1
|
Arboit A, Ku SP, Krautwald K, Angenstein F. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. Neuroimage 2021; 245:118769. [PMID: 34861394 DOI: 10.1016/j.neuroimage.2021.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.
Collapse
Affiliation(s)
- Alberto Arboit
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Shih-Pi Ku
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany; Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany; Center for Behavior and Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39118, Germany.
| |
Collapse
|
2
|
Helbing C, Angenstein F. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimul 2020; 13:753-764. [PMID: 32289705 DOI: 10.1016/j.brs.2020.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The fimbria/fornix fiber system is an essential part of the hippocampal-VTA loop, and therefore activities that are propagated through this fiber system control the activity of the mesolimbic dopamine system. OBJECTIVES/HYPOTHESIS We hypothesized that stimulation of the fimbria/fornix with an increasing number of electrical pulses would cause increasing activity of the mesolimbic dopamine system, which coincides with concurrent changes in neuronal activities in target regions of the mesolimbic dopaminergic system. METHODS Right fimbria/fornix fibers were electrically stimulated with different pulse protocols. Stimulus-induced changes in neuronal activities were visualized with BOLD-fMRI, whereas stimulus-induced release of dopamine, as measured for the activity of the mesolimbic dopamine system, was determined in the nucleus accumbens with in vivo fast-scan cyclic voltammetry. RESULTS Dependent on the protocol, electrical fimbria/fornix stimulation caused BOLD responses in various targets of the mesolimbic dopamine system. Stimulation in the low theta frequency range (5 Hz) triggered significant BOLD responses mainly in the hippocampal formation, infralimbic cortex, and septum. Stimulation in the beta frequency range (20 Hz) caused additional activation in the medial prefrontal cortex (mPFC), nucleus accumbens, striatum, and VTA. Stimulation in the high-gamma frequency range (100 Hz) caused further activation in the hippocampus proper and mPFC. The strong activation in the mPFC during 100 Hz stimulations depended not only on the number of pulses but also on the frequency. Thus, short bursts of 5 or 20 high-frequency pulses caused stronger activation in the mPFC than continuous 5 or 20 Hz pulses. In contrast, high-frequency burst fimbria/fornix stimulation did not further activate the mesolimbic dopamine system when compared to continuous 5 or 20 Hz pulse stimulation. CONCLUSIONS There exists a frequency-dependent dissociation between BOLD responses and activation of the dopaminergic system. Low frequencies were more efficient to activate the mesolimbic dopamine system, whereas high frequencies were more efficient to trigger BOLD responses in target regions of the mesolimbic dopamine system, particularly the mPFC.
Collapse
Affiliation(s)
- Cornelia Helbing
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany.
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Angenstein F. The role of ongoing neuronal activity for baseline and stimulus-induced BOLD signals in the rat hippocampus. Neuroimage 2019; 202:116082. [PMID: 31425796 DOI: 10.1016/j.neuroimage.2019.116082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022] Open
Abstract
To understand how ongoing neuronal activity affects baseline BOLD signals, neuronal and resultant fMRI responses were simultaneously recorded in the right hippocampus of male rats during continuous low-frequency (2 or 4 Hz) pulse stimulation of the right perforant pathway. Despite continuously increased neuronal activity, BOLD signals only transiently increased in the hippocampus and subsequently returned to either the initial level (2 Hz) or even to a consistently lower level (4 Hz). Whereas the initially transient increase in BOLD signals coincided with an increased spiking of granule cells, the subsequent reduction of BOLD signals was independent of granule cell spiking activity but coincided with persistent inhibition of granule cell excitability, i.e., with reduced postsynaptic activity and prolonged population spike latency. The decline in BOLD signals occurred in the presence of an elevated local cerebral blood volume (CBV), thus the reduction of granule cell excitability is attended by high oxygen consumption. When previous or current stimulations lessen baseline BOLD signals, subsequent short stimulation periods only elicited attenuated BOLD responses, even when actual spiking activity of granule cells was similar. Thus, the quality of stimulus-induced BOLD responses critically depends on the current existing inhibitory activity, which closely relates to baseline BOLD signals. Thus, a meaningful interpretation of stimulus-induced BOLD responses should consider slowly developing variations in baseline BOLD signals; therefore, baseline correction tools should be cautiously used for fMRI data analysis.
Collapse
Affiliation(s)
- Frank Angenstein
- Functional Imaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118, Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Medical Faculty, Otto von Guericke University, 39118, Magdeburg, Germany.
| |
Collapse
|
4
|
Krautwald K, Mahnke L, Angenstein F. Electrical Stimulation of the Lateral Entorhinal Cortex Causes a Frequency-Specific BOLD Response Pattern in the Rat Brain. Front Neurosci 2019; 13:539. [PMID: 31191231 PMCID: PMC6547013 DOI: 10.3389/fnins.2019.00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Although deep brain stimulation of the entorhinal cortex has recently shown promise in the treatment of early forms of cognitive decline, the underlying neurophysiological processes remain elusive. Therefore, the lateral entorhinal cortex (LEC) was stimulated with trains of continuous 5 Hz and 20 Hz pulses or with bursts of 100 Hz pulses to visualize activated neuronal networks, i.e., neuronal responses in the dentate gyrus and BOLD responses in the entire brain were simultaneously recorded. Electrical stimulation of the LEC caused a wide spread pattern of BOLD responses. Dependent on the stimulation frequency, BOLD responses were only triggered in the amygdala, infralimbic, prelimbic, and dorsal peduncular cortex (5 Hz), or in the nucleus accumbens, piriform cortex, dorsal medial prefrontal cortex, hippocampus (20 Hz), and contralateral entorhinal cortex (100 Hz). In general, LEC stimulation caused stronger BOLD responses in frontal cortex regions than in the hippocampus. Identical stimulation of the perforant pathway, a fiber bundle projecting from the entorhinal cortex to the dentate gyrus, hippocampus proper, and subiculum, mainly elicited significant BOLD responses in the hippocampus but rarely in frontal cortex regions. Consequently, BOLD responses in frontal cortex regions are mediated by direct projections from the LEC rather than via signal propagation through the hippocampus. Thus, the beneficial effects of deep brain stimulation of the entorhinal cortex on cognitive skills might depend more on an altered prefrontal cortex than hippocampal function.
Collapse
Affiliation(s)
- Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Liv Mahnke
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Bovet-Carmona M, Menigoz A, Pinto S, Tambuyzer T, Krautwald K, Voets T, Aerts JM, Angenstein F, Vennekens R, Balschun D. Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach. Brain Struct Funct 2018; 223:3557-3576. [PMID: 29971514 DOI: 10.1007/s00429-018-1706-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Hippocampal long-term potentiation (LTP) has been extensively studied as a cellular model of learning and memory. Recently, we described a central function of the Transient Receptor Potential M4 (TRPM4) channel in hippocampal LTP in mice in vitro. Here, we used Trpm4 knock-out (Trpm4-/-) rats to scrutinize TRPM4's role in the intact brain in vivo. After having confirmed the previous in vitro findings in mice, we studied hippocampal synaptic plasticity by chronic recordings in freely moving rats, hippocampus-dependent learning by a behavioral battery and hippocampal-cortical connectivity by fMRI. The electrophysiological investigation supports an involvement of TRPM4 in LTP depending on the induction protocol. Moreover, an exhaustive analysis of the LTP kinetics point to mechanistic changes in LTP by trpm4 deletion. General behavior as measured by open field test, light-dark box and elevated plus maze was inconspicuous in Trpm4-/- rats. However, they showed a distinct deficit in spatial working and reference memory associated to the Barnes maze and T-maze test, respectively. In contrast, performance of the Trpm4-/- in the Morris water maze was unaltered. Finally, fMRI investigation of the effects of a strong LTP induction manifested BOLD responses in the ipsilateral and contralateral hippocampus and the prefrontal cortex of both groups. Yet, the initial BOLD response in the stimulated hippocampal area of Trpm4-/- was significantly enhanced compared to WT rats. Our findings at the cellular, behavioral and system level point to a relevant role for TRPM4 in specific types of hippocampal synaptic plasticity and learning but not in hippocampal-prefrontal interaction.
Collapse
Affiliation(s)
- Marta Bovet-Carmona
- Laboratory of Biological Psychology, Brain and Cognition, Katholieke Universiteit Leuven (KUL), Tiensestraat 102, 3000, Leuven, Belgium
| | - Aurelie Menigoz
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, Department of Molecular Cell Biology, VIB Centre for Brain and Disease, Campus Gasthuisberg, O&N1, Katholieke Universiteit Leuven (KUL), Herestraat 49, Bus 802, 3000, Leuven, Belgium
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, Department of Molecular Cell Biology, VIB Centre for Brain and Disease, Campus Gasthuisberg, O&N1, Katholieke Universiteit Leuven (KUL), Herestraat 49, Bus 802, 3000, Leuven, Belgium
| | - Tim Tambuyzer
- M3-BIORES: Measure, Model and Manage Bioresponses, Department of Biosystems, Katholieke Universiteit Leuven (KUL), Tiensestraat 102, 3000, Leuven, Belgium
| | - Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipziger Str. 44, 39118, Magdeburg, Germany
| | - Thomas Voets
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, Department of Molecular Cell Biology, VIB Centre for Brain and Disease, Campus Gasthuisberg, O&N1, Katholieke Universiteit Leuven (KUL), Herestraat 49, Bus 802, 3000, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model and Manage Bioresponses, Department of Biosystems, Katholieke Universiteit Leuven (KUL), Tiensestraat 102, 3000, Leuven, Belgium
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipziger Str. 44, 39118, Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118, Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, Department of Molecular Cell Biology, VIB Centre for Brain and Disease, Campus Gasthuisberg, O&N1, Katholieke Universiteit Leuven (KUL), Herestraat 49, Bus 802, 3000, Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, Brain and Cognition, Katholieke Universiteit Leuven (KUL), Tiensestraat 102, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Asaad M, Lee JH. A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models. Dis Model Mech 2018; 11:dmm031724. [PMID: 29784664 PMCID: PMC5992611 DOI: 10.1242/dmm.031724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models.
Collapse
Affiliation(s)
- Mazen Asaad
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Helbing C, Tischmeyer W, Angenstein F. Late effect of dopamine D 1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. Neuroimage 2017; 152:119-129. [DOI: 10.1016/j.neuroimage.2017.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022] Open
|
8
|
Riemann S, Helbing C, Angenstein F. From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations. J Cereb Blood Flow Metab 2017; 37:590-604. [PMID: 26911895 PMCID: PMC5381453 DOI: 10.1177/0271678x16634715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To determine the possibility to deconvolve measured BOLD responses to neuronal signals, the rat perforant pathway was electrically stimulated with 10 related stimulation protocols. All stimulation protocols were composed of low-frequency pulse sequences with superimposed high-frequency pulse bursts. Because high-frequency pulse bursts trigger only one synchronized spiking of granular cells, variations of the stimulation protocol were used: (a) to keep the spiking activity similar during the presentation of different numbers of pulses, (b) to apply identical numbers of pulses to induce different amounts of spiking activity, and (c) to concurrently vary the number of applied electrical pulses and resultant spiking activity. When complex pulse sequences enter the hippocampus, an unspecific default-like BOLD response is first generated, which relates neither to the number of incoming pulses nor to the induced spiking activity. Only during subsequent stimulations does the initial unspecific response adjust to a more adequate response, which in turn either strongly related to spiking activity when low-frequency pulses were applied or depended on the incoming activity when high-frequency pulse bursts were presented. Thus, only the development of BOLD responses during repetitive stimulations can predict the underlying neuronal activity and deconvolution analysis should not be performed during an initial stimulation period.
Collapse
Affiliation(s)
- Stephanie Riemann
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Cornelia Helbing
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Frank Angenstein
- 1 Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,2 Special Lab for Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
9
|
Helbing C, Brocka M, Scherf T, Lippert MT, Angenstein F. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway. J Cereb Blood Flow Metab 2016; 36:2177-2193. [PMID: 26661229 PMCID: PMC5363663 DOI: 10.1177/0271678x15615535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022]
Abstract
Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses.
Collapse
Affiliation(s)
- Cornelia Helbing
- Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Marta Brocka
- Department of Systems Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thomas Scherf
- Functional Neuromaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Michael T Lippert
- Department of Systems Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Angenstein
- Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany .,Functional Neuromaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| |
Collapse
|
10
|
Ross EK, Kim JP, Settell ML, Han SR, Blaha CD, Min HK, Lee KH. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens. Neuroimage 2016; 128:138-148. [PMID: 26780572 PMCID: PMC4764383 DOI: 10.1016/j.neuroimage.2015.12.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. METHODS A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. RESULTS Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. CONCLUSIONS The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop.
Collapse
Affiliation(s)
- Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Joo Pyung Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam, Korea
| | - Megan L Settell
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Seong Rok Han
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Van Den Berge N, Vanhove C, Descamps B, Dauwe I, van Mierlo P, Vonck K, Keereman V, Raedt R, Boon P, Van Holen R. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain. PLoS One 2015; 10:e0133245. [PMID: 26193653 PMCID: PMC4508110 DOI: 10.1371/journal.pone.0133245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/24/2015] [Indexed: 01/12/2023] Open
Abstract
Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
- * E-mail:
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Benedicte Descamps
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Ine Dauwe
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Vincent Keereman
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| |
Collapse
|
12
|
Weitz AJ, Fang Z, Lee HJ, Fisher RS, Smith WC, Choy M, Liu J, Lin P, Rosenberg M, Lee JH. Optogenetic fMRI reveals distinct, frequency-dependent networks recruited by dorsal and intermediate hippocampus stimulations. Neuroimage 2014; 107:229-241. [PMID: 25462689 DOI: 10.1016/j.neuroimage.2014.10.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022] Open
Abstract
Although the connectivity of hippocampal circuits has been extensively studied, the way in which these connections give rise to large-scale dynamic network activity remains unknown. Here, we used optogenetic fMRI to visualize the brain network dynamics evoked by different frequencies of stimulation of two distinct neuronal populations within dorsal and intermediate hippocampus. Stimulation of excitatory cells in intermediate hippocampus caused widespread cortical and subcortical recruitment at high frequencies, whereas stimulation in dorsal hippocampus led to activity primarily restricted to hippocampus across all frequencies tested. Sustained hippocampal responses evoked during high-frequency stimulation of either location predicted seizure-like afterdischarges in video-EEG experiments, while the widespread activation evoked by high-frequency stimulation of intermediate hippocampus predicted behavioral seizures. A negative BOLD signal observed in dentate gyrus during dorsal, but not intermediate, hippocampus stimulation is proposed to underlie the mechanism for these differences. Collectively, our results provide insight into the dynamic function of hippocampal networks and their role in seizures.
Collapse
Affiliation(s)
- Andrew J Weitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Zhongnan Fang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Wesley C Smith
- Department of Neuroscience, University of California, Los Angeles, CA 90095, USA
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jia Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neuroscience, University of California, Los Angeles, CA 90095, USA; Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
| | - Peter Lin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew Rosenberg
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Jin Hyung Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Krautwald K, Min HK, Lee KH, Angenstein F. Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex. Neuroimage 2013; 77:14-25. [PMID: 23558098 DOI: 10.1016/j.neuroimage.2013.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 12/29/2022] Open
Abstract
To study how a synchronized activation of two independent pathways affects the fMRI response in a common targeted brain region, blood oxygen dependent (BOLD) signals were measured during electrical stimulation of the right medial forebrain bundle (MFB), the right perforant pathway (PP) and concurrent stimulation of the two fiber systems. Repetitive electrical stimulations of the MFB triggered significant positive BOLD responses in the nucleus accumbens (NAcc), septum, anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), ventral tegmental area/substantia nigra (VTA/SN), right entorhinal cortex (EC) and colliculus superior, which, in general, declined during later stimulation trains. At the same time, negative BOLD responses were observed in the striatum. Thus, the same stimulus caused region-specific hemodynamic responses. An identical electrical stimulation of the PP generated positive BOLD responses in the right dentate gyrus/hippocampus proper/subiculum (DG/HC), the right entorhinal cortex and the left entorhinal cortex, which remained almost stable during consecutive stimulation trains. Co-stimulation of the two fiber systems resulted in an additive activation pattern, i.e., the BOLD responses were stronger during the stimulation of the two pathways than during the stimulation of only one pathway. However, during the simultaneous stimulation of the two pathways, the development of the BOLD responses to consecutive trains changed. The BOLD responses in regions that were predominantly activated by MFB stimulation (i.e., NAcc, septum and ACC/mPFC) did not decline as fast as during pure MFB stimulation, thus an additive BOLD response was only observed during later trains. In contrast, in the brain regions that were predominantly activated by PP stimulation (i.e., right EC, DG/HC), co-stimulation of the MFB only resulted in an additive effect during early trains but not later trains. Consequently, the development of the BOLD responses during consecutive stimulations indicates the presence of an interaction between the two pathways in a target region, whereas the observed averaged BOLD responses do not.
Collapse
Affiliation(s)
- Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | | | | | | |
Collapse
|
14
|
Angenstein F, Krautwald K, Wetzel W, Scheich H. Perforant pathway stimulation as a conditioned stimulus for active avoidance learning triggers BOLD responses in various target regions of the hippocampus: a combined fMRI and electrophysiological study. Neuroimage 2013; 75:213-227. [PMID: 23507376 DOI: 10.1016/j.neuroimage.2013.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022] Open
Abstract
Functional magnetic resonance imaging and electrophysiology were combined to monitor blood oxygen level dependent (BOLD) signals in the entire rat brain and neuronal activities in the dentate gyrus during electrical stimulation of the right perforant pathway. In naïve, medetomidine sedated animals, stimulation of the fiber bundle with 15 trains (i.e. 8 bursts of 20 pulses given with 10 ms intervals, one burst per second, pulse width 0.2 ms) generated significant BOLD responses in the right hippocampal formation and the left entorhinal cortex. The stimulation condition also caused changes in the synaptic efficacy of perforant pathway granular cell synapses that lasted for at least one day. Rerun of the same experiment one day later resulted in a significantly increased electrophysiological response in the dentate gyrus and an increase of the BOLD response in the entire hippocampal formation. Consequently, long-lasting changes in synaptic efficacy go along with changes in the generated BOLD response. Additional electrical stimulations of the perforant pathway in the awake animal between the two fMRI experiments caused in the second fMRI measurement an increased BOLD response in the hippocampal formation and an appearance of significant BOLD responses in target regions of the hippocampus, such as the septum, nucleus accumbens (NAcc), and anterior cingulate cortex/medial prefrontal cortex/motor cortex (ACC/mPFC/MC) regions. Consequently, the efficacy of signal processing in and propagation through the hippocampus can be monitored by variations of the BOLD response in target regions of the hippocampus. Using the electrical perforant pathway stimulations as conditioned stimulus for an active avoidance task (shuttle box) caused a further spreading of the BOLD response in the hippocampus formation, septum and ACC/mPFC/MC but not in the NAcc. In addition, the magnitude of the BOLD response in the trained animals was further increased in the right and left hippocampus and the ACC/mPFC/MC region but not in the septum. These results demonstrate that in addition to general stimulus parameter the behavioral relevance of the stimulus controls the quality of the generated BOLD response.
Collapse
Affiliation(s)
- Frank Angenstein
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Special Lab for Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Karla Krautwald
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Wolfram Wetzel
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Special Lab for Behavioral Pharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Henning Scheich
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Auditory Learning & Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|