1
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
3
|
Feng X, Wang J, Wu J, Ren X, Zhou H, Li S, Zhang J, Wang S, Wang Y, Hu Z, Hu X, Jiang T. Abnormality of anxious behaviors and functional connectivity between the amygdala and the frontal lobe in maternally deprived monkeys. Brain Behav 2023; 13:e3027. [PMID: 37464725 PMCID: PMC10498070 DOI: 10.1002/brb3.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Anxious behaviors often occur in individuals who have experienced early adversity. Anxious behaviors can bring many hazards, such as social withdrawal, eating disorders, negative self-efficacy, self-injurious thoughts and behaviors, anxiety disorders, and even depression. Abnormal behavior are is closely related to changes in corresponding circuit functions in the brain. This study investigated the relationship between brain circuits and anxious behaviors in maternal-deprived rhesus monkey animal model, which mimic early adversity in human. METHODS Twenty-five rhesus monkeys (Macaca mulatta) were grouped by two different rearing conditions: 11 normal control and mother-reared (MR) monkeys and 14 maternally deprived and peer-reared (MD) monkeys. After obtaining images of the brain areas with significant differences in maternal separation and normal control macaque function, the relationship between functional junction intensity and stereotypical behaviors was determined by correlation analysis. RESULTS The correlation analysis revealed that stereotypical behaviors were negatively correlated with the coupling between the left lateral amygdala subregion and the left inferior frontal gyrus in both MD and MR macaques. CONCLUSION This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The normalization of the regions involved in the functional connection might reverse the behavioral abnormality. It provides a solid foundation for effective intervention in human early adversity. SIGNIFICANCE STATEMENT This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The higher the amygdala-prefrontal connection strength, the less stereotyped behaviors exhibited by monkeys experiencing early adversity. Thus, in the future, changing the strength of the amygdala-prefrontal connection may reverse the behavioral abnormalities of individuals who experience early adversity. This study provides a solid foundation for effective intervention in humans' early adversity.
Collapse
Affiliation(s)
- Xiao‐Li Feng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Jiao‐Jian Wang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiao‐Feng Ren
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnanChina
| | - Hui Zhou
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Si‐Yu Li
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Jie Zhang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Sheng‐Hai Wang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Yun Wang
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Zheng‐Fei Hu
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xin‐Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Center for Excellence in Brain ScienceChinese Academy of SciencesShanghaiChina
| | - Tian‐Zi Jiang
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijingChina
- Research Center for Augmented IntelligenceZhejiang LaboratoryHangzhouChina
- Center for Excellence in Brain ScienceInstitute of AutomationChinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
6
|
Smith JL, Ahluwalia V, Gore RK, Allen JW. Eagle-449: A volumetric, whole-brain compilation of brain atlases for vestibular functional MRI research. Sci Data 2023; 10:29. [PMID: 36641517 PMCID: PMC9840609 DOI: 10.1038/s41597-023-01938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Human vestibular processing involves distributed networks of cortical and subcortical regions which perform sensory and multimodal integrative functions. These functional hubs are also interconnected with areas subserving cognitive, affective, and body-representative domains. Analysis of these diverse components of the vestibular and vestibular-associated networks, and synthesis of their holistic functioning, is therefore vital to our understanding of the genesis of vestibular dysfunctions and aid treatment development. Novel neuroimaging methodologies, including functional and structural connectivity analyses, have provided important contributions in this area, but often require the use of atlases which are comprised of well-defined a priori regions of interest. Investigating vestibular dysfunction requires a more detailed atlas that encompasses cortical, subcortical, cerebellar, and brainstem regions. The present paper represents an effort to establish a compilation of existing, peer-reviewed brain atlases which collectively afford comprehensive coverage of these regions while explicitly focusing on vestibular substrates. It is expected that this compilation will be iteratively improved with additional contributions from researchers in the field.
Collapse
Affiliation(s)
- Jeremy L Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishwadeep Ahluwalia
- Georgia Institute of Technology, Atlanta, Georgia, USA
- GSU/GT Center for Advanced Brain Imaging, Atlanta, Georgia, USA
| | - Russell K Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Shepherd Center, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
7
|
The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study. Brain Struct Funct 2023; 228:121-130. [PMID: 36056938 DOI: 10.1007/s00429-022-02555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/14/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered a continuation of the superior temporal gyrus (STG)/ middle temporal gyrus (MTG) and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red, blue silicone-injected eight and four non-silicone-injected human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, other functions of the subunits have been revealed with cadaveric dissection and tractography images.
Collapse
|
8
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety. Front Psychiatry 2023; 14:1078779. [PMID: 36741115 PMCID: PMC9892902 DOI: 10.3389/fpsyt.2023.1078779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of schizophrenia (SCH) is related to the dysfunction of monoamine neurotransmitters, and the habenula participates in regulating the synthesis and release of dopamine. We examined the static functional connectivity (sFC) and dynamic functional connectivity (dFC) of habenula in first-episode schizophrenia patients using resting state functional magnetic resonance imaging (rs-fMRI) in this study. METHODS A total of 198 first-Episode, drug-Naïve schizophrenia patients and 199 healthy controls (HC) underwent rs-fMRI examinations. The sFC and dFC analysis with habenula as seed was performed to produce a whole-brain diagram initially, which subsequently were compared between SCH and HC groups. Finally, the correlation analysis of sFC and dFC values with the Positive and Negative Symptom Scale (PANSS) were performed. RESULTS Compared with the HC groups, the left habenula showed increased sFC with the bilateral middle temporal gyrus, bilateral superior temporal gyrus, and right temporal pole in the SCH group, and the right habenula exhibited increased sFC with the left middle temporal gyrus, left superior temporal gyrus, and left angular gyrus. Additionally, compared with the HC group, the left habenula showed decreased dFC with the bilateral cuneus gyrus and bilateral calcarine gyrus in the SCH group. The PANSS negative sub-scores were positively correlated with the sFC values of the bilateral habenula with the bilateral middle temporal gyrus, superior temporal gyrus and angular gyrus. The PANSS general sub-scores were positively correlated with the sFC values of the right habenula with the left middle temporal gyrus and left superior temporal gyrus. The hallucination scores of PANSS were negatively correlated with the sFC values of the left habenula with the bilateral cuneus gyrus and bilateral calcarine gyrus; The anxiety scores of PANSS were positively correlated with the dFC values of the left habenula with the right temporal pole. CONCLUSION This study provides evidence that the habenula of the first-episode schizophrenia patients presented abnormal static functional connectivity with temporal lobe and angular gyrus, and additionally showed weakened stability of functional connectivity in occipital lobe. This abnormality is closely related to the symptoms of hallucination and anxiety in schizophrenia, which may indicate that the habenula involved in the pathophysiology of schizophrenia by affecting the dopamine pathway.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe. Brain Struct Funct 2023; 228:63-82. [PMID: 35676436 DOI: 10.1007/s00429-022-02514-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/22/2022] [Indexed: 01/07/2023]
Abstract
The parietal lobe is a region of especially pronounced change in human brain evolution. Based on comparative neuroanatomical studies, the inferior parietal lobe (IPL) has been shown to be disproportionately larger in humans relative to chimpanzees and macaques. However, it remains unclear whether the underlying histological architecture of IPL cortical areas displays human-specific organization. Chimpanzees are among the closest living relatives of humans, making them an ideal comparative species to investigate potential evolutionary changes in the IPL. We parcellated the chimpanzee IPL using cytoarchitecture and myeloarchitecture, in combination with quantitative comparison of cellular features between the identified cortical areas. Four major areas on the lateral convexity of the chimpanzee IPL (PF, PFG, PG, OPT) and two opercular areas (PFOP, PGOP) were identified, similar to what has been observed in macaques. Analysis of the quantitative profiles of cytoarchitecture showed that cell profile density was significantly different in a combination of layers III, IV, and V between bordering cortical areas, and that the density profiles of these six areas supports their classification as distinct. The similarity to macaque IPL cytoarchitecture suggests that chimpanzees share homologous IPL areas. In comparison, human rostral IPL is reported to differ in its anatomical organization and to contain additional subdivisions, such as areas PFt and PFm. These changes in human brain evolution might have been important as tool making capacities became more complex.
Collapse
|
10
|
Wang Q, Wang Y, Xu W, Chen X, Li X, Li Q, Li H. Corresponding anatomical of the macaque superior parietal lobule areas 5 (PE) subdivision reveal similar connectivity patterns with humans. Front Neurosci 2022; 16:964310. [PMID: 36267237 PMCID: PMC9577089 DOI: 10.3389/fnins.2022.964310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Using the animal brain as a cross-species tool for human brain research based on imaging features can provide more potential to reveal comprehensive human brain analysis. Previous studies have shown that human Brodmann area 5 (BA5) and macaque PE are homologous regions. They are both involved in processes depth and direction information during the touch process in the arm movement. However, recent studies show that both BA5 and PE are not homogeneous. According to the cytoarchitecture, BA5 is subdivided into three different subregions, and PE can be subdivided into PEl, PEla, and PEm. The species homologous relationship among the subregions is not clear between BA5 and PE. At the same time, the subdivision of PE based on the anatomical connection of white matter fiber bundles needs more verification. This research subdivided the PE of macaques based on the anatomical connection of white matter fiber bundles. Two PE subregions are defined based on probabilistic fiber tracking, one on the anterior side and the other on the dorsal side. Finally, the research draws connectivity fingerprints with predefined homologous target areas for the BA5 and PE subregions to reveal the characteristics of structure and functions and gives the homologous correspondence identified.
Collapse
|
11
|
Liu F, Chen C, Bai Z, Hong W, Wang S, Tang C. Specific subsystems of the inferior parietal lobule are associated with hand dysfunction following stroke: A cross-sectional resting-state fMRI study. CNS Neurosci Ther 2022; 28:2116-2128. [PMID: 35996952 PMCID: PMC9627383 DOI: 10.1111/cns.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIM The inferior parietal lobule (IPL) plays important roles in reaching and grasping during hand movements, but how reorganizations of IPL subsystems underlie the paretic hand remains unclear. We aimed to explore whether specific IPL subsystems were disrupted and associated with hand performance after chronic stroke. METHODS In this cross-sectional study, we recruited 65 patients who had chronic subcortical strokes and 40 healthy controls from China. Each participant underwent the Fugl-Meyer Assessment of Hand and Wrist and resting-state fMRI at baseline. We mainly explored the group differences in resting-state effective connectivity (EC) patterns for six IPL subregions in each hemisphere, and we correlated these EC patterns with paretic hand performance across the whole stroke group and stroke subgroups. Moreover, we used receiver operating characteristic curve analysis to distinguish the stroke subgroups with partially (PPH) and completely (CPH) paretic hands. RESULTS Stroke patients exhibited abnormal EC patterns with ipsilesional PFt and bilateral PGa, and five sensorimotor-parietal/two parietal-temporal subsystems were positively or negatively correlated with hand performance. Compared with CPH patients, PPH patients exhibited abnormal EC patterns with the contralesional PFop. The PPH patients had one motor-parietal subsystem, while the CPH patients had one sensorimotor-parietal and three parietal-occipital subsystems that were associated with hand performance. Notably, the EC strength from the contralesional PFop to the ipsilesional superior frontal gyrus could distinguish patients with PPH from patients with CPH. CONCLUSIONS The IPL subsystems manifest specific functional reorganization and are associated with hand dysfunction following chronic stroke.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation MedicineChengdu Second People's HospitalChengduChina
| | - ChangCheng Chen
- Department of Rehabilitation MedicineQingtian People's HospitalLishuiChina
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
| | - ChaoZheng Tang
- Capacity Building and Continuing Education CenterNational Health Commission of the People's Republic of ChinaBeijingChina
| |
Collapse
|
12
|
Yin X, Chen L, Ma M, Zhang H, Gao M, Wu X, Li Y. Altered Brain Structure and Spontaneous Functional Activity in Children With Concomitant Strabismus. Front Hum Neurosci 2021; 15:777762. [PMID: 34867247 PMCID: PMC8634149 DOI: 10.3389/fnhum.2021.777762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Strabismus occurs in about 2% of children and may result in amblyopia or lazy eyes and loss of depth perception. However, whether/how long-term strabismus shapes the brain structure and functions in children with concomitant strabismus (CS) is still unclear. In this study, a total of 26 patients with CS and 28 age-, sex-, and education-matched healthy controls (HCs) underwent structural and resting-state functional magnetic resonance imaging examination. The cortical thickness and amplitude of low-frequency fluctuation (ALFF) were calculated to assess the structural and functional plasticity in children with CS. Compared with HCs group, patients with CS showed increased cortical thickness in the precentral gyrus and angular gyrus while decreased cortical thickness in the left intraparietal sulcus, parieto-occipital sulcus, superior and middle temporal gyrus, right ventral premotor cortex, anterior insula, orbitofrontal cortex, and paracentral lobule. Meanwhile, CS patients exhibited increased ALFF in the prefrontal cortex and superior temporal gyrus, and decreased ALFF in the caudate and hippocampus. These results show that children with CS have abnormal structure and function in brain regions subserving eye movement, controls, and high-order cognitive functions. Our findings revealed the structural and functional abnormalities induced by CS and may provide new insight into the underlying neural mechanisms for CS.
Collapse
Affiliation(s)
- Xiaohui Yin
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingjun Chen
- Department of Radiology, Gaoling District Hospital, Xi'an, China
| | - Mingyue Ma
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Gao
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongqiang Li
- Department of CT and MRI, Weinan Hospital of Traditional Chinese Medicine, Weinan, China
| |
Collapse
|
13
|
Chen K, Wang L, Zeng J, Chen A, Gao Z, Wang J. Voxel-Wise Quantitative Mapping of the Brain Association Ability. Front Neurosci 2021; 15:746894. [PMID: 34720865 PMCID: PMC8555663 DOI: 10.3389/fnins.2021.746894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
The association cortices of the brain are essential for integrating multimodal information that subserves complex and high-order cognitive functions. To delineate the changing pattern of associative cortices can provide critical insight into brain development, aging, plasticity, and disease-triggered functional abnormalities. However, how to quantitatively characterize the association capability of the brain is elusive. Here, we developed a new method of association index (Asso) at the voxel level to quantitatively characterize the brain association ability. Using the Asso method, we found high Asso values in association cortical networks, and low values in visual and limbic networks, suggesting a pattern of significant gradient distribution in neural functions. The spatial distribution patterns of Asso show high similarities across different thresholds suggesting that Asso mapping is a threshold-free method. In addition, compared with functional connectivity strength, i.e., degree centrality method, Asso mapping showed different patterns for association cortices and primary cortices. Finally, the Asso method was applied to investigate aging effects and identified similar findings with previous studies. All these results indicated that Asso can characterize the brain association patterns effectively and open a new avenue to reveal a neural basis for development, aging, and brain disorders.
Collapse
Affiliation(s)
- Kai Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijie Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, China
| | - Ai Chen
- Department of Pediatric Neurology-Gastroenterology and Newborn Screening Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Zhao Gao
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Zhang J, Xu D, Cui H, Zhao T, Chu C, Wang J. Group-guided individual functional parcellation of the hippocampus and application to normal aging. Hum Brain Mapp 2021; 42:5973-5984. [PMID: 34529323 PMCID: PMC8596973 DOI: 10.1002/hbm.25662] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 02/01/2023] Open
Abstract
Aging is closely associated with cognitive decline affecting attention, memory and executive functions. The hippocampus is the core brain area for human memory, learning, and cognition processing. To delineate the individual functional patterns of hippocampus is pivotal to reveal the neural basis of aging. In this study, we developed a group‐guided individual parcellation approach based on semisupervised affinity propagation clustering using the resting‐state functional magnetic resonance imaging to identify individual functional subregions of hippocampus and to identify the functional patterns of each subregion during aging. A three‐way group parcellation was yielded and was taken as prior information to guide individual parcellation of hippocampus into head, body, and tail in each subject. The superiority of individual parcellation of hippocampus is validated by higher intraregional functional similarities by compared to group‐level parcellation results. The individual variations of hippocampus were associated with coactivation patterns of three typical functions of hippocampus. Moreover, the individual functional connectivities of hippocampus subregions with predefined target regions could better predict age than group‐level functional connectivities. Our study provides a novel framework for individual brain functional parcellations, which may facilitate the future individual researches for brain cognitions and brain disorders and directing accurate neuromodulation.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Dundi Xu
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hongjie Cui
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Congying Chu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Shen D, Li Q, Liu J, Liao Y, Li Y, Gong Q, Huang X, Li T, Li J, Qiu C, Hu J. The Deficits of Individual Morphological Covariance Network Architecture in Schizophrenia Patients With and Without Violence. Front Psychiatry 2021; 12:777447. [PMID: 34867559 PMCID: PMC8634443 DOI: 10.3389/fpsyt.2021.777447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Schizophrenia is associated with a significant increase in the risk of violence, which constitutes a public health concern and contributes to stigma associated with mental illness. Although previous studies revealed structural and functional abnormalities in individuals with violent schizophrenia (VSZ), the neural basis of psychotic violence remains controversial. Methods: In this study, high-resolution structural magnetic resonance imaging (MRI) data were acquired from 18 individuals with VSZ, 23 individuals with non-VSZ (NSZ), and 22 age- and sex-matched healthy controls (HCs). Whole-brain voxel-based morphology and individual morphological covariance networks were analysed to reveal differences in gray matter volume (GMV) and individual morphological covariance network topology. Relationships among abnormal GMV, network topology, and clinical assessments were examined using correlation analyses. Results: GMV in the hypothalamus gradually decreased from HCs and NSZ to VSZ and showed significant differences between all pairs of groups. Graph theory analyses revealed that morphological covariance networks of HCs, NSZ, and VSZ exhibited small worldness. Significant differences in network topology measures, including global efficiency, shortest path length, and nodal degree, were found. Furthermore, changes in GMV and network topology were closely related to clinical performance in the NSZ and VSZ groups. Conclusions: These findings revealed the important role of local structural abnormalities of the hypothalamus and global network topological impairments in the neuropathology of NSZ and VSZ, providing new insight into the neural basis of and markers for VSZ and NSZ to facilitate future accurate clinical diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Danlin Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junmei Hu
- School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Gao J, Li Y, Wei Q, Li X, Wang K, Tian Y, Wang J. Habenula and left angular gyrus circuit contributes to response of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2020; 15:2246-2253. [PMID: 33244628 DOI: 10.1007/s11682-020-00418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The habenula (Hb), one of the hottest structures in depression, has been widely demonstrated to be involved in the neurobiology of depression. Although the structural and functional abnormalities of Hb have been reported in major depressive disorders (MDD) patients, the role of Hb in treatment response in MDD remains unclear. In this study, resting-state functional connectivity (RSFC) and Granger causality analysis (GCA) were performed to investigate the intrinsic and causal changes of Hb in MDD after ECT. Moreover, support vector classification was applied to find out whether the changed functional and causal connections of Hb can effectively distinguish the MDD patients from healthy controls. The RSFC and GCA identified increased RSFC strength between bilateral Hb and left angular gyrus (AG), decreased causal connectivity strength from left AG to left Hb, from right Hb to left AG, and bidirectional interactions between left and right Hb in MDD patients after ECT. The changed causal connectivities from left AG to left Hb, and from right Hb to left AG were correlated with the changed depression symptoms and impaired delay memory recall performances. Furthermore, the functional and causal connectivities between left AG and bilateral Hb could serve as a biomarker to differentiate MDD from HCs. These results provided new evidence for the importance of Hb in depression and revealed that the interactions between Hb and left AG contribute to ECT response in MDD. Our findings will facilitate the future treatment of depression with the target of Hb in MDD and other brain disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineer, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xuemei Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.,Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China. .,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Zeng M, Yu M, Qi G, Zhang S, Ma J, Hu Q, Zhang J, Li H, Wu H, Xu J. Concurrent alterations of white matter microstructure and functional activities in medication-free major depressive disorder. Brain Imaging Behav 2020; 15:2159-2167. [PMID: 33155171 DOI: 10.1007/s11682-020-00411-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Although numerous studies have revealed the structural and functional alterations in major depressive disorder (MDD) using unimodal diffusion magnetic resonance imaging (MRI) or functional MRI, however, the potential associations between changed microstructure and corresponding functional activities in the MDD has been largely uninvestigated. Herein, 27 medication-free MDD patients and 54 gender-, age-, and educational level-matched healthy controls (HC) were used to investigate the concurrent alterations of white matter microstructure and functional activities using tract-based spatial statistics (TBSS) analyses, fractional amplitude of low-frequency fluctuation (fALFF), and degree centrality (DC). The TBSS analyses revealed significantly decreased fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF I) in the MDD patients compared to HC. Correlation analyses showed that decreased FA in the SLF I was significantly correlated with fALFF in left pre/postcentral gyrus and binary, weighted DC in right posterior cerebellum. Moreover, the fALFF in left pre/postcentral gyrus significantly reduced in MDD patients while binary and weighted DC in right posterior cerebellum significantly increased in MDD patients. Our results revealed concurrent structural and functional changes in MDD patients suggesting that the underlying structural disruptions are an important indicator of functional abnormalities.
Collapse
Affiliation(s)
- Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Min Yu
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China
| | - Guiqiang Qi
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Jijian Ma
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 518000, Shenzhen, China
| | - Hongxing Li
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China.
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 510370, Guangzhou, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
18
|
Wang J, Yang Y, Zhao X, Zuo Z, Tan LH. Evolutional and developmental anatomical architecture of the left inferior frontal gyrus. Neuroimage 2020; 222:117268. [PMID: 32818615 DOI: 10.1016/j.neuroimage.2020.117268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The left inferior frontal gyrus (IFG) including Broca's area is involved in the processing of many language subdomains, and thus, research on the evolutional and human developmental characteristics of the left IFG will shed light on how language emerges and maturates. In this study, we used diffusion magnetic resonance imaging (dMRI) and resting-state functional MRI (fMRI) to investigate the evolutional and developmental patterns of the left IFG in humans (age 6-8, age 11-13, and age 16-18 years) and macaques. Tractography-based parcellation was used to define the subcomponents of left IFG and consistently identified four subregions in both humans and macaques. This parcellation scheme for left IFG in human was supported by specific coactivation patterns and functional characterization for each subregion. During evolution and development, we found increased functional balance, amplitude of low frequency fluctuations, functional integration, and functional couplings. We also observed higher fractional anisotropy values, i.e. better myelination of dorsal and ventral white matter language pathways during evolution and development. We assume that the resting-state functional connectivity and task-related coactivation mapping are associated with hierarchical language processing. Our findings have shown the evolutional and human developmental patterns of left IFG, and will contribute to the understanding of how the human language evolves and how atypical language developmental disorders may occur.
Collapse
Affiliation(s)
- Jiaojiang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Li-Hai Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| |
Collapse
|
19
|
Simmank F, Avram M, Fehse K, Sander T, Zaytseva Y, Paolini M, Bao Y, Silveira S. Morality in advertising: An fMRI study on persuasion in communication. Psych J 2020; 9:629-643. [PMID: 32515144 DOI: 10.1002/pchj.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 11/06/2022]
Abstract
Advertising slogans serve the function of persuasive communication by presenting catchy phrases. To decide whether a slogan is convincing or not, cognitive reasoning is assumed to be complemented by a more implicit and intuitive route of information processing, presumably similar to evaluating normative judgments in moral statements. We employed functional magnetic resonance imaging (fMRI) while Western male subjects judged advertising slogans and moral statements as another decision task with subjective nature. Compared to a neutral control condition that targeted declarative memory and to an aesthetic-related condition, the evaluation processes in both domains engaged the anterior medial prefrontal cortex (mPFC), which is associated with decision-making incorporating personal value. Conjoint activations were also observed in the left temporoparietal junction (TPJ) when compared to the aesthetics condition. Results are discussed with reference to domain-independence, a suspected difference to aesthetic-like appreciations, and functional organization in the mPFC and the TPJ.
Collapse
Affiliation(s)
- Fabian Simmank
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany
| | - Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Kai Fehse
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany
| | | | - Yuliya Zaytseva
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Marco Paolini
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Yan Bao
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany.,School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Sarita Silveira
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany.,Human Science Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
20
|
Wang J, Ji Y, Li X, He Z, Wei Q, Bai T, Tian Y, Wang K. Improved and residual functional abnormalities in major depressive disorder after electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109888. [PMID: 32061788 DOI: 10.1016/j.pnpbp.2020.109888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Electroconvulsive therapy (ECT) can induce fast remission of depression but still retain the residual functional impairments in major depressive disorder (MDD) patients. To delineate the different functional circuits of effective antidepressant treatment and residual functional impairments is able to better guide clinical therapy for depression. Herein, voxel-level whole brain functional connectivity homogeneity (FcHo), functional connectivity, multivariate pattern classification approaches were applied to reveal the specific circuits for treatment response and residual impairments in MDD patients after ECT. Increased FcHo values in right dorsomedial prefrontal cortex (dmPFC) and left angular gyrus (AG) and their corresponding functional connectivities between dmPFC and right AG, dorsolateral prefrontal cortex (dlPFC), superior frontal gyrus, precuneus (Pcu) and between left AG with dlPFC, bilateral AG, and left ventrolateral prefrontal cortex in MDD patients after ECT. Moreover, we found decreased FcHo values in left middle occipital gyrus (MOG) and lingual gyrus (LG) and decreased functional connectivities between MOG and dorsal postcentral gyrus (PCG) and between LG and middle PCG/anterior superior parietal lobule in MDD patients before and after ECT compared to healthy controls (HCs). The increased or normalized FcHo and functional connections may be related to effective antidepressant therapy, and the decreased FcHo and functional connectivities may account for the residual functional impairments in MDD patients after ECT. The different change patterns in MDD after ECT indicated a specific brain circuit supporting fast remission of depression, which was supported by the following multivariate pattern classification analyses. Finally, we found that the changed FcHo in dmPFC was correlated with changed depression scores. These results revealed a specific functional circuit supporting antidepressant effects of ECT and neuroanatomical basis for residual functional impairments. Our findings also highlighted the key role of dmPFC in antidepressant and will provide an important reference for depression treatment.
Collapse
Affiliation(s)
- Jiaojian Wang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| | - Yang Ji
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China
| | - Xuemei Li
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengyu He
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiang Wei
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, Anhui Medical University, Hefei 230022, China
| |
Collapse
|
21
|
Gao J, Zeng M, Dai X, Yang X, Yu H, Chen K, Hu Q, Xu J, Cheng B, Wang J. Functional Segregation of the Middle Temporal Visual Motion Area Revealed With Coactivation-Based Parcellation. Front Neurosci 2020; 14:427. [PMID: 32536850 PMCID: PMC7269029 DOI: 10.3389/fnins.2020.00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Traditionally, the visual motion area (MT) is considered as a brain region specialized for visual motion perception. However, accumulating evidence showed that MT is also related to various functions, suggesting that it is a complex functional area and different functional subregions might exist in this area. To delineate functional subregions of this area, left and right masks of MT were defined using meta-analysis in the BrainMap database, and coactivation-based parcellation was then performed on these two masks. Two dorsal subregions (Cl1 and Cl2) and one ventral subregion (Cl3) of left MT, as well as two dorsal-anterior subregions (Cl1 and Cl2), one ventral-anterior subregion (Cl3), and an additional posterior subregion (Cl4) of right MT were identified. In addition to vision motion, distinct and specific functions were identified in different subregions characterized by task-dependent functional connectivity mapping and forward/reverse inference on associated functions. These results not only were in accordance with the previous findings of a hemispheric asymmetry of MT, but also strongly confirmed the existence of subregions in this region with distinct and specific functions. Furthermore, our results extend the special role of visual motion perception on this area and might facilitate future cognitive study.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, China
| | - Xin Dai
- School of Automation, Chongqing University, Chongqing, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Haibo Yu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Kai Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinping Xu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jiaojian Wang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
22
|
He B, Yang Z, Fan L, Gao B, Li H, Ye C, You B, Jiang T. MonkeyCBP: A Toolbox for Connectivity-Based Parcellation of Monkey Brain. Front Neuroinform 2020; 14:14. [PMID: 32410977 PMCID: PMC7198896 DOI: 10.3389/fninf.2020.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 01/24/2023] Open
Abstract
Non-human primate models are widely used in studying the brain mechanism underlying brain development, cognitive functions, and psychiatric disorders. Neuroimaging techniques, such as magnetic resonance imaging, play an important role in the examinations of brain structure and functions. As an indispensable tool for brain imaging data analysis, brain atlases have been extensively investigated, and a variety of versions constructed. These atlases diverge in the criteria based on which they are plotted. The criteria range from cytoarchitectonic features, neurotransmitter receptor distributions, myelination fingerprints, and transcriptomic patterns to structural and functional connectomic profiles. Among them, brainnetome atlas is tightly related to brain connectome information and built by parcellating the brain on the basis of the anatomical connectivity profiles derived from structural neuroimaging data. The pipeline for building the brainnetome atlas has been published as a toolbox named ATPP (A Pipeline for Automatic Tractography-Based Brain Parcellation). In this paper, we present a variation of ATPP, which is dedicated to monkey brain parcellation, to address the significant differences in the process between the two species. The new toolbox, MonkeyCBP, has major alterations in three aspects: brain extraction, image registration, and validity indices. By parcellating two different brain regions (posterior cingulate cortex) and (frontal pole) of the rhesus monkey, we demonstrate the efficacy of these alterations. The toolbox has been made public (https://github.com/bheAI/MonkeyCBP_CLI, https://github.com/bheAI/MonkeyCBP_GUI). It is expected that the toolbox can benefit the non-human primate neuroimaging community with high-throughput computation and low labor involvement.
Collapse
Affiliation(s)
- Bin He
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hai Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chuyang Ye
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bo You
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
23
|
Liu H, Cai W, Xu L, Li W, Qin W. Differential Reorganization of SMA Subregions After Stroke: A Subregional Level Resting-State Functional Connectivity Study. Front Hum Neurosci 2020; 13:468. [PMID: 32184712 PMCID: PMC7059000 DOI: 10.3389/fnhum.2019.00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose: The human supplementary motor area (SMA) contains two functional subregions of the SMA proper and preSMA; however, the reorganization patterns of the two SMA subregions after stroke remain uncertain. Meanwhile, a focal subcortical lesion may affect the overall functional reorganization of brain networks. We sought to identify the differential reorganization of the SMA subregions after subcortical stroke using the resting-state functional connectivity (rsFC) analysis. Methods: Resting-state functional MRI was conducted in 25 patients with chronic capsular stroke exhibiting well-recovered global motor function (Fugl-Meyer score >90). The SMA proper and preSMA were identified by the rsFC-based parcellation, and the rsFCs of each SMA subregion were compared between stroke patients and healthy controls. Results: Despite common rsFC with the fronto-insular cortex (FIC), the SMA proper and preSMA were mainly correlated with the sensorimotor areas and cognitive-related regions, respectively. In stroke patients, the SMA proper and preSMA exhibited completely different functional reorganization patterns: the former showed increased rsFCs with the primary sensorimotor area and caudal cingulate motor area (CMA) of the motor execution network, whereas the latter showed increased rsFC with the rostral CMA of the motor control network. Both of the two SMA subregions showed decreased rsFC with the FIC in stroke patients; the preSMA additionally showed decreased rsFC with the prefrontal cortex (PFC). Conclusion: Although both SMA subregions exhibit functional disconnection with the cognitive-related areas, the SMA proper is implicated in the functional reorganization within the motor execution network, whereas the preSMA is involved in the functional reorganization within the motor control network in stroke patients.
Collapse
Affiliation(s)
- Huaigui Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wangli Cai
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixue Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Gao Z, Guo X, Liu C, Mo Y, Wang J. Right inferior frontal gyrus: An integrative hub in tonal bilinguals. Hum Brain Mapp 2020; 41:2152-2159. [PMID: 31957933 PMCID: PMC7268011 DOI: 10.1002/hbm.24936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Right hemispheric dominance in tonal bilingualism is still controversial. In this study, we investigated hemispheric dominance in 30 simultaneous Bai‐Mandarin tonal bilinguals and 28 Mandarin monolinguals using multimodal neuroimaging. Resting‐state functional connectivity (RSFC) analysis was first performed to reveal the changes of functional connections within the language‐related network. Voxel‐based morphology (VBM) and tract‐based spatial statistics (TBSS) analyses were then used to identify bilinguals' alterations in gray matter volume (GMV) and fractional anisotropy (FA) of white matter, respectively. RSFC analyses revealed significantly increased functional connections of the right pars‐orbital part of the inferior frontal gyrus (IFG) with right caudate, right pars‐opercular part of IFG, and left inferior temporal gyrus in Bai‐Mandarin bilinguals compared to monolinguals. VBM and TBSS analyses further identified significantly greater GMV in right pars‐triangular IFG and increased FA in right superior longitudinal fasciculus (SLF) in bilinguals than in monolinguals. Taken together, these results demonstrate the integrative role of the right IFG in tonal language processing of bilinguals. Our findings suggest that the intrinsic language network in simultaneous tonal bilinguals differs from that of monolinguals in terms of both function and structure.
Collapse
Affiliation(s)
- Zhao Gao
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Guo
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cirong Liu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yin Mo
- Department of Radiology, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Jiaojian Wang
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| |
Collapse
|
25
|
Chai X, Zhang R, Xue C, Li Z, Xiao W, Huang Q, Xiao C, Xie S. Altered Patterns of the Fractional Amplitude of Low-Frequency Fluctuation in Drug-Naive First-Episode Unipolar and Bipolar Depression. Front Psychiatry 2020; 11:587803. [PMID: 33312139 PMCID: PMC7704435 DOI: 10.3389/fpsyt.2020.587803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: An early and correct diagnosis is crucial for treatment of unipolar depression (UD) and bipolar disorder (BD). The fractional amplitude of low-frequency fluctuations (fALFFs) has been widely used in the study of neuropsychiatric diseases, as it can detect spontaneous brain activities. This study was conducted to survey changes of fALFF within various frequency bands of the UD and BD patients, as well as to explore the effects on changes in fALFF on cognitive function. Methods: In total, 58 drug-naive first-episode patients, including 32 UD and 26 BD, were enrolled in the study. The fALFF values were calculated under slow-5 band (0.01-0.027 Hz) and slow-4 band (0.027-0.073 Hz) among UD patients, BD patients, and healthy control (HC). Additionally, we conducted correlation analyses to examine the association between altered fALFF values and cognitive function. Results: Under the slow-5 band, compared to the HC group, the UD group showed increased fALFF values in the right cerebellum posterior lobe, whereas the BD group showed increased fALFF values in the left middle temporal gyrus (MTG). Under the slow-4 band, in comparison to HC, the UD group showed increased fALFF values in the left superior temporal gyrus, whereas the right inferior parietal lobule (IPL) and BD group showed increased fALFF values in the bilateral postcentral gyrus. Notably, compared to BD, the UD group showed increased fALFF values in the right IPL under the slow-4 band. Furthermore, altered fALFF values in the left MTG and the right IPL were significantly positively correlated with Verbal Fluency Test scores. Conclusions: This current study indicated that there were changes in brain activities in the early UD and BD groups, and changes were related to executive function. The fALFF values can serve as potential biomarker to diagnose and differentiate UD and BD patients.
Collapse
Affiliation(s)
- Xue Chai
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wang Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Xu J, Lyu H, Li T, Xu Z, Fu X, Jia F, Wang J, Hu Q. Delineating functional segregations of the human middle temporal gyrus with resting-state functional connectivity and coactivation patterns. Hum Brain Mapp 2019; 40:5159-5171. [PMID: 31423713 PMCID: PMC6865466 DOI: 10.1002/hbm.24763] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Although the middle temporal gyrus (MTG) has been parcellated into subregions with distinguished anatomical connectivity patterns, whether the structural topography of MTG can inform functional segregations of this area remains largely unknown. Accumulating evidence suggests that the brain's underlying organization and function can be directly and effectively delineated with resting-state functional connectivity (RSFC) by identifying putative functional boundaries between cortical areas. Here, RSFC profiles were used to explore functional segregations of the MTG and defined four subregions from anterior to posterior in two independent datasets, which showed a similar pattern with MTG parcellation scheme obtained using anatomical connectivity. The functional segregations of MTG were further supported by whole brain RSFC, coactivation, and specific RFSC, and coactivation mapping. Furthermore, the fingerprint with predefined 10 networks and functional characterizations of each subregion using meta-analysis also identified functional distinction between subregions. The specific connectivity analysis and functional characterization indicated that the bilateral most anterior subregions mainly participated in social cognition and semantic processing; the ventral middle subregions were involved in social cognition in left hemisphere and auditory processing in right hemisphere; the bilateral ventro-posterior subregions participated in action observation, whereas the left subregion was also involved in semantic processing; both of the dorsal subregions in superior temporal sulcus were involved in language, social cognition, and auditory processing. Taken together, our findings demonstrated MTG sharing similar structural and functional topographies and provide more detailed information about the functional organization of the MTG, which may facilitate future clinical and cognitive research on this area.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hanqing Lyu
- Radiology DepartmentShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Tian Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Ziyun Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Xianjun Fu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Fucang Jia
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of the Ministry of EducationSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
27
|
Xue C, Yuan B, Yue Y, Xu J, Wang S, Wu M, Ji N, Zhou X, Zhao Y, Rao J, Yang W, Xiao C, Chen J. Distinct Disruptive Patterns of Default Mode Subnetwork Connectivity Across the Spectrum of Preclinical Alzheimer's Disease. Front Aging Neurosci 2019; 11:307. [PMID: 31798440 PMCID: PMC6863958 DOI: 10.3389/fnagi.2019.00307] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The early progression continuum of Alzheimer’s disease (AD) has been considered to advance through subjective cognitive decline (SCD), non-amnestic mild cognitive impairment (naMCI), and amnestic mild cognitive impairment (aMCI). Altered functional connectivity (FC) in the default mode network (DMN) is regarded as a hallmark of AD. Furthermore, the DMN can be divided into two subnetworks, the anterior and posterior subnetworks. However, little is known about distinct disruptive patterns in the subsystems of the DMN across the preclinical AD spectrum. This study investigated the connectivity patterns of anterior DMN (aDMN) and posterior DMN (pDMN) across the preclinical AD spectrum. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate the FC in the DMN subnetworks in 20 healthy controls (HC), eight SCD, 11 naMCI, and 28 aMCI patients. Moreover, a correlation analysis was used to examine associations between the altered connectivity of the DMN subnetworks and the neurocognitive performance. Results: Compared to the HC, SCD patients showed increased FC in the bilateral superior frontal gyrus (SFG), naMCI patients showed increased FC in the left inferior parietal lobule (IPL), and aMCI patients showed increased FC in the bilateral IPL in the aDMN; while SCD patients showed decreased FC in the precuneus, naMCI patients showed increased FC in the left middle temporal gyrus (MTG), and aMCI patients also showed increased FC in the right middle frontal gyrus (MFG) in the pDMN. Notably, the FC between the ventromedial prefrontal cortex (vmPFC) and the left MFG and the IPL in the aDMN was associated with episodic memory in the SCD and aMCI groups. Interestingly, the FC between the posterior cingulated cortex (PCC) and several regions in the pDMN was associated with other cognitive functions in the SCD and naMCI groups. Conclusions: This study demonstrates that the three preclinical stages of AD exhibit distinct FC alternations in the DMN subnetworks. Furthermore, the patient group data showed that the altered FC involves cognitive function. These findings can provide novel insights for tailored clinical intervention across the preclinical AD spectrum.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Baoyu Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiani Xu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Meilin Wu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Nanxi Ji
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xingzhi Zhou
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yilin Zhao
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenjie Yang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques. Neuroimage 2019; 200:562-574. [DOI: 10.1016/j.neuroimage.2019.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
|
29
|
Xia X, Fan L, Hou B, Zhang B, Zhang D, Cheng C, Deng H, Dong Y, Zhao X, Li H, Jiang T. Fine-Grained Parcellation of the Macaque Nucleus Accumbens by High-Resolution Diffusion Tensor Tractography. Front Neurosci 2019; 13:709. [PMID: 31354418 PMCID: PMC6635473 DOI: 10.3389/fnins.2019.00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Limited in part by the spatial resolution of typical in vivo magnetic resonance imaging (MRI) data, recent neuroimaging studies have only identified a connectivity-based shell-core-like partitioning of the nucleus accumbens (Acb) in humans. This has hindered the process of making a more refined description of the Acb using non-invasive neuroimaging technologies and approaches. In this study, high-resolution ex vivo macaque brain diffusion MRI data were acquired to investigate the tractography-based parcellation of the Acb. Our results identified a shell-core-like partitioning in macaques that is similar to that in humans as well as an alternative solution that subdivided the Acb into four parcels, the medial shell, the lateral shell, the ventral core, and the dorsal core. Furthermore, we characterized the specific anatomical and functional connectivity profiles of these Acb subregions and generalized their specialized functions to establish a fine-grained macaque Acb brainnetome atlas. This atlas should be helpful in neuroimaging, stereotactic surgery, and comparative neuroimaging studies to reveal the neurophysiological substrates of various diseases and cognitive functions associated with the Acb.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, China
| | - Chen Cheng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Deng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Yunyun Dong
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifang Li
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Wang L, Yu L, Wu F, Wu H, Wang J. Altered whole brain functional connectivity pattern homogeneity in medication-free major depressive disorder. J Affect Disord 2019; 253:18-25. [PMID: 31009844 DOI: 10.1016/j.jad.2019.04.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many previous studies have revealed abnormal functional connectivity patterns between brain areas underlying the onset of major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (rs-fMRI). However, how to exactly characterize the voxel-wise whole brain functional connectivity pattern changes in MDD remains unclear, which will provide more convincing evidence for localizing the exactly functional connectivity abnormality in MDD. METHODS In this study, we employed our newly developed whole brain functional connectivity homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 27 medication-free MDD patients and 34 gender-, age-, and education level-matched healthy controls (HC). Furthermore, seed-based functional connectivity analysis was then used to identify the alteration of corresponding functional connectivity. RESULTS Significantly decreased FcHo values in right ventral anterior insula (INS) and medial prefrontal cortex (MPFC) were identified in MDD patients. The ensuing functional connectivity analyses identified decreased functional connectivity between MPFC and left angular gyrus (AG) in MDD patients. Moreover, both decreased FcHo values in INS, MPFC and functional connectivity between MPFC and left AG showed significant negative correlations with Hamilton depression rating scale (HDRS) scores. The FcHo values in INS were also negatively correlated with disease duration. Finally, meta-analysis based functional characterization found that these brain areas are mainly involved in emotion, theory of mind and reward processing. CONCLUSIONS Our findings revealed abnormal whole brain FcHo in INS and MPFC and functional interactions between MPFC and AG in MDD and suggested that dysfunctions of INS and MPFC play an important role in the neuropathology of MDD.
Collapse
Affiliation(s)
- Lijie Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lin Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
31
|
Xu J, Wang J, Bai T, Zhang X, Li T, Hu Q, Li H, Zhang L, Wei Q, Tian Y, Wang K. Electroconvulsive Therapy Induces Cortical Morphological Alterations in Major Depressive Disorder Revealed with Surface-Based Morphometry Analysis. Int J Neural Syst 2019; 29:1950005. [PMID: 31387489 DOI: 10.1142/s0129065719500059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although electroconvulsive therapy (ECT) is one of the most effective treatments for major depressive disorder (MDD), the mechanism underlying the therapeutic efficacy and side effects of ECT remains poorly understood. Here, we investigated alterations in the cortical morphological measurements including cortical thickness (CT), surface area (SA), and local gyrification index (LGI) in 23 MDD patients before and after ECT. Furthermore, multivariate pattern analysis using linear support vector machine (SVM) was applied to investigate whether the changed morphological measurements can be effective indicators for therapeutic efficacy of ECT. Surface-based morphometry (SBM) analysis found significantly increased vertex-wise and regional cortical thickness (CT) and surface area (SA) in widespread regions, mainly located in the left insula (INS) and left fusiform gyrus, as well as hypergyrification in the left middle temporal gyrus (MTG) in MDD patients after ECT. Partial correlational analyses identified associations between the morphological properties and depressive symptom scores and impaired memory scores. Moreover, SVM result showed that the changed morphological measurements were effective to classify the MDD patients before and after ECT. Our findings suggested that ECT may enhance cortical neuroplasticity to facilitate neurogenesis to remit depressive symptoms and to impair delayed memory. These findings indicated that the cortical morphometry is a good index for therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Jinping Xu
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.,2University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaojian Wang
- 3The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, P. R. China
| | - Tongjian Bai
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Xiaodong Zhang
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Tian Li
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Qingmao Hu
- 1Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.,5CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Hongming Li
- 6Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Zhang
- 7Anhui Mental Health Center, Hefei 230022, P. R. China
| | - Qiang Wei
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Yanghua Tian
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China.,8Department of Neurology, Shannan People's Hospital, Shannan, 856000, P. R. China
| | - Kai Wang
- 4Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, P. R. China.,9Department of Medical Psychology, Anhui Medical University, Hefei 230022, P. R. China.,10Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, P. R. China.,11Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei 230022, P. R. China
| |
Collapse
|
32
|
Luo L, Wu K, Lu Y, Gao S, Kong X, Lu F, Wu F, Wu H, Wang J. Increased Functional Connectivity Between Medulla and Inferior Parietal Cortex in Medication-Free Major Depressive Disorder. Front Neurosci 2019; 12:926. [PMID: 30618555 PMCID: PMC6295569 DOI: 10.3389/fnins.2018.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence has documented the abnormalities of primary brain functions in major depressive disorder (MDD). The brainstem has shown to play an important role in regulating basic functions of the human brain, but little is known about its role in MDD, especially the roles of its subregions. To uncover this, the present study adopted resting-state functional magnetic resonance imaging with fine-grained brainstem atlas in 23 medication-free MDD patients and 34 matched healthy controls (HC). The analysis revealed significantly increased functional connectivity of the medulla, one of the brainstem subregions, with the inferior parietal cortex (IPC) in MDD patients. A positive correlation was further identified between the increased medulla-IPC functional connectivity and Hamilton anxiety scores. Functional characterization of the medulla and IPC using a meta-analysis revealed that both regions primarily participated in action execution and inhibition. Our findings suggest that increased medulla-IPC functional connectivity may be related to over-activity or abnormal control of negative emotions in MDD, which provides a new insight for the neurobiology of MDD.
Collapse
Affiliation(s)
- Lizhu Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kunhua Wu
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi Lu
- The Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangchao Kong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Song L, Peng Q, Liu S, Wang J. Changed hub and functional connectivity patterns of the posterior fusiform gyrus in chess experts. Brain Imaging Behav 2019; 14:797-805. [PMID: 30612341 DOI: 10.1007/s11682-018-0020-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, the effects of long-term practice on functional network hubs in chess experts are largely undefined. Here, we investigated whether alterations of hubs can be detected in chess experts using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods. We first mapped the whole-brain voxel-wise functional connectivity and calculated the functional connectivity strength (FCS) map in each of the 28 chess players and 27 gender- and age-matched healthy novice players. Whole-brain resting-state functional connectivity analyses for the changed hub areas were conducted to further elucidate the corresponding changes of functional connectivity patterns in chess players. The hub analysis revealed increased FCS in the right posterior fusiform gyrus of the chess players, which was supported by analyses of this area's regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and fractional amplitude of low frequency fluctuations (fALFF). The following functional connectivity analyses revealed increased functional connectivities between the right posterior fusiform gyrus and the visuospatial attention and motor networks in chess players. These findings demonstrate that cognitive expertise has a positive influence on the functions of the brain regions associated with the chess expertise and that increased functional connections might in turn facilitate within and between networks communication for expert behavior to get superior performance.
Collapse
Affiliation(s)
- Limei Song
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Jinan, Shandong, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Jinan, Shandong, China.
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Jiang J, Liu F, Zhou L, Jiang C. The neural basis for understanding imitation-induced musical meaning: The role of the human mirror system. Behav Brain Res 2018; 359:362-369. [PMID: 30458161 DOI: 10.1016/j.bbr.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
Music can convey meanings by imitating phenomena of the extramusical world, and these imitation-induced musical meanings can be understood by listeners. Although the human mirror system (HMS) is implicated in imitation, little is known about the HMS's role in making sense of meaning that derives from musical imitation. To answer this question, we used fMRI to examine listeners' brain activities during the processing of imitation-induced musical meaning with a cross-modal semantic priming paradigm. Eleven normal individuals and 11 individuals with congenital amusia, a neurodevelopmental disorder of musical processing, participated in the experiment. Target pictures with either an upward or downward movement were primed by semantically congruent or incongruent melodic sequences characterized by the direction of pitch change (upward or downward). When contrasting the incongruent with the congruent condition between the two groups, we found greater activations in the left supramarginal gyrus/inferior parietal lobule and inferior frontal gyrus in normals but not in amusics. The implications of these findings in terms of the role of the HMS in understanding imitation-induced musical meaning are discussed.
Collapse
Affiliation(s)
- Jun Jiang
- Music College, Shanghai Normal University, Shanghai, China
| | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Linshu Zhou
- Music College, Shanghai Normal University, Shanghai, China
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai, China; Institute of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
35
|
The relationship between amplitude of low frequency fluctuations and gray matter volume of the mirror neuron system: Differences between low disability multiple sclerosis patients and healthy controls. IBRO Rep 2018; 5:60-66. [PMID: 30310873 PMCID: PMC6176553 DOI: 10.1016/j.ibror.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022] Open
Abstract
The study of the relationship between function and structure of the brain is interesting in multiple sclerosis patients. Different relationship between amplitude of low frequency fluctuations (ALFF) and gray matter volume has been detected. This difference may be associated with the presence of white matter lesions involving specific tracts.
The study of the relationship between function and structure of the brain could be particularly interesting in neurodegenerative diseases like multiple sclerosis (MS). The aim of the present work is to identify differences of the amplitude of low frequency fluctuations (ALFF) in the mirror neuron system (MNS) between MS patients and healthy controls and to study the relationship between ALFF and the gray matter volume (GMV) of the regions that belong to the MNS. Relapsing-remitting MS patients with minor disability were compared to healthy controls (HC) using resting-state functional magnetic resonance imaging (fMRI), anatomic T1 weighted images and diffusion tensor imaging (DTI). Region of interest (ROI) analyses was performed in the MNS regions. A decrease of ALFF in MS patients was observed in the left inferior frontal gyrus (IFG). Furthermore, a correlation between ALFF in the IFG and the GMV of the left inferior parietal lobule (IPL) was identified. This relationship was different for MS patients than for HC, which may be associated with changes in diffusivity measures which were impaired in MS patients. MS patients with low disability may show ALFF differences in the MNS without clinical correspondence. This functional difference may be associated with cortical and subcortical changes related to the disease.
Collapse
|
36
|
Zhang L, Wu H, Xu J, Shang J. Abnormal Global Functional Connectivity Patterns in Medication-Free Major Depressive Disorder. Front Neurosci 2018; 12:692. [PMID: 30356761 PMCID: PMC6189368 DOI: 10.3389/fnins.2018.00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
Mounting studies have applied resting-state functional magnetic resonance imaging (rs-fMRI) to study major depressive disorder (MDD) and have identified abnormal functional activities. However, how the global functional connectivity patterns change in MDD is still unknown. Using rs-fMRI, we investigated the alterations of global resting-state functional connectivity (RSFC) patterns in MDD using weighted global brain connectivity (wGBC) method. First, a whole brain voxel-wise wGBC map was calculated for 23 MDD patients and 34 healthy controls. Two-sample t-tests were applied to compare the wGBC and RSFC maps and the significant level was set at p < 0.05, cluster-level correction with voxel-level p < 0.001. MDD patients showed significantly decreased wGBC in left temporal pole (TP) and increased wGBC in right parahippocampus (PHC). Subsequent RSFC analyses showed decreased functional interaction between TP and right posterior superior temporal cortex and increased functional interaction between PHC and right inferior frontal gyrus in MDD patients. These results revealed the abnormal global FC patterns and its corresponding disrupted functional connectivity in MDD. Our findings present new evidence for the functional interruption in MDD.
Collapse
Affiliation(s)
- Lu Zhang
- Lab of Learning Sciences, Graduate School of Education, Peking University, Beijing, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Hui'ai Hospital), Guangzhou, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junjie Shang
- Lab of Learning Sciences, Graduate School of Education, Peking University, Beijing, China
| |
Collapse
|
37
|
Wang J, Feng X, Wu J, Xie S, Li L, Xu L, Zhang Y, Ren X, Hu Z, Lv L, Hu X, Jiang T. Alterations of Gray Matter Volume and White Matter Integrity in Maternal Deprivation Monkeys. Neuroscience 2018; 384:14-20. [DOI: 10.1016/j.neuroscience.2018.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
|
38
|
Sun H, Luo L, Yuan X, Zhang L, He Y, Yao S, Wang J, Xiao J. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects. J Affect Disord 2018; 235:229-235. [PMID: 29660636 DOI: 10.1016/j.jad.2018.04.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/10/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cognitive vulnerability to depression (CVD) is a high risk for depressive disorder. Recent studies focus on individuals with CVD to determine the neural basis of major depressive disorder (MDD) neuropathology. However, whether CVD showed specific or similar brain functional activity and connectivity patterns, compared to MDD, remain largely unknown. METHODS Here, using resting-state functional magnetic resonance imaging in subjects with CVD, healthy controls (HC) and MDD, regional homogeneity (ReHo) and resting-state functional connectivity (R-FC) analyses were conducted to assess local synchronization and changes in functional connectivity patterns. RESULTS Significant ReHo differences were found in right posterior lobe of cerebellum (PLC), left lingual gyrus (LG) and precuneus. Compared to HC, CVD subjects showed increased ReHo in the PLC, which was similar to the difference found between MDD and HC. Compared to MDD patients, CVD subjects showed decreased ReHo in PLC, LG, and precuneus. R-FC analyses found increased functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex in CVD compared to both HC and MDD. Moreover, Regional mean ReHo values were positively correlated with Center for Epidemiologic Studies Depression Scale scores. CONCLUSION These analyses revealed that PLC and functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex may be a potential marker for CVD.
Collapse
Affiliation(s)
- Hui Sun
- Beijing Key Laboratory of Learning and Cognition, School of Education, Capital Normal University, Beijing 100048, China
| | - Lizhu Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Xinru Yuan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Lu Zhang
- Graduate School of Education, Peking University, Beijing 100871, China
| | - Yini He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Shuqiao Yao
- Medical Psychological Research Center, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 625014, China.
| | - Jing Xiao
- Beijing Key Laboratory of Learning and Cognition, School of Education, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
39
|
Zhang X, Cheng H, Zuo Z, Zhou K, Cong F, Wang B, Zhuo Y, Chen L, Xue R, Fan Y. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study. Front Neurosci 2018; 12:270. [PMID: 29755313 PMCID: PMC5932177 DOI: 10.3389/fnins.2018.00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo. In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.
Collapse
Affiliation(s)
- Xianchang Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hewei Cheng
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Fei Cong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Wang L, Xu J, Wang C, Wang J. Whole Brain Functional Connectivity Pattern Homogeneity Mapping. Front Hum Neurosci 2018; 12:164. [PMID: 29740305 PMCID: PMC5928195 DOI: 10.3389/fnhum.2018.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Mounting studies have demonstrated that brain functions are determined by its external functional connectivity patterns. However, how to characterize the voxel-wise similarity of whole brain functional connectivity pattern is still largely unknown. In this study, we introduced a new method called functional connectivity homogeneity (FcHo) to delineate the voxel-wise similarity of whole brain functional connectivity patterns. FcHo was defined by measuring the whole brain functional connectivity patterns similarity of a given voxel with its nearest 26 neighbors using Kendall's coefficient concordance (KCC). The robustness of this method was tested in four independent datasets selected from a large repository of MRI. Furthermore, FcHo mapping results were further validated using the nearest 18 and six neighbors and intra-subject reproducibility with each subject scanned two times. We also compared FcHo distribution patterns with local regional homogeneity (ReHo) to identify the similarity and differences of the two methods. Finally, FcHo method was used to identify the differences of whole brain functional connectivity patterns between professional Chinese chess players and novices to test its application. FcHo mapping consistently revealed that the high FcHo was mainly distributed in association cortex including parietal lobe, frontal lobe, occipital lobe and default mode network (DMN) related areas, whereas the low FcHo was mainly found in unimodal cortex including primary visual cortex, sensorimotor cortex, paracentral lobule and supplementary motor area. These results were further supported by analyses of the nearest 18 and six neighbors and intra-subject similarity. Moreover, FcHo showed both similar and different whole brain distribution patterns compared to ReHo. Finally, we demonstrated that FcHo can effectively identify the whole brain functional connectivity pattern differences between professional Chinese chess players and novices. Our findings indicated that FcHo is a reliable method to delineate the whole brain functional connectivity pattern similarity and may provide a new way to study the functional organization and to reveal neuropathological basis for brain disorders.
Collapse
Affiliation(s)
- Lijie Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Wang
- College of Psychology and Sociology, Shenzhen University, Shenzhen, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
41
|
Chu SH, Parhi KK, Lenglet C. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI. Sci Rep 2018; 8:4741. [PMID: 29549287 PMCID: PMC5856752 DOI: 10.1038/s41598-018-23051-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.
Collapse
Affiliation(s)
- Shu-Hsien Chu
- Electrical and Computer Engineering Department, University of Minnesota, Minneapolis, 55455, USA
| | - Keshab K Parhi
- Electrical and Computer Engineering Department, University of Minnesota, Minneapolis, 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, 55455, USA.
| |
Collapse
|
42
|
Liu C, Wang J, Hou Y, Qi Z, Wang L, Zhan S, Wang R, Wang Y. Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome. Sleep Med 2018; 45:132-139. [PMID: 29680421 DOI: 10.1016/j.sleep.2017.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/19/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of leg discomfort symptoms in restless legs syndrome (RLS) patients remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in RLS. METHODS First, we constructed the whole-brain voxelwise functional connectivity and calculated a functional connectivity strength (FCS) map in each of 16 drug-naive idiopathic RLS patients and 26 gender- and age-matched healthy control (HC) subjects. Next, a two-sample t test was applied to compare the FCS maps between HC and RLS patients, and to identify significant changes in FCS in RLS patients. To further elucidate the corresponding changes in the functional connectivity patterns of the aberrant hubs in RLS patients, whole-brain resting-state functional connectivity analyses for the hub areas were performed. RESULTS The hub analysis revealed decreased FCS in the cuneus, fusiform gyrus, paracentral lobe, and precuneus, and increased FCS in the superior frontal gyrus and thalamus in idiopathic drug-naive RLS patients. Subsequent functional connectivity analyses revealed decreased functional connectivity in sensorimotor and visual processing networks and increased functional connectivity in the affective cognitive network and cerebellar-thalamic circuit. Furthermore, the mean FCS value in the superior frontal gyrus was significantly correlated with Hamilton Anxiety Rating Scale scores in RLS patients, and the mean FCS value in the fusiform gyrus was significantly correlated with Hamilton Depression Rating Scale scores. CONCLUSIONS These findings may provide novel insight into the pathophysiology of RLS.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Hou
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Qi
- Department of Radiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Shuqin Zhan
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing Institute for Brain Disorders, Center of Alzheimer's Disease, Beijing, China; Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, China.
| | - Yuping Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China.
| |
Collapse
|
43
|
Davis SW, Wing EA, Cabeza R. Contributions of the ventral parietal cortex to declarative memory. HANDBOOK OF CLINICAL NEUROLOGY 2018. [DOI: 10.1016/b978-0-444-63622-5.00027-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Abstract
This chapter summarizes current knowledge on the structural segregation of the parietal lobe based on cyto-, myelo-, and receptorarchitectonic studies, as well as the connectivity of this brain region with other cortical and subcortical structures. The anterior part of the human parietal cortex comprises the somatosensory areas 3a, 3b, 1, and 2, whereas the posterior part contains seven multimodal areas in both the superior and inferior parietal lobules. Available cytoarchitectonic maps of the human intraparietal sulcus do not provide a complete picture yet. Myelo- and receptorarchitectonic analyses largely confirm but also further differentiate the cytoarchitectonic maps. With the advent of diffusion imaging and functional connectivity studies, further insight into the structural and functional organization has been achieved. It shows that the posterior parietal cortex is a key node in anatomic networks connecting visual with (pre)frontal cortices, and temporal with parts of frontal cortices. Here, the superior longitudinal fascicle and its components play a major role, together with the arcuate and middle longitudinal fascicles. Major connections with subcortical structures, particularly the basal ganglia and thalamic nuclei, are discussed. Finally, the importance of precise maps of parietal areas for defining seed regions in structural and functional connectivity studies is emphasized.
Collapse
Affiliation(s)
- Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
45
|
Wang J, Wei Q, Wang L, Zhang H, Bai T, Cheng L, Tian Y, Wang K. Functional reorganization of intra- and internetwork connectivity in major depressive disorder after electroconvulsive therapy. Hum Brain Mapp 2017; 39:1403-1411. [PMID: 29266749 DOI: 10.1002/hbm.23928] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 02/02/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an effective and rapid treatment for major depressive disorder (MDD). However, the neurobiological underpinnings of ECT are still largely unknown. Recent studies have identified dysregulated brain networks in MDD. Therefore, we hypothesized that ECT may improve MDD symptoms through reorganizing these networks. To test this hypothesis, we used resting-state functional connectivity to investigate changes to the intra- and internetwork architecture of five reproducible resting-state networks: the default mode network (DMN), dorsal attention network (DAN), executive control network (CON), salience network (SAL), and sensory-motor network. Twenty-three MDD patients were assessed before and after ECT, along with 25 sex-, age-, and education-matched healthy controls. At the network level, enhanced intranetwork connectivities were found in the CON in MDD patients after ECT. Furthermore, enhanced internetwork connectivities between the DMN and SAL, and between the CON and DMN, DAN, and SAL were also identified. At the nodal level, the posterior cingulate cortex had increased connections with the left posterior cerebellum, right posterior intraparietal sulcus (rpIPS), and right anterior prefrontal cortex. The rpIPS had increased connections with the medial PFC (mPFC) and left anterior cingulate cortex. The left lateral parietal had increased connections with the dorsal mPFC (dmPFC), left anterior prefrontal cortex, and right anterior cingulate cortex. The dmPFC had increased connection with the left anterolateral prefrontal cortex. Our findings indicate that enhanced interactions in intra- and internetworks may contribute to the ECT response in MDD patients. These findings provide novel and important insights into the neurobiological mechanisms underlying ECT.
Collapse
Affiliation(s)
- Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 625014, China.,School of life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lijie Wang
- School of life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Hongyu Zhang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tongjian Bai
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Cheng
- Anhui Mental Health Center, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Neurology, Shannan People's Hospital, Shannan, 856000, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Medical Psychology, Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.,Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
| |
Collapse
|
46
|
Igelström KM, Graziano MS. The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia 2017; 105:70-83. [DOI: 10.1016/j.neuropsychologia.2017.01.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
|
47
|
Parcellation of Macaque Cortex with Anatomical Connectivity Profiles. Brain Topogr 2017; 31:161-173. [DOI: 10.1007/s10548-017-0576-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/09/2017] [Indexed: 11/26/2022]
|
48
|
Li H, Fan L, Zhuo J, Wang J, Zhang Y, Yang Z, Jiang T. ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation. Front Neuroinform 2017; 11:35. [PMID: 28611620 PMCID: PMC5447055 DOI: 10.3389/fninf.2017.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
There is a longstanding effort to parcellate brain into areas based on micro-structural, macro-structural, or connectional features, forming various brain atlases. Among them, connectivity-based parcellation gains much emphasis, especially with the considerable progress of multimodal magnetic resonance imaging in the past two decades. The Brainnetome Atlas published recently is such an atlas that follows the framework of connectivity-based parcellation. However, in the construction of the atlas, the deluge of high resolution multimodal MRI data and time-consuming computation poses challenges and there is still short of publically available tools dedicated to parcellation. In this paper, we present an integrated open source pipeline (https://www.nitrc.org/projects/atpp), named Automatic Tractography-based Parcellation Pipeline (ATPP) to realize the framework of parcellation with automatic processing and massive parallel computing. ATPP is developed to have a powerful and flexible command line version, taking multiple regions of interest as input, as well as a user-friendly graphical user interface version for parcellating single region of interest. We demonstrate the two versions by parcellating two brain regions, left precentral gyrus and middle frontal gyrus, on two independent datasets. In addition, ATPP has been successfully utilized and fully validated in a variety of brain regions and the human Brainnetome Atlas, showing the capacity to greatly facilitate brain parcellation.
Collapse
Affiliation(s)
- Hai Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Junjie Zhuo
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Yu Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China.,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijing, China.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
49
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
50
|
Wang J, Xie S, Guo X, Becker B, Fox PT, Eickhoff SB, Jiang T. Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation. Hum Brain Mapp 2017; 38:1659-1675. [PMID: 28045222 DOI: 10.1002/hbm.23488] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 11/09/2022] Open
Abstract
The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting-state functional connectivity (RSFC) and task-related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion-specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659-1675, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiaojian Wang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Sangma Xie
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Guo
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Benjamin Becker
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Dusseldorf, Germany
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|