter maturation between extremely preterm children with optimal and nonoptimal visual alertness at term age and a link between white matter maturation, visual alertness and the neurocognitive outcome at 6.5 years proposing that early visual function is a building block for the later neurocognitive development.
Collapse
Affiliation(s)
- Leena Aho
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Viljami Sairanen
- BABA Center, Pediatric Research Center, Department of Clinical NeurophysiologyChildren's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Piia Lönnberg
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Elina Wolford
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
| | - Aulikki Lano
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Marjo Metsäranta
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
3
|
Bouyssi-Kobar M, Brossard-Racine M, Jacobs M, Murnick J, Chang T, Limperopoulos C. Regional microstructural organization of the cerebral cortex is affected by preterm birth. Neuroimage Clin 2018; 18:871-880. [PMID: 29876271 PMCID: PMC5988027 DOI: 10.1016/j.nicl.2018.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/31/2022]
Abstract
Objectives To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.
Collapse
Affiliation(s)
- Marine Bouyssi-Kobar
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA; Institute for Biomedical Sciences, George Washington University, Washington, DC 20037, USA.
| | - Marie Brossard-Racine
- Department of Pediatrics Neurology, McGill University Health Center, Montreal, QC H4A3J1, Canada.
| | - Marni Jacobs
- Division of Biostatistics and Study Methodology, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA.
| | - Jonathan Murnick
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.
| | - Taeun Chang
- Department of Neurology, Children's National Health System, Washington, DC 20010, USA.
| | - Catherine Limperopoulos
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
4
|
The motor and visual networks in preterm infants: An fMRI and DTI study. Brain Res 2016; 1642:603-611. [PMID: 27117868 DOI: 10.1016/j.brainres.2016.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Knowledge regarding the association between functional connectivity and white-matter (WM) maturation of motor and visual networks in preterm infants at term equivalent age (TEA) and their association with behavioral outcome is currently limited. Thirty-two preterm infants born <34 weeks gestational-age without major brain abnormalities were included in this study, underwent resting-state fMRI at TEA. Thirteen infants also underwent diffusion tensor imaging (DTI). Neurobehavioral assessments were performed at one and two years corrected age using the Griffiths Mental Developmental Scales. Functional connectivity between homolog motor and visual regions were detected, which may reflect that a level of organization in these domains is present already at TEA. DTI parameters of WM tracts at TEA demonstrated spatial-temporal variability, with the splenium of the corpus-callosum (CC) found to be the most mature fiber bundle. Correlations between DTI parameters, functional connectivity and behavioral outcome were detected, yet did not show the same pattern of diffusivity changes in the different networks. Visual functional connectivity was negatively correlated with radial-diffusivity (RD) in the optic radiation, while motor functional connectivity was positively correlated with RD in the splenium. In addition, axial-diffusivity (AD) and RD in the genu and midbody of the CC were positively correlated with neurobehavioral outcome at one and 2 years of age. This study highlights the importance of understanding the spatial-temporal changes occurring during this sensitive period of development and the potential effect of extrauterine exposure on the microstructural changes as measured by DTI; their correlation with functional connectivity; and their long term relationship with neuro-behavioral development.
Collapse
|
5
|
Lockwood Estrin G, Kyriakopoulou V, Makropoulos A, Ball G, Kuhendran L, Chew A, Hagberg B, Martinez-Biarge M, Allsop J, Fox M, Counsell SJ, Rutherford MA. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly. NEUROIMAGE-CLINICAL 2016; 11:139-148. [PMID: 26937382 PMCID: PMC4753810 DOI: 10.1016/j.nicl.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
Ventriculomegaly (VM) is the most common central nervous system abnormality diagnosed antenatally, and is associated with developmental delay in childhood. We tested the hypothesis that antenatally diagnosed isolated VM represents a biological marker for altered white matter (WM) and cortical grey matter (GM) development in neonates. 25 controls and 21 neonates with antenatally diagnosed isolated VM had magnetic resonance imaging at 41.97(± 2.94) and 45.34(± 2.14) weeks respectively. T2-weighted scans were segmented for volumetric analyses of the lateral ventricles, WM and cortical GM. Diffusion tensor imaging (DTI) measures were assessed using voxel-wise methods in WM and cortical GM; comparisons were made between cohorts. Ventricular and cortical GM volumes were increased, and WM relative volume was reduced in the VM group. Regional decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were demonstrated in WM of the VM group compared to controls. No differences in cortical DTI metrics were observed. At 2 years, neurodevelopmental delays, especially in language, were observed in 6/12 cases in the VM cohort. WM alterations in isolated VM cases may be consistent with abnormal development of WM tracts involved in language and cognition. Alterations in WM FA and MD may represent neural correlates for later neurodevelopmental deficits. This study compared brain development in neonates with isolated VM to controls. Neonates with isolated VM have enlarged cortical volumes compared to controls. FA was reduced and MD was increased in the WM of the VM cohort. Children with antenatal isolated VM are at increased risk for language delay.
Collapse
Affiliation(s)
- G Lockwood Estrin
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - V Kyriakopoulou
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - A Makropoulos
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - G Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - L Kuhendran
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - A Chew
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - B Hagberg
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom; Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Kungsgatan 12, 411 18 Gothenburg, Sweden
| | - M Martinez-Biarge
- Robert Steiner Unit, Imaging Sciences Department, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - J Allsop
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - M Fox
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - S J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - M A Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
6
|
Zhang Y, Inder TE, Neil JJ, Dierker DL, Alexopoulos D, Anderson PJ, Van Essen DC. Cortical structural abnormalities in very preterm children at 7 years of age. Neuroimage 2015; 109:469-79. [PMID: 25614973 DOI: 10.1016/j.neuroimage.2015.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022] Open
Abstract
We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.
Collapse
Affiliation(s)
- Yuning Zhang
- Division of Biomedical and Biological Science, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna L Dierker
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter J Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Victoria, Australia
| | - David C Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Pieterman K, Plaisier A, Govaert P, Leemans A, Lequin MH, Dudink J. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review. Pediatr Radiol 2015; 45:1372-81. [PMID: 25820411 PMCID: PMC4526590 DOI: 10.1007/s00247-015-3307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. MATERIALS AND METHODS We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. RESULTS We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. CONCLUSION Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center - Sophia, dr. Molewaterplein 60, 3015, GJ, Rotterdam, The Netherlands,
| | - Annemarie Plaisier
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Govaert
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Kersbergen KJ, Leemans A, Groenendaal F, van der Aa NE, Viergever MA, de Vries LS, Benders MJ. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage 2014; 103:214-224. [DOI: 10.1016/j.neuroimage.2014.09.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
|
9
|
Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014; 276:48-71. [PMID: 24378955 DOI: 10.1016/j.neuroscience.2013.12.044] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- J Dubois
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France.
| | - G Dehaene-Lambertz
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
| | - S Kulikova
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| | - C Poupon
- CEA, NeuroSpin Center, UNIRS, Gif-sur-Yvette, France
| | - P S Hüppi
- Geneva University Hospitals, Department of Pediatrics, Division of Development and Growth, Geneva, Switzerland; Harvard Medical School, Children's Hospital, Department of Neurology, Boston, MA, USA
| | - L Hertz-Pannier
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| |
Collapse
|
10
|
Aeby A, De Tiège X, Creuzil M, David P, Balériaux D, Van Overmeire B, Metens T, Van Bogaert P. Language development at 2years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: A diffusion tensor imaging study. Neuroimage 2013; 78:145-51. [DOI: 10.1016/j.neuroimage.2013.03.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/18/2013] [Accepted: 03/29/2013] [Indexed: 12/01/2022] Open
|