1
|
Cheng S, Liu Y, Gao Y, Dong Z. "As if it were my own hand": inducing the rubber hand illusion through virtual reality for motor imagery enhancement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:7086-7096. [PMID: 39250394 DOI: 10.1109/tvcg.2024.3456147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Brain-computer interfaces (BCI) are widely used in the field of disability assistance and rehabilitation, and virtual reality (VR) is increasingly used for visual guidance of BCI-MI (motor imagery). Therefore, how to improve the quality of electroencephalogram (EEG) signals for MI in VR has emerged as a critical issue. People can perform MI more easily when they visualize the hand used for visual guidance as their own, and the Rubber Hand Illusion (RHI) can increase people's ownership of the prosthetic hand. We proposed to induce RHI in VR to enhance participants' MI ability and designed five methods of inducing RHI, namely active movement, haptic stimulation, passive movement, active movement mixed with haptic stimulation, and passive movement mixed with haptic stimulation, respectively. We constructed a first-person training scenario to train participants' MI ability through the five induction methods. The experimental results showed that through the training, the participants' feeling of ownership of the virtual hand in VR was enhanced, and the MI ability was improved. Among them, the method of mixing active movement and tactile stimulation proved to have a good effect on enhancing MI. Finally, we developed a BCI system in VR utilizing the above training method, and the performance of the participants improved after the training. This also suggests that our proposed method is promising for future application in BCI rehabilitation systems.
Collapse
|
2
|
Magnani FG, Cacciatore M, Barbadoro F, Ippoliti C, Leonardi M. Sense of ownership influence on tactile perception: Is the predictive coding account valid for the somatic rubber hand Illusion? Conscious Cogn 2024; 123:103710. [PMID: 38870729 DOI: 10.1016/j.concog.2024.103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
According to the predictive coding account, the attenuation of tactile perception on the hand exposed to the visuo-tactile Rubber Hand Illusion (vtRHI) relies on a weight increase of visual information deriving from the fake hand and a weight decrease of tactile information deriving from the individual's hand. To explore if this diametrical modulation persists in the absence of vision when adopting the somatic RHI (sRHI), we recorded tactile acuity measures before and after both RHI paradigms in 31 healthy individuals, hypothesizing a weight decrease for somatosensory information deriving from the hand undergoing the illusion and a weight increase for those deriving from the contralateral hand in the sRHI. Our results showed a significant overall decrease in tactile acuity on the hand undergoing the illusion whilst no changes emerged on the contralateral hand during sRHI. Since the sRHI was not accompanied by the hand spatial remapping, despite the generation of the feeling of ownership toward the fake hand, we hypothesized spatial remapping might play a pivotal role in determining sensory information weight attribution.
Collapse
Affiliation(s)
- Francesca G Magnani
- SC Neurologia, Salute Pubblica, Disabilità - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Cacciatore
- SC Neurologia, Salute Pubblica, Disabilità - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Filippo Barbadoro
- SC Neurologia, Salute Pubblica, Disabilità - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Ippoliti
- SC Neurologia, Salute Pubblica, Disabilità - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matilde Leonardi
- SC Neurologia, Salute Pubblica, Disabilità - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Xu X, Fan X, Dong J, Zhang X, Song Z, Li W, Pu F. Event-Related EEG Desynchronization Reveals Enhanced Motor Imagery From the Third Person Perspective by Manipulating Sense of Body Ownership With Virtual Reality for Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1055-1067. [PMID: 38349835 DOI: 10.1109/tnsre.2024.3365587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Virtual reality (VR)-based rehabilitation training holds great potential for post-stroke motor recovery. Existing VR-based motor imagery (MI) paradigms mostly focus on the first-person perspective, and the benefit of the third-person perspective (3PP) remains to be further exploited. The 3PP is advantageous for movements involving the back or those with a large range because of its field coverage. Some movements are easier to imagine from the 3PP. However, the 3PP training efficiency may be unsatisfactory, which may be attributed to the difficulty encountered when generating a strong sense of ownership (SOO). In this work, we attempt to enhance a visual-guided 3PP MI in stroke patients by eliciting the SOO over a virtual avatar with VR. We propose to achieve this by inducing the so-called out-of-body experience (OBE), which is a full-body illusion (FBI) that people misperceive a 3PP virtual body as his/her own (i.e., generating the SOO to the virtual body). Electroencephalography signals of 13 stroke patients are recorded while MI of the affected upper limb is being performed. The proposed paradigm is evaluated by comparing event-related desynchronization (ERD) with a control paradigm without FBI induction. The results show that the proposed paradigm leads to a significantly larger ERD during MI, indicating a bilateral activation pattern consistent with that in previous studies. In conclusion, 3PP MI can be enhanced in stroke patients by eliciting the SOO through induction of the "OBE" FBI. This study offers more possibilities for virtual rehabilitation in stroke patients and can further facilitate VR application in rehabilitation.
Collapse
|
4
|
Berger CC, Coppi S, Ehrsson HH. Synchronous motor imagery and visual feedback of finger movement elicit the moving rubber hand illusion, at least in illusion-susceptible individuals. Exp Brain Res 2023; 241:1021-1039. [PMID: 36928694 PMCID: PMC10081980 DOI: 10.1007/s00221-023-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Recent evidence suggests that imagined auditory and visual sensory stimuli can be integrated with real sensory information from a different sensory modality to change the perception of external events via cross-modal multisensory integration mechanisms. Here, we explored whether imagined voluntary movements can integrate visual and proprioceptive cues to change how we perceive our own limbs in space. Participants viewed a robotic hand wearing a glove repetitively moving its right index finger up and down at a frequency of 1 Hz, while they imagined executing the corresponding movements synchronously or asynchronously (kinesthetic-motor imagery); electromyography (EMG) from the participants' right index flexor muscle confirmed that the participants kept their hand relaxed while imagining the movements. The questionnaire results revealed that the synchronously imagined movements elicited illusory ownership and a sense of agency over the moving robotic hand-the moving rubber hand illusion-compared with asynchronously imagined movements; individuals who affirmed experiencing the illusion with real synchronous movement also did so with synchronous imagined movements. The results from a proprioceptive drift task further demonstrated a shift in the perceived location of the participants' real hand toward the robotic hand in the synchronous versus the asynchronous motor imagery condition. These results suggest that kinesthetic motor imagery can be used to replace veridical congruent somatosensory feedback from a moving finger in the moving rubber hand illusion to trigger illusory body ownership and agency, but only if the temporal congruence rule of the illusion is obeyed. This observation extends previous studies on the integration of mental imagery and sensory perception to the case of multisensory bodily awareness, which has potentially important implications for research into embodiment of brain-computer interface controlled robotic prostheses and computer-generated limbs in virtual reality.
Collapse
Affiliation(s)
- Christopher C Berger
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Biology and Biological Engineering/Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Sara Coppi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Song M, Jeong H, Kim J, Jang SH, Kim J. An EEG-based asynchronous MI-BCI system to reduce false positives with a small number of channels for neurorehabilitation: A pilot study. Front Neurorobot 2022; 16:971547. [PMID: 36172602 PMCID: PMC9510756 DOI: 10.3389/fnbot.2022.971547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Many studies have used motor imagery-based brain–computer interface (MI-BCI) systems for stroke rehabilitation to induce brain plasticity. However, they mainly focused on detecting motor imagery but did not consider the effect of false positive (FP) detection. The FP could be a threat to patients with stroke as it can induce wrong-directed brain plasticity that would result in adverse effects. In this study, we proposed a rehabilitative MI-BCI system that focuses on rejecting the FP. To this end, we first identified numerous electroencephalogram (EEG) signals as the causes of the FP, and based on the characteristics of the signals, we designed a novel two-phase classifier using a small number of EEG channels, including the source of the FP. Through experiments with eight healthy participants and nine patients with stroke, our proposed MI-BCI system showed 71.76% selectivity and 13.70% FP rate by using only four EEG channels in the patient group with stroke. Moreover, our system can compensate for day-to-day variations for prolonged session intervals by recalibration. The results suggest that our proposed system, a practical approach for the clinical setting, could improve the therapeutic effect of MI-BCI by reducing the adverse effect of the FP.
Collapse
Affiliation(s)
- Minsu Song
- Department of Medical Device, Korea Institute of Machinery and Materials, Daegu, South Korea
| | - Hojun Jeong
- School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi-do, South Korea
| | - Jongbum Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung-Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jonghyun Kim
- School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi-do, South Korea
- *Correspondence: Jonghyun Kim
| |
Collapse
|
6
|
Sciortino P, Kayser C. The rubber hand illusion is accompanied by a distributed reduction of alpha and beta power in the EEG. PLoS One 2022; 17:e0271659. [PMID: 35905100 PMCID: PMC9337658 DOI: 10.1371/journal.pone.0271659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have reported correlates of bodily self-illusions such as the rubber hand in signatures of rhythmic brain activity. However, individual studies focused on specific variations of the rubber hand paradigm, used different experimental setups to induce this, or used different control conditions to isolate the neurophysiological signatures related to the illusory state, leaving the specificity of the reported illusion-signatures unclear. We here quantified correlates of the rubber hand illusion in EEG-derived oscillatory brain activity and asked two questions: which of the observed correlates are robust to the precise nature of the control conditions used as contrast for the illusory state, and whether such correlates emerge directly around the subjective illusion onset. To address these questions, we relied on two experimental configurations to induce the illusion, on different non-illusion conditions to isolate neurophysiological signatures of the illusory state, and we implemented an analysis directly focusing on the immediate moment of the illusion onset. Our results reveal a widespread suppression of alpha and beta-band activity associated with the illusory state in general, whereby the reduction of beta power prevailed around the immediate illusion onset. These results confirm previous reports of a suppression of alpha and beta rhythms during body illusions, but also highlight the difficulties to directly pinpoint the precise neurophysiological correlates of the illusory state.
Collapse
Affiliation(s)
- Placido Sciortino
- Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Multivariate Analysis of Evoked Responses during the Rubber Hand Illusion Suggests a Temporal Parcellation into Manipulation and Illusion-Specific Correlates. eNeuro 2022; 9:ENEURO.0355-21.2021. [PMID: 34980661 PMCID: PMC8805188 DOI: 10.1523/eneuro.0355-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The neurophysiological processes reflecting body illusions such as the rubber hand remain debated. Previous studies investigating the neural responses evoked by the illusion-inducing stimulation have provided diverging reports as to when these responses reflect the illusory state of the artificial limb becoming embodied. One reason for these diverging reports may be that different studies contrasted different experimental conditions to isolate potential correlates of the illusion, but individual contrasts may reflect multiple facets of the adopted experimental paradigm and not just the illusory state. To resolve these controversies, we recorded EEG responses in human participants and combined multivariate (cross-)classification with multiple Illusion and non-Illusion conditions. These conditions were designed to probe for markers of the illusory state that generalize across the spatial arrangements of limbs or the specific nature of the control object (a rubber hand or participant’s real hand), hence which are independent of the precise experimental conditions used as contrast for the illusion. Our results reveal a parcellation of evoked responses into a temporal sequence of events. Around 125 and 275 ms following stimulus onset, the neurophysiological signals reliably differentiate the illusory state from non-Illusion epochs. These results consolidate previous work by demonstrating multiple neurophysiological correlates of the rubber hand illusion and illustrate how multivariate approaches can help pinpointing those that are independent of the precise experimental configuration used to induce the illusion.
Collapse
|
8
|
The body-ownership is unconsciously distorted in the brain: An event-related potential study of rubber hand illusion. PSIHOLOGIJA 2022. [DOI: 10.2298/psi210126002l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Many studies have reported that bottom-up multisensory integration of visual, tactile, and proprioceptive information can distort our sense of body-ownership, producing rubber hand illusion (RHI). There is less evidence about when and how the body-ownership is distorted in the brain during RHI. To examine whether this illusion effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity (vMMN) component (the index of automatic deviant detection) and N2 (the index for conflict monitoring). Participants first performed an RHI elicitation task in a synchronous or asynchronous setting and then finished a passive visual oddball task in which the deviant stimuli were unrelated to the explicit task. A significant interaction between Deviancy (deviant hand vs. standard hand) and Group (synchronous vs. asynchronous) was found. The asynchronous group showed clear mismatch effects in both vMMN and N2, while the synchronous group had such effect only in N2. The results indicate that after the elicitation of RHI bottom-up integration could be retrieved at the early stage of sensory processing before top-down processing, providing evidence for the priority of the bottom-up processes after the generation of RHI and revealing the mechanism of how the body-ownership is unconsciously distorted in the brain.
Collapse
|
9
|
Precision control for a flexible body representation. Neurosci Biobehav Rev 2021; 134:104401. [PMID: 34736884 DOI: 10.1016/j.neubiorev.2021.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Adaptive body representation requires the continuous integration of multisensory inputs within a flexible 'body model' in the brain. The present review evaluates the idea that this flexibility is augmented by the contextual modulation of sensory processing 'top-down'; which can be described as precision control within predictive coding formulations of Bayesian inference. Specifically, I focus on the proposal that an attenuation of proprioception may facilitate the integration of conflicting visual and proprioceptive bodily cues. Firstly, I review empirical work suggesting that the processing of visual vs proprioceptive body position information can be contextualised 'top-down'; for instance, by adopting specific attentional task sets. Building up on this, I review research showing a similar contextualisation of visual vs proprioceptive information processing in the rubber hand illusion and in visuomotor adaptation. Together, the reviewed literature suggests that proprioception, despite its indisputable importance for body perception and action control, can be attenuated top-down (through precision control) to facilitate the contextual adaptation of the brain's body model to novel visual feedback.
Collapse
|
10
|
Della Longa L, Mento G, Farroni T. The Development of a Flexible Bodily Representation: Behavioral Outcomes and Brain Oscillatory Activity During the Rubber Hand Illusion in Preterm and Full-Term School-Age Children. Front Hum Neurosci 2021; 15:702449. [PMID: 34594191 PMCID: PMC8476838 DOI: 10.3389/fnhum.2021.702449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
During childhood, the body undergoes rapid changes suggesting the need to constantly update body representation based on the integration of multisensory signals. Sensory experiences in critical periods of early development may have a significant impact on the neurobiological mechanisms underpinning the development of the sense of one’s own body. Specifically, preterm children are at risk for sensory processing difficulties, which may lead to specific vulnerability in binding together sensory information in order to modulate the representation of the bodily self. The present study aims to investigate the malleability of body ownership in preterm (N = 21) and full-term (N = 19) school-age children, as reflected by sensitivity to the Rubber Hand Illusion. The results revealed that multisensory processes underlying the ability to identify a rubber hand as being part of one’s own body are already established in childhood, as indicated by a higher subjective feeling of embodiment over the rubber hand during synchronous visual-tactile stimulation. Notably, the effect of visual-tactile synchrony was related to the suppression of the alpha band oscillations over frontal, central, and parietal scalp regions, possibly indicating a greater activation of somatosensory and associative areas underpinning the illusory body ownership. Moreover, an interaction effect between visual-tactile condition and group emerged, suggesting that preterm children showed a greater suppression of alpha oscillatory activity during the illusion. This result together with lower scores of subjective embodiment over the rubber hand reported by preterm children indicate that preterm birth may affect the development of the flexible representation of the body. These findings provide an essential contribution to better understand the processes of identification and differentiation of the bodily self from the external environment, in both full-term and preterm children, paving the way for a multisensory and embodied approach to the investigation of social and cognitive development.
Collapse
Affiliation(s)
- Letizia Della Longa
- Developmental Psychology and Socialization Department, University of Padua, Padua, Italy
| | - Giovanni Mento
- General Psychology Department, University of Padua, Padua, Italy.,PNC Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Teresa Farroni
- Developmental Psychology and Socialization Department, University of Padua, Padua, Italy.,PNC Padua Neuroscience Centre, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Liesner M, Hinz NA, Kunde W. How Action Shapes Body Ownership Momentarily and Throughout the Lifespan. Front Hum Neurosci 2021; 15:697810. [PMID: 34295232 PMCID: PMC8290176 DOI: 10.3389/fnhum.2021.697810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objects which a human agent controls by efferent activities (such as real or virtual tools) can be perceived by the agent as belonging to his or her body. This suggests that what an agent counts as “body” is plastic, depending on what she or he controls. Yet there are possible limitations for such momentary plasticity. One of these limitations is that sensations stemming from the body (e.g., proprioception) and sensations stemming from objects outside the body (e.g., vision) are not integrated if they do not sufficiently “match”. What “matches” and what does not is conceivably determined by long–term experience with the perceptual changes that body movements typically produce. Children have accumulated less sensorimotor experience than adults have. Consequently, they express higher flexibility to integrate body-internal and body-external signals, independent of their “match” as suggested by rubber hand illusion studies. However, children’s motor performance in tool use is more affected by mismatching body-internal and body-external action effects than that of adults, possibly because of less developed means to overcome such mismatches. We review research on perception-action interactions, multisensory integration, and developmental psychology to build bridges between these research fields. By doing so, we account for the flexibility of the sense of body ownership for actively controlled events and its development through ontogeny. This gives us the opportunity to validate the suggested mechanisms for generating ownership by investigating their effects in still developing and incomplete stages in children. We suggest testable predictions for future studies investigating both body ownership and motor skills throughout the lifespan.
Collapse
Affiliation(s)
- Marvin Liesner
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nina-Alisa Hinz
- Department of Psychology, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Wilfried Kunde
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Increasing self-other bodily overlap increases sensorimotor resonance to others' pain. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:19-33. [PMID: 31190136 PMCID: PMC7012796 DOI: 10.3758/s13415-019-00724-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Empathy for another person’s pain and feeling pain oneself seem to be accompanied by similar or shared neural responses. Such shared responses could be achieved by mapping the bodily states of others onto our own bodily representations. We investigated whether sensorimotor neural responses to the pain of others are increased when experimentally reducing perceived bodily distinction between the self and the other. Healthy adult participants watched video clips of the hands of ethnic ingroup or outgroup members being painfully penetrated by a needle syringe or touched by a cotton swab. Manipulating the video presentation to create a visuospatial overlap between the observer’s and the target’s hand increased the perceived bodily self-attribution of the target’s hand. For both ingroup and outgroup targets, this resulted in increased neural responses to the painful injections (compared with nonpainful contacts), as indexed by desynchronizations of central mu and beta scalp rhythms recorded using electroencephalography. Furthermore, these empathy-related neural activations were stronger in participants who reported stronger bodily self-attribution of the other person’s hand. Our findings provide further evidence that empathy for pain engages sensorimotor resonance mechanisms. They also indicate that reducing bodily self-other distinction may increase such resonance for ingroup as well as outgroup targets.
Collapse
|
13
|
Kanayama N, Hara M, Kimura K. Virtual reality alters cortical oscillations related to visuo-tactile integration during rubber hand illusion. Sci Rep 2021; 11:1436. [PMID: 33446834 PMCID: PMC7809445 DOI: 10.1038/s41598-020-80807-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Virtual reality (VR) enables the fast, free, and highly controllable setting of experimental body images. Illusions pertaining to a body, such as the rubber hand illusion (RHI), can be easily conducted in VR settings, and some phenomena, such as full-body illusions, are only realized in virtual environments. However, the multisensory-integration process in VR is not yet fully understood. Thus, it remains to be clarified if specific phenomena that occur under VR settings manifest in real life as well. One useful investigative approach is measuring brain activities during a psychological experiment. Electroencephalography (EEG) oscillatory activities provide insight into the human multisensory integration process. Nevertheless, EEG data can be vulnerable to VR noise, which causes measurement and analytical difficulties for EEG data recorded in VR environments. Here, we achieve an experimental RHI setting using a head-mounted display that provides a VR visual space and VR dummy hand along with EEG measurements. We compared EEG data collected in both real and VR environments and observed the gamma and theta band oscillatory activities. Ultimately, we observed statistically significant differences between congruent (RHI) and incongruent (not RHI) conditions in the real environment, which is consistent with previous studies. Differences in the VR condition were observed only on the late theta band oscillation, suggesting that the VR setting itself altered the perceptual and sensory integration mechanisms. Thus, we must model this difference between real and VR settings whenever we use VR to investigate our bodily self-perception.
Collapse
Affiliation(s)
- Noriaki Kanayama
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan.
| | - Masayuki Hara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kenta Kimura
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
14
|
Improving performance in motor imagery BCI-based control applications via virtually embodied feedback. Comput Biol Med 2020; 127:104079. [PMID: 33126130 DOI: 10.1016/j.compbiomed.2020.104079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Brain-computer interfaces (BCIs) based on motor imagery (MI) are commonly used for control applications. However, these applications require strong and discriminant neural patterns for which extensive experience in MI may be necessary. Inspired by the field of rehabilitation where embodiment is a key element for improving cortical activity, our study proposes a novel control scheme in which virtually embodiable feedback is provided during control to enhance performance. METHODS Subjects underwent two immersive virtual reality control scenarios in which they controlled the two-dimensional movement of a device using electroencephalography (EEG). The two scenarios only differ on whether embodiable feedback, which mirrors the movement of the classified intention, is provided. After undergoing each scenario, subjects also answered a questionnaire in which they rated how immersive the scenario and embodiable the feedback were. RESULTS Subjects exhibited higher control performance, greater discriminability in brain activity patterns, and enhanced cortical activation when using our control scheme compared to the standard control scheme in which embodiable feedback is absent. Moreover, the self-rated embodiment and presence scores showed significantly positive linear relationships with performance. SIGNIFICANCE The findings in our study provide evidence that providing embodiable feedback as guidance on how intention is classified may be effective for control applications by inducing enhanced neural activity and patterns with greater discriminability. By applying embodiable feedback to immersive virtual reality, our study also serves as another instance in which virtual reality is shown to be a promising tool for improving MI.
Collapse
|
15
|
Crivelli D, Balconi M. Extending the Body Ownership to Affective Experience of an Embodied Artificial Hand: a Power Spectra Investigation. Multisens Res 2020; 34:441-453. [PMID: 33706268 DOI: 10.1163/22134808-bja10037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/13/2020] [Indexed: 11/19/2022]
Abstract
According to implicit accounts, human self-awareness grounds on the so-called sense of ownership (SoO). Empirical investigations of SoO have mostly focused on the manipulation of self-ascription of sensations and experiences involving the body via the induction of bodily illusions, such as the Rubber-Hand Illusion (RHI). While it has been proposed that the affective dimension necessarily contributes to the development of a full ownership ascription, the relationship between affective experience and body ownership still presents many open questions. This study thus aimed at investigating the boundaries of ownership ascriptions and the extent to which an external object can be incorporated within one's own body representation, with a specific focus on the possibility for it to become a potential object of own affective experience marked by specific electrophysiological responses. Therefore, we induced RHI in 16 participants and then applied an aversive vs. pleasant stimulation to the embodied external object, while monitoring their electrophysiological activity for central physiological markers of affective processing. Data analysis revealed the effect of the stimulation condition on alpha band power over frontal areas, with higher alpha power during the pleasant stimulation condition with respect to the aversive stimulation one over medial and right frontal electrode sites. The present findings add to the limited pieces of evidence concerning the link between experiences of illusory body ownership, embodiment mechanisms, and affective factors, suggesting that the boundaries of body ownership might be extended to making incorporated objects the source of complex emotional responses beyond basic defensive reactions.
Collapse
Affiliation(s)
- Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| |
Collapse
|
16
|
Son JE, Choi H, Lim H, Ku J. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Technol Health Care 2020; 28:509-519. [PMID: 32364183 PMCID: PMC7369077 DOI: 10.3233/thc-209051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: This study focused on developing an upper limb rehabilitation program. In this regard, a steady state visual evoked potential (SSVEP) triggered brain computer interface (BCI)-functional electrical stimulation (FES) based action observation game featuring a flickering action video was designed. OBJECTIVE: In particular, the synergetic effect of the game was investigated by combining the action observation paradigm with BCI based FES. METHODS: The BCI-FES system was contrasted under two conditions: with flickering action video and flickering noise video. In this regard, 11 right-handed subjects aged between 22–27 years were recruited. The differences in brain activation in response to the two conditions were examined. RESULTS: The results indicate that T3 and P3 channels exhibited greater Mu suppression in 8–13 Hz for the action video than the noise video. Furthermore, T4, C4, and P4 channels indicated augmented high beta (21–30 Hz) for the action in contrast to the noise video. Finally, T4 indicated suppressed low beta (14–20 Hz) for the action video in contrast to the noise video. CONCLUSION: The flickering action video based BCI-FES system induced a more synergetic effect on cortical activation than the flickering noise based system.
Collapse
Affiliation(s)
- Ji Eun Son
- Department of Bioscience, College of Natural Science, Keimyung University, Daegu, Korea.,Department of Bioscience, College of Natural Science, Keimyung University, Daegu, Korea
| | - Hyoseon Choi
- Department of Rehabilitation Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul, Korea.,Department of Bioscience, College of Natural Science, Keimyung University, Daegu, Korea
| | - Hyunmi Lim
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Korea
| | - Jeonghun Ku
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
17
|
Toet A, Kuling IA, Krom BN, van Erp JBF. Toward Enhanced Teleoperation Through Embodiment. Front Robot AI 2020; 7:14. [PMID: 33501183 PMCID: PMC7805894 DOI: 10.3389/frobt.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
Telerobotics aims to transfer human manipulation skills and dexterity over an arbitrary distance and at an arbitrary scale to a remote workplace. A telerobotic system that is transparent enables a natural and intuitive interaction. We postulate that embodiment (with three sub-components: sense of ownership, agency, and self-location) of the robotic system leads to optimal perceptual transparency and increases task performance. However, this has not yet been investigated directly. We reason along four premises and present findings from the literature that substantiate each of them: (1) the brain can embody non-bodily objects (e.g., robotic hands), (2) embodiment can be elicited with mediated sensorimotor interaction, (3) embodiment is robust against inconsistencies between the robotic system and the operator's body, and (4) embodiment positively correlates to dexterous task performance. We use the predictive encoding theory as a framework to interpret and discuss the results reported in the literature. Numerous previous studies have shown that it is possible to induce embodiment over a wide range of virtual and real extracorporeal objects (including artificial limbs, avatars, and android robots) through mediated sensorimotor interaction. Also, embodiment can occur for non-human morphologies including for elongated arms and a tail. In accordance with the predictive encoding theory, none of the sensory modalities is critical in establishing ownership, and discrepancies in multisensory signals do not necessarily lead to loss of embodiment. However, large discrepancies in terms of multisensory synchrony or visual likeness can prohibit embodiment from occurring. The literature provides less extensive support for the link between embodiment and (dexterous) task performance. However, data gathered with prosthetic hands do indicate a positive correlation. We conclude that all four premises are supported by direct or indirect evidence in the literature, suggesting that embodiment of a remote manipulator may improve dexterous performance in telerobotics. This warrants further implementation testing of embodiment in telerobotics. We formulate a first set of guidelines to apply embodiment in telerobotics and identify some important research topics.
Collapse
Affiliation(s)
- Alexander Toet
- Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Irene A. Kuling
- Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Bouke N. Krom
- Intelligent Autonomous Systems, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, Netherlands
| | - Jan B. F. van Erp
- Perceptual and Cognitive Systems, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
- Human Media Interaction, University of Twente, Enschede, Netherlands
| |
Collapse
|
18
|
Electroencephalographic evidence for the involvement of mirror-neuron and error-monitoring related processes in virtual body ownership. Neuroimage 2020; 207:116351. [DOI: 10.1016/j.neuroimage.2019.116351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022] Open
|
19
|
Muñoz F, Casado P, Hernández-Gutiérrez D, Jiménez-Ortega L, Fondevila S, Espuny J, Sánchez-García J, Martín-Loeches M. Neural Dynamics in the Processing of Personal Objects as an Index of the Brain Representation of the Self. Brain Topogr 2019; 33:86-100. [DOI: 10.1007/s10548-019-00748-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
20
|
Riečanský I, Lamm C. The Role of Sensorimotor Processes in Pain Empathy. Brain Topogr 2019; 32:965-976. [PMID: 31705422 PMCID: PMC6882755 DOI: 10.1007/s10548-019-00738-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Pain is a salient, aversive sensation which motivates avoidance, but also has a strong social signaling function. Numerous studies have shown that regions of the nervous system active in association with first-hand pain are also active in response to the pain of others. When witnessing somatic pain, such as seeing bodies in painful situations, significant activations occur not only in areas related to the processing of negative emotions, but also in neuronal structures engaged in somatosensation and the control of skeletal muscles. These empathy-related sensorimotor activations are selectively reviewed in this article, with a focus on studies using electrophysiological methods and paradigms investigating responses to somatic pain. Convergent evidence from these studies shows that these activations (1) occur at multiple levels of the nervous system, from the spinal cord up to the cerebral cortex, (2) are best conceptualized as activations of a defensive system, in line with the role of pain to protect body from injury, and (3) contribute to establishing a matching of psychological states between the sufferer and the observer, which ultimately supports empathic understanding and motivate prosocial action. Future research should thus focus on how these sensorimotor responses are related to higher-order empathic responses, including affective sharing and emotion regulation, and how this motivates approach-related prosocial behaviors aimed at alleviating the pain and suffering of others.
Collapse
Affiliation(s)
- Igor Riečanský
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010, Vienna, Austria
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovakia
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010, Vienna, Austria.
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
21
|
Weston CSE. Four Social Brain Regions, Their Dysfunctions, and Sequelae, Extensively Explain Autism Spectrum Disorder Symptomatology. Brain Sci 2019; 9:E130. [PMID: 31167459 PMCID: PMC6627615 DOI: 10.3390/brainsci9060130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a challenging neurodevelopmental disorder with symptoms in social, language, sensory, motor, cognitive, emotional, repetitive behavior, and self-sufficient living domains. The important research question examined is the elucidation of the pathogenic neurocircuitry that underlies ASD symptomatology in all its richness and heterogeneity. The presented model builds on earlier social brain research, and hypothesizes that four social brain regions largely drive ASD symptomatology: amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and insula. The amygdala's contributions to ASD largely derive from its major involvement in fine-grained intangible knowledge representations and high-level guidance of gaze. In addition, disrupted brain regions can drive disturbance of strongly interconnected brain regions to produce further symptoms. These and related effects are proposed to underlie abnormalities of the visual cortex, inferior frontal gyrus (IFG), caudate nucleus, and hippocampus as well as associated symptoms. The model is supported by neuroimaging, neuropsychological, neuroanatomical, cellular, physiological, and behavioral evidence. Collectively, the model proposes a novel, parsimonious, and empirically testable account of the pathogenic neurocircuitry of ASD, an extensive account of its symptomatology, a novel physiological biomarker with potential for earlier diagnosis, and novel experiments to further elucidate the mechanisms of brain abnormalities and symptomatology in ASD.
Collapse
|
22
|
Song M, Kim J. A Paradigm to Enhance Motor Imagery Using Rubber Hand Illusion Induced by Visuo-Tactile Stimulus. IEEE Trans Neural Syst Rehabil Eng 2019; 27:477-486. [PMID: 30703031 DOI: 10.1109/tnsre.2019.2895029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enhancing motor imagery (MI) results in amplified event-related desynchronization (ERD) and is important for MI-based rehabilitation and brain-computer interface (BCI) applications. Many attempts to enhance the MI by providing a visual guidance have been reported. We believe that the rubber hand illusion (RHI), which induces body ownership over an external object, can provide better guidance to enhance MI; thus, an RHI-based paradigm with motorized moving rubber hand was proposed. To validate the proposed MI enhancing paradigm, we conducted an experimental comparison among paradigms with 20 healthy subjects. The peak amplitude and arrival times of ERD were compared at contralateral and ipsilateral electroencephalogram channels. We found significantly amplified ERD caused by the proposed paradigm, which is similar to the ERD caused by motor execution. In addition, the arrival time suggests that the proposed paradigm is applicable for BCI. In conclusion, the proposed paradigm can significantly enhance the MI with better characteristics for use with BCI.
Collapse
|
23
|
Abstract
At any given moment, we receive input through our different sensory systems, and this information needs to be processed and integrated. Multisensory processing requires the coordinated activity of distinct cortical areas. Key mechanisms implicated in these processes include local neural oscillations and functional connectivity between distant cortical areas. Evidence is now emerging that neural oscillations in distinct frequency bands reflect different mechanisms of multisensory processing. Moreover, studies suggest that aberrant neural oscillations contribute to multisensory processing deficits in clinical populations, such as schizophrenia. In this article, we review recent literature on the neural mechanisms underlying multisensory processing, focusing on neural oscillations. We derive a framework that summarizes findings on (1) stimulus-driven multisensory processing, (2) the influence of top-down information on multisensory processing, and (3) the role of predictions for the formation of multisensory perception. We propose that different frequency band oscillations subserve complementary mechanisms of multisensory processing. These processes can act in parallel and are essential for multisensory processing.
Collapse
Affiliation(s)
- Julian Keil
- 1 Biological Psychology, Christian-Albrechts-University Kiel, Kiel, Germany
- 2 Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Senkowski
- 2 Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Sel A, Azevedo RT, Tsakiris M. Heartfelt Self: Cardio-Visual Integration Affects Self-Face Recognition and Interoceptive Cortical Processing. Cereb Cortex 2018; 27:5144-5155. [PMID: 28334126 DOI: 10.1093/cercor/bhw296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
The sense of body-ownership relies on the representation of both interoceptive and exteroceptive signals coming from one's body. However, it remains unknown how the integration of bodily signals coming from "outside" and "inside" the body is instantiated in the brain. Here, we used a modified version of the Enfacement Illusion to investigate whether the integration of visual and cardiac information can alter self-face recognition (Experiment 1) and neural responses to heartbeats (Experiment 2). We projected a pulsing shade, that was synchronous or asynchronous with the participant's heartbeat, onto a picture depicting the participant's face morphed with the face of an unfamiliar other. Results revealed that synchronous (vs. asynchronous) cardio-visual stimulation led to increased self-identification with the other's face (Experiment 1), while during stimulation, synchronicity modulated the amplitude of the Heartbeat Evoked Potential, an electrophysiological index of cortical interoceptive processing (Experiment 2). Importantly, the magnitude of the illusion-related effects was dependent on, and increased linearly, with the participants' Interoceptive Accuracy. These results provide the first direct neural evidence for the integration of interoceptive and exteroceptive signals in bodily self-awareness.
Collapse
Affiliation(s)
- Alejandra Sel
- Lab of Action & Body, Department of Psychology, Royal Holloway University London, Egham, Surrey TW20 0EX, London, UK.,Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Ruben T Azevedo
- Lab of Action & Body, Department of Psychology, Royal Holloway University London, Egham, SurreyTW20 0EX, London, UK
| | - Manos Tsakiris
- Lab of Action & Body, Department of Psychology, Royal Holloway University London, Egham, Surrey TW20 0EX, London, UK.,The Warburg Institute, School of Advanced Studies, University of London, Woburn Square, London WC1H 0AB, UK
| |
Collapse
|
25
|
Arizono N, Kondo T. Functional connectivity analysis of brain hemodynamics during rubber hand illusion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:4258-61. [PMID: 26737235 DOI: 10.1109/embc.2015.7319335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embodied cognition has been eagerly studied in the recent neuroscience research field. In particular, hand ownership has been investigated through the rubber hand illusion (RHI). Most of the research measured the brain activities during the RHI by using EEG, fMRI, etc., however, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we attempt to measure the brain activities during the RHI task with NIRS, and analyze the functional connectivity so as to understand the relationship between NIRS features and the state of embodied cognition. For the purpose, we developed a visuo-tactile stimulator in the study. As a result, we found that the subjects felt illusory experience showed significant peaks of oxy-Hb in both prefrontal and premotor cortices during RHI. Furthermore, we confirmed a reliable causality connection from right prefrontal to right premotor cortex. This result suggests that the RHI is associated with the neural circuits underlying motor control. Therefore, we considered that the RHI with the functional connectivity analysis will become an appropriate model investigating a biomarker for neurorehabilitation, and the diagnosis of the mental disorders.
Collapse
|
26
|
Effects of illusory kinesthesia by tendon vibratory stimulation on the postoperative neural activities of distal radius fracture patients. Neuroreport 2017; 28:1144-1149. [DOI: 10.1097/wnr.0000000000000874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Moore MR, Franz EA. Resting-state mu activity modulations are associated with aloofness. PERSONALITY AND INDIVIDUAL DIFFERENCES 2017. [DOI: 10.1016/j.paid.2017.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Rao IS, Kayser C. Neurophysiological Correlates of the Rubber Hand Illusion in Late Evoked and Alpha/Beta Band Activity. Front Hum Neurosci 2017; 11:377. [PMID: 28790906 PMCID: PMC5524680 DOI: 10.3389/fnhum.2017.00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
The rubber hand illusion (RHI) allows insights into how the brain resolves conflicting multisensory information regarding body position and ownership. Previous neuroimaging studies have reported a variety of neurophysiological correlates of illusory hand ownership, with conflicting results likely originating from differences in experimental parameters and control conditions. Here, we overcome these limitations by using a fully automated and precisely-timed visuo-tactile stimulation setup to record evoked responses and oscillatory responses in participants who felt the RHI. Importantly, we relied on a combination of experimental conditions to rule out confounds of attention, body-stimulus position and stimulus duration and on the combination of two control conditions to identify neurophysiological correlates of illusory hand ownership. In two separate experiments we observed a consistent illusion-related attenuation of ERPs around 330 ms over frontocentral electrodes, as well as decreases of frontal alpha and beta power during the illusion that could not be attributed to changes in attention, body-stimulus position or stimulus duration. Our results reveal neural correlates of illusory hand ownership in late and likely higher-order rather than early sensory processes, and support a role of premotor and possibly intraparietal areas in mediating illusory body ownership.
Collapse
Affiliation(s)
- Isa S Rao
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Christoph Kayser
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| |
Collapse
|
29
|
Self-Grounded Vision: Hand Ownership Modulates Visual Location through Cortical β and γ Oscillations. J Neurosci 2017; 37:11-22. [PMID: 28053026 DOI: 10.1523/jneurosci.0563-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 11/21/2022] Open
Abstract
Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher β/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with β/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. SIGNIFICANCE STATEMENT Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only on bodily signals, but also on the sense of self. Relying on the rubber hand illusion, we manipulated hand ownership, so that participants embodied a rubber hand placed next to their own hand. We found that visual afterimages projected on the participant's hand drifted laterally, only when the rubber hand was embodied. Electroencephalography revealed spectral dissociations between somatic and visual effects, and higher γ connectivity along the dorsal visual pathways when the rubber hand was embodied.
Collapse
|
30
|
Dieguez S, Lopez C. The bodily self: Insights from clinical and experimental research. Ann Phys Rehabil Med 2017; 60:198-207. [DOI: 10.1016/j.rehab.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|
31
|
Kanayama N, Asai T, Nakao T, Makita K, Kozuma R, Uyama T, Yamane T, Kadota H, Yamawaki S. Subjectivity of the Anomalous Sense of Self Is Represented in Gray Matter Volume in the Brain. Front Hum Neurosci 2017; 11:232. [PMID: 28536515 PMCID: PMC5422542 DOI: 10.3389/fnhum.2017.00232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/21/2017] [Indexed: 01/15/2023] Open
Abstract
The self includes complicated and heterogeneous functions. Researchers have divided the self into three distinct functions called “agency,” “ownership,” and “narrative self”. These correspond to psychiatric symptoms, behavioral characteristics and neural responses, but their relationship with brain structure is unclear. This study examined the relationship between the subjectivity of self-related malfunctions and brain structure in terms of gray matter (GM) volume in 96 healthy people. They completed a recently developed self-reported questionnaire called the Embodied Sense of Self Scale (ESSS) that measures self-related malfunctions. The ESSS has three subscales reflecting the three distinct functions of the self. We also determined the participants’ brain structures using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM). Multiple regression analysis revealed a significant negative correlation between ownership malfunction and the insular cortex GM volume. A relationship with brain structure could thus only be confirmed for the ESSS “ownership” subscale. This finding suggests that distinct brain structures feel ownership and that the ESSS could partly screen for distinct brain structures.
Collapse
Affiliation(s)
- Noriaki Kanayama
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| | - Tomohisa Asai
- Nippon Telegraph and Telephone Communication Science Laboratories, Human Information Science LaboratoryKanagawa, Japan
| | - Takashi Nakao
- Department of Psychology, Graduate School of Education, Hiroshima UniversityHiroshima, Japan
| | - Kai Makita
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| | - Ryutaro Kozuma
- Faculty of Medicine, Hiroshima UniversityHiroshima, Japan
| | - Takuto Uyama
- Faculty of Medicine, Hiroshima UniversityHiroshima, Japan
| | | | - Hiroshi Kadota
- Research Institute, Kochi University of TechnologyKochi, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| |
Collapse
|
32
|
Llorens R, Borrego A, Palomo P, Cebolla A, Noé E, i Badia SB, Baños R. Body schema plasticity after stroke: Subjective and neurophysiological correlates of the rubber hand illusion. Neuropsychologia 2017; 96:61-69. [DOI: 10.1016/j.neuropsychologia.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
|
33
|
Huang Y, Wu Y. Ownership Effect Can Be a Result of Other-Derogation: Evidence from Behavioral and Electrophysiological Studies. PLoS One 2016; 11:e0166054. [PMID: 27814395 PMCID: PMC5096666 DOI: 10.1371/journal.pone.0166054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/22/2016] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that people overvalue their own objects compared to those owned by others, even when the two objects are virtually identical (i.e., ownership effect). Most researchers seem to consider self-enhancement as the underlying mechanism while neglecting the possible process of other-derogation. Here, we attempted to compare these two perspectives, adopting both implicit and neurocognitive methodologies to overcome social desirability confounds. In Study 1, we found that the ownership effect (measured by Implicit Association Test), was correlated with other-derogation but not with self-enhancement (both measured by the Go/No-Go Association Task). In Study 2, by using the event-related potentials (ERPs) technique, we showed that positive-framed other-owned objects elicited significant evaluative incongruity (i.e. indexed by late positive potentials) compared to negative-framed other-owned objects. In contrast, negative-framed self-owned objects did not evoke significant evaluative incongruity relative to positive-framed self-owned objects. Our research suggests that, in addition to the self-enhancement that has been widely demonstrated, it is also important to keep other-derogation in mind when examining the ownership effect.
Collapse
Affiliation(s)
- Yunhui Huang
- Department of Marketing and Electronic Business, Nanjing University, Nanjing, Jiangsu, China
| | - Yin Wu
- Research Center for Brain Function and Psychological Science, Shenzhen University, Shenzhen 518060, China
- Center for Brain and Cognitive Sciences and School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- * E-mail:
| |
Collapse
|
34
|
Kanayama N, Morandi A, Hiraki K, Pavani F. Causal Dynamics of Scalp Electroencephalography Oscillation During the Rubber Hand Illusion. Brain Topogr 2016; 30:122-135. [PMID: 27620801 DOI: 10.1007/s10548-016-0519-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Rubber hand illusion (RHI) is an important phenomenon for the investigation of body ownership and self/other distinction. The illusion is promoted by the spatial and temporal contingencies of visual inputs near a fake hand and physical touches to the real hand. The neural basis of this phenomenon is not fully understood. We hypothesized that the RHI is associated with a fronto-parietal circuit, and the goal of this study was to determine the dynamics of neural oscillation associated with this phenomenon. We measured electroencephalography while delivering spatially congruent/incongruent visuo-tactile stimulations to fake and real hands. We applied time-frequency analyses and calculated renormalized partial directed coherence (rPDC) to examine cortical dynamics during the bodily illusion. When visuo-tactile stimulation was spatially congruent, and the fake and real hands were aligned, we observed a reduced causal relationship from the medial frontal to the parietal regions with respect to baseline, around 200 ms post-stimulus. This change in rPDC was negatively correlated with a subjective report of the RHI intensity. Moreover, we observed a link between the proprioceptive drift and an increased causal relationship from the parietal cortex to the right somatosensory cortex during a relatively late period (550-750 ms post-stimulus). These findings suggest a two-stage process in which (1) reduced influence from the medial frontal regions over the parietal areas unlocks the mechanisms that preserve body integrity, allowing RHI to emerge; and (2) information processed at the parietal cortex is back-projected to the somatosensory cortex contralateral to the real hand, inducing proprioceptive drift.
Collapse
Affiliation(s)
- Noriaki Kanayama
- Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan.
| | - Alberto Morandi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Kazuo Hiraki
- Department of General Systems Studies in Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Francesco Pavani
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
35
|
Alimardani M, Nishio S, Ishiguro H. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning. PLoS One 2016; 11:e0161945. [PMID: 27598310 PMCID: PMC5012560 DOI: 10.1371/journal.pone.0161945] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.
Collapse
Affiliation(s)
- Maryam Alimardani
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Shuichi Nishio
- Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Hiroshi Ishiguro
- Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day. Sci Rep 2016; 6:30126. [PMID: 27444783 PMCID: PMC4957085 DOI: 10.1038/srep30126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Abstract
Actual and imagined movement speed increases from early morning until mid-afternoon. Here, we investigated the neural correlates of these daily changes. Fifteen subjects performed actual and imagined right finger opposition movement sequences at 8 am and 2 pm. Both actual and imagined movements were significantly faster at 2 pm than 8 am. In the morning, actual movements significantly activated the left primary somatosensory and motor areas, and bilaterally the cerebellum; in the afternoon activations were similar but reduced. Contrast analysis revealed greater activity in the cerebellum, the left primary sensorimotor cortex and parietal lobe in the morning than in the afternoon. Imagined movements in the morning significantly activated the parietal association cortices bilaterally, the left supplementary and premotor areas, and the right orbitofrontal cortex and cerebellum. In the afternoon, the frontal lobe was significantly activated with the right cerebellum. Contrast analysis revealed increased activity in the left parietal lobe in the morning than in the afternoon. For both tasks, speed in the morning was significantly related to the BOLD signal in the brain areas resulted more active. These findings suggest that motor performance is continuously updated on a daily basis with a predominant role of the frontoparietal cortex and cerebellum.
Collapse
|
37
|
Functional Connectivity Analysis of NIRS Data under Rubber Hand Illusion to Find a Biomarker of Sense of Ownership. Neural Plast 2016; 2016:6726238. [PMID: 27413556 PMCID: PMC4931100 DOI: 10.1155/2016/6726238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/06/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.
Collapse
|
38
|
Kodama T, Nakano H, Ohsugi H, Murata S. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke. J Phys Ther Sci 2016; 28:419-25. [PMID: 27065525 PMCID: PMC4792983 DOI: 10.1589/jpts.28.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic
illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13
stroke patients without motor or sensory loss participated. [Methods]
Electroencephalograms were taken at rest and during vibratory stimulation. As a
neurophysiological index of brain function, we measured the μ-rhythm, which is present
mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and
compared the data using source localization analyses in the Standardized Low Resolution
Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared
in the sensorimotor and supplementary motor cortices in both healthy controls and stroke
patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of
either group. Moreover, in the supplementary motor area, which stores the motor imagery
required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger
than those of the controls, although the μ-rhythms of both groups were reduced. Thus,
differences in neural activity in the supplementary motor area were apparent between the
subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor
deficits due to stroke. The neural basis of the supplementary motor area in stroke
patients may be functionally different from that found in healthy controls.
Collapse
Affiliation(s)
- Takayuki Kodama
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| | - Hideki Nakano
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Japan
| | - Hironori Ohsugi
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| | - Shin Murata
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| |
Collapse
|
39
|
Gale S, Prsa M, Schurger A, Gay A, Paillard A, Herbelin B, Guyot JP, Lopez C, Blanke O. Oscillatory neural responses evoked by natural vestibular stimuli in humans. J Neurophysiol 2015; 115:1228-42. [PMID: 26683063 DOI: 10.1152/jn.00153.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/12/2015] [Indexed: 11/22/2022] Open
Abstract
While there have been numerous studies of the vestibular system in mammals, less is known about the brain mechanisms of vestibular processing in humans. In particular, of the studies that have been carried out in humans over the last 30 years, none has investigated how vestibular stimulation (VS) affects cortical oscillations. Here we recorded high-density electroencephalography (EEG) in healthy human subjects and a group of bilateral vestibular loss patients (BVPs) undergoing transient and constant-velocity passive whole body yaw rotations, focusing our analyses on the modulation of cortical oscillations in response to natural VS. The present approach overcame significant technical challenges associated with combining natural VS with human electrophysiology and reveals that both transient and constant-velocity VS are associated with a prominent suppression of alpha power (8-13 Hz). Alpha band suppression was localized over bilateral temporo-parietal scalp regions, and these alpha modulations were significantly smaller in BVPs. We propose that suppression of oscillations in the alpha band over temporo-parietal scalp regions reflects cortical vestibular processing, potentially comparable with alpha and mu oscillations in the visual and sensorimotor systems, respectively, opening the door to the investigation of human cortical processing under various experimental conditions during natural VS.
Collapse
Affiliation(s)
- Steven Gale
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Prsa
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aaron Schurger
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Annietta Gay
- Department of Otorhinolaryngology, University Hospital Geneva, Geneva, Switzerland
| | - Aurore Paillard
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Herbelin
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Guyot
- Department of Otorhinolaryngology, University Hospital Geneva, Geneva, Switzerland
| | - Christophe Lopez
- Aix Marseille Université, CNRS, NIA UMR 7260, Marseille, France; and
| | - Olaf Blanke
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
An invisible touch: Body-related multisensory conflicts modulate visual consciousness. Neuropsychologia 2015; 88:131-139. [PMID: 26519553 DOI: 10.1016/j.neuropsychologia.2015.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022]
Abstract
The majority of scientific studies on consciousness have focused on vision, exploring the cognitive and neural mechanisms of conscious access to visual stimuli. In parallel, studies on bodily consciousness have revealed that bodily (i.e. tactile, proprioceptive, visceral, vestibular) signals are the basis for the sense of self. However, the role of bodily signals in the formation of visual consciousness is not well understood. Here we investigated how body-related visuo-tactile stimulation modulates conscious access to visual stimuli. We used a robotic platform to apply controlled tactile stimulation to the participants' back while they viewed a dot moving either in synchrony or asynchrony with the touch on their back. Critically, the dot was rendered invisible through continuous flash suppression. Manipulating the visual context by presenting the dot moving on either a body form, or a non-bodily object we show that: (i) conflict induced by synchronous visuo-tactile stimulation in a body context is associated with a delayed conscious access compared to asynchronous visuo-tactile stimulation, (ii) this effect occurs only in the context of a visual body form, and (iii) is not due to detection or response biases. The results indicate that body-related visuo-tactile conflicts impact visual consciousness by facilitating access of non-conflicting visual information to awareness, and that these are sensitive to the visual context in which they are presented, highlighting the interplay between bodily signals and visual experience.
Collapse
|
41
|
Blanke O, Slater M, Serino A. Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness. Neuron 2015; 88:145-66. [PMID: 26447578 DOI: 10.1016/j.neuron.2015.09.029] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202 Geneva, Switzerland; Department of Neurology, University of Geneva, 24 rue Micheli-du-Crest, 1211 Geneva, Switzerland.
| | - Mel Slater
- ICREA-University of Barcelona, Campus de Mundet, 08035 Barcelona, Spain; Department of Computer Science, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202 Geneva, Switzerland.
| |
Collapse
|
42
|
Martuzzi R, van der Zwaag W, Dieguez S, Serino A, Gruetter R, Blanke O. Distinct contributions of Brodmann areas 1 and 2 to body ownership. Soc Cogn Affect Neurosci 2015; 10:1449-59. [PMID: 25809404 DOI: 10.1093/scan/nsv031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
Although body ownership--i.e. the feeling that our bodies belong to us--modulates activity within the primary somatosensory cortex (S1), it is still unknown whether this modulation occurs within a somatotopically defined portion of S1. We induced an illusory feeling of ownership for another person's finger by asking participants to hold their palm against another person's palm and to stroke the two joined index fingers with the index and thumb of their other hand. This illusion (numbness illusion) does not occur if the stroking is performed asynchronously or by the other person. We combined this somatosensory paradigm with ultra-high field functional magnetic resonance imaging finger mapping to study whether illusory body ownership modulates activity within different finger-specific areas of S1. The results revealed that the numbness illusion is associated with activity in Brodmann area (BA) 1 within the representation of the finger stroking the other person's finger and in BA 2 contralateral to the stroked finger. These results show that changes in bodily experience modulate the activity within certain subregions of S1, with a different finger-topographical selectivity between the representations of the stroking and of the stroked hand, and reveal that the high degree of somatosensory specialization in S1 extends to bodily self-consciousness.
Collapse
Affiliation(s)
- Roberto Martuzzi
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
| | - Wietske van der Zwaag
- Centre d'Imagerie Biomédical de Lausanne, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sebastian Dieguez
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Laboratory for Cognitive and Neurological Sciences, Neurology Unit, Department of Medicine, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland, and
| | - Andrea Serino
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- Centre d'Imagerie Biomédical de Lausanne, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|
43
|
Kilteni K, Maselli A, Kording KP, Slater M. Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Front Hum Neurosci 2015; 9:141. [PMID: 25852524 PMCID: PMC4371812 DOI: 10.3389/fnhum.2015.00141] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/28/2015] [Indexed: 11/13/2022] Open
Abstract
Which is my body and how do I distinguish it from the bodies of others, or from objects in the surrounding environment? The perception of our own body and more particularly our sense of body ownership is taken for granted. Nevertheless, experimental findings from body ownership illusions (BOIs), show that under specific multisensory conditions, we can experience artificial body parts or fake bodies as our own body parts or body, respectively. The aim of the present paper is to discuss how and why BOIs are induced. We review several experimental findings concerning the spatial, temporal, and semantic principles of crossmodal stimuli that have been applied to induce BOIs. On the basis of these principles, we discuss theoretical approaches concerning the underlying mechanism of BOIs. We propose a conceptualization based on Bayesian causal inference for addressing how our nervous system could infer whether an object belongs to our own body, using multisensory, sensorimotor, and semantic information, and we discuss how this can account for several experimental findings. Finally, we point to neural network models as an implementational framework within which the computational problem behind BOIs could be addressed in the future.
Collapse
Affiliation(s)
- Konstantina Kilteni
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain ; IR3C Institute for Brain, Cognition, and Behaviour, University of Barcelona Barcelona, Spain
| | - Antonella Maselli
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain
| | - Konrad P Kording
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, IL, USA ; Department of Physiology, Northwestern University Chicago, IL, USA
| | - Mel Slater
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain ; IR3C Institute for Brain, Cognition, and Behaviour, University of Barcelona Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23 Barcelona, Spain
| |
Collapse
|
44
|
Tieri G, Tidoni E, Pavone EF, Aglioti SM. Mere observation of body discontinuity affects perceived ownership and vicarious agency over a virtual hand. Exp Brain Res 2015; 233:1247-59. [DOI: 10.1007/s00221-015-4202-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/10/2015] [Indexed: 11/28/2022]
|
45
|
Hinterberger T, Zlabinger M, Blaser K. Neurophysiological correlates of various mental perspectives. Front Hum Neurosci 2014; 8:637. [PMID: 25191253 PMCID: PMC4140388 DOI: 10.3389/fnhum.2014.00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
A common view of consciousness is that our mind presents emotions, experiences, and images in an internal mental (re-)presentation space which in a state of wakefulness is triggered by the world outside. Consciousness can be defined as the observation of this inner mental space. We propose a new model, in which the state of the conscious observer is defined by the observer’s mental position and focus of attention. The mental position of the observer can either be within the mental self (intrapersonal space), in the mental outer world (extrapersonal space) or in an empathic connection, i.e., within the intrapersonal space of another person (perspective taking). The focus of attention can be directed toward the self or toward the outside world. This mental space model can help us to understand the patterns of relationships and interactions with other persons as they occur in social life. To investigate the neurophysiological correlates and discriminability of the different mental states, we conducted an EEG experiment measuring the brain activity of 16 subjects via 64 electrodes while they engaged in different mental positions (intrapersonal, extrapersonal, perspective taking) with different attentional foci (self, object). Compared to external mental locations, internal ones showed significantly increased alpha2 power, especially when the observer was focusing on an object. Alpha2 and beta2 were increased in the empathic condition compared to the extrapersonal perspective. Delta power was significantly higher when the attentional focus was directed toward an object in comparison to the participant’s own self. This exploratory study demonstrates highly significant differences between various mental locations and foci, suggesting that the proposed categories of mental location and intra- and interpersonal attentional foci are not only helpful theoretical concepts but are also physiologically relevant and therefore may relate to basic brain processing mechanisms.
Collapse
Affiliation(s)
- Thilo Hinterberger
- Section of Applied Consciousness Sciences, Department of Psychosomatic Medicine, University Medical Center Regensburg Regensburg, Germany ; Brain, Mind and Healing Program, Samueli Institute Alexandria, VA, USA
| | - Milena Zlabinger
- Department of Psychology, University of Tübingen Tübingen Germany
| | - Klaus Blaser
- Center for Applied Boundary Studies Basel, Switzerland
| |
Collapse
|
46
|
Zeller D, Litvak V, Friston KJ, Classen J. Sensory processing and the rubber hand illusion--an evoked potentials study. J Cogn Neurosci 2014; 27:573-82. [PMID: 25170795 DOI: 10.1162/jocn_a_00705] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The rubber hand illusion (RHI) paradigm--in which illusory bodily ownership is induced by synchronous tactile stimulation of a participant's (hidden) hand and a (visible) surrogate--allows one to investigate how the brain resolves conflicting multisensory evidence during perceptual inference. To identify the functional anatomy of the RHI, we used multichannel EEG, acquired under three conditions of tactile stimulation. Evoked potentials were averaged from EEG signals registered to the timing of brushstrokes to the participant's hand. The participant's hand was stroked either in the absence of an artificial hand (REAL) or synchronously with an artificial hand, which either lay in an anatomically plausible (CONGRUENT) or impossible (INCONGRUENT) position. The illusion was reliably elicited in the CONGRUENT condition. For right-hand stimulation, significant differences between conditions emerged at the sensor level around 55 msec after the brushstroke at left frontal and right parietal electrodes. Response amplitudes were smaller for illusory (CONGRUENT) compared with nonillusory (INCONGRUENT and REAL) conditions in the contralateral perirolandic region (pre- and postcentral gyri), superior and inferior parietal lobule, whereas veridical perception of the artificial hand (INCONGRUENT) amplified responses at a scalp region overlying the contralateral postcentral gyrus and inferior parietal lobule compared with the remaining two conditions. Left-hand stimulation produced similar contralateral patterns. These results are consistent with predictive coding models of multisensory integration and may reflect the attenuation of somatosensory precision that is required to resolve perceptual hypotheses about conflicting multisensory input.
Collapse
|
47
|
Limanowski J, Lutti A, Blankenburg F. The extrastriate body area is involved in illusory limb ownership. Neuroimage 2014; 86:514-24. [DOI: 10.1016/j.neuroimage.2013.10.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
|
48
|
Ionta S, Martuzzi R, Salomon R, Blanke O. The brain network reflecting bodily self-consciousness: a functional connectivity study. Soc Cogn Affect Neurosci 2014; 9:1904-13. [PMID: 24396007 DOI: 10.1093/scan/nst185] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness.
Collapse
Affiliation(s)
- Silvio Ionta
- Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland
| | - Roberto Martuzzi
- Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland
| | - Roy Salomon
- Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Neurology, University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
49
|
Huggins JE, Guger C, Allison B, Anderson CW, Batista A, Brouwer AM(AM, Brunner C, Chavarriaga R, Fried-Oken M, Gunduz A, Gupta D, Kübler A, Leeb R, Lotte F, Miller LE, Müller-Putz G, Rutkowski T, Tangermann M, Thompson DE. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future. BRAIN-COMPUTER INTERFACES 2014; 1:27-49. [PMID: 25485284 PMCID: PMC4255956 DOI: 10.1080/2326263x.2013.876724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.
Collapse
Affiliation(s)
- Jane E. Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States, 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Christoph Guger
- Christoph Guger, g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Brendan Allison
- University of California at San Diego, La Jolla, CA 91942 (415) 490 7551
| | - Charles W. Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523; telephone: 970-491-7491
| | - Aaron Batista
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3501 5th Av, BST3 4074; Pittsburgh, PA 15261; (412) 383-5394
| | - Anne-Marie (A.-M.) Brouwer
- The Netherlands Organization for Applied Scientific Research; P.O. Box 23/Kampweg 5, 3769 ZG Soesterberg, the Netherlands, ++31 (0)888 665960
| | - Clemens Brunner
- Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Inffeldgasse 13/4, 8010; Graz, Austria
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland, EPFL-STI-CNBI, Station 11, 1005 Lausanne, Switzerland; Telephone: +41 21 693 6968
| | - Melanie Fried-Oken
- Oregon Health & Science University; Institute on Development & Disability; 707 SW Gaines Street; Portland, Oregon, United States; O: 503.494.7587, F: 503.494.6868
| | - Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Phone: +1 (352) 273 6877; Fax: +1 (352) 273 9221
| | - Disha Gupta
- Dept. of Neurology, Albany Medical College/Brain Computer Interfacing Lab, Wadsworth Center, NY State Dept. of Health, Albany, New York, USA
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg; Marcusstr.9-11; 97070 Würzburg, Germany. Phone.: 0049 931 31 80179; Fax: 0049 931 31 82424
| | - Robert Leeb
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Fabien Lotte
- Inria Bordeaux Sud-Ouest/LaBRI, 200 avenue de la vieille tour, 33405, Talence Cedex, France, Tel: +33 5 24 57 41 26
| | - Lee E. Miller
- Departments of Physiology, Physical Medicine and Rehab, and Biomedical Engineering; Feinberg School of Medicine; Northwestern University; Chicago, Illinois, United States; Ward 5-01; 303 East Chicago Avenue; Chicago, Illinois 60611; Phone: (312) 503 – 8677; Fax: (312) 503 – 5101
| | - Gernot Müller-Putz
- Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Inffeldgasse 13/4, 8010; Graz, Austria
| | - Tomasz Rutkowski
- Life Science Center of TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan; TEL: +81 (0)29-853-6261
| | - Michael Tangermann
- Excellence Cluster BrainLinks-BrainTools, Dept. Computer Science, University of Freiburg, Freiburg, Germany, Albertstr. 23; 79104 Freiburg; Germany; Phone: +49.(0)761.2038423, Fax : +49.(0)761.2038417
| | - David Edward Thompson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States, 2800 Plymouth Road, Bdlg 26 Rm G06W-B; Ann Arbor, MI 48109; 734-763-7104
| |
Collapse
|
50
|
A threat to a virtual hand elicits motor cortex activation. Exp Brain Res 2013; 232:875-87. [DOI: 10.1007/s00221-013-3800-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/29/2013] [Indexed: 02/06/2023]
|