1
|
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci 2023; 13:792. [PMID: 37239264 PMCID: PMC10216206 DOI: 10.3390/brainsci13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the concept of individualized measures of electroencephalographic (EEG) activity has emerged. Gamma-band activity plays an important role in many sensory and cognitive processes. Thus, peak frequency in the gamma range has received considerable attention. However, peak or individual gamma frequency (IGF) is rarely used as a primary measure of interest; consequently, little is known about its nature and functional significance. With this review, we attempt to comprehensively overview available information on the functional properties of peak gamma frequency, addressing its relationship with certain processes and/or modulation by various factors. Here, we show that IGFs seem to be related to various endogenous and exogenous factors. Broad functional aspects that are related to IGF might point to the differences in underlying mechanisms. Therefore, research utilizing different types of stimulation for IGF estimation and covering several functional aspects in the same population is required. Moreover, IGFs span a wide range of frequencies (30-100 Hz). This could be partly due to the variability of methods used to extract the measures of IGF. In order to overcome this issue, further studies aiming at the optimization of IGF extraction would be greatly beneficial.
Collapse
Affiliation(s)
| | | | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
3
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
4
|
Hudson MR, Jones NC. Deciphering the code: Identifying true gamma neural oscillations. Exp Neurol 2022; 357:114205. [PMID: 35985554 DOI: 10.1016/j.expneurol.2022.114205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
Neural oscillatory activity occurring in the gamma frequency range (30-80 Hz) has been proposed to play essential roles in sensory and cognitive processing. Supporting this, abnormalities in gamma oscillations have been reported in patients with diverse neurological and neuropsychiatric disorders in which cognitive impairment is prominent. Understanding the mechanisms underpinning this relationship is the focus of extensive research. But while an increasing number of studies are investigating the intricate relationship between gamma oscillations and cognition, interpretation and generalisation of these studies is limited by the diverse, and at times questionable, methodologies used to analyse oscillatory activity. For example, a variety of different types of gamma oscillatory activity have been characterised, but all are generalised non-specifically as 'gamma oscillations'. This creates confusion, since distinct cellular and network mechanisms are likely responsible for generating these different types of rhythm. Moreover, in some instances, certain analytical measures of electrophysiological data are overinterpreted, with researchers pushing the boundaries of what would be considered rhythmic or oscillatory in nature. Here, we provide clarity on these issues, firstly presenting an overview of the different measures of gamma oscillatory activity, and describing common signal processing techniques used for analysis. Limitations of these techniques are discussed, and recommendations made on how future studies should optimise analyses, presentation and interpretation of gamma frequency oscillations. This is an essential progression in order to harmonise future studies, allowing us to gain a clearer understanding of the role of gamma oscillations in cognition, and in cognitive disorders.
Collapse
Affiliation(s)
- Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, 3004, Victoria, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
5
|
Heinrichs-Graham E, Wiesman AI, Embury CM, Schantell M, Joe TR, Eastman JA, Wilson TW. Differential impact of movement on the alpha and gamma dynamics serving visual processing. J Neurophysiol 2022; 127:928-937. [PMID: 35264002 PMCID: PMC8977134 DOI: 10.1152/jn.00380.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Visual processing is widely understood to be served by a decrease in alpha activity in occipital cortices, largely concurrent with an increase in gamma activity. Although the characteristics of these oscillations are well documented in response to a range of complex visual stimuli, little is known about how these dynamics are impacted by concurrent motor responses, which is problematic as many common visual tasks involve such responses. Thus, in the current study, we used magnetoencephalography (MEG) and modified a well-established visual paradigm to explore the impact of motor responses on visual oscillatory activity. Thirty-four healthy adults viewed a moving gabor (grating) stimulus that was known to elicit robust alpha and gamma oscillations in occipital cortices. Frequency and power characteristics were assessed statistically for differences as a function of movement condition. Our results indicated that occipital alpha significantly increased in power during movement relative to no movement trials. No differences in peak frequency or power were found for gamma responses between the two movement conditions. These results provide valuable evidence of visuomotor integration and underscore the importance of careful task design and interpretation, especially in the context of complex visual processing, and suggest that even basic motor responses alter occipital visual oscillations in healthy adults.NEW & NOTEWORTHY Processing of visual stimuli is served by occipital alpha and gamma activity. Many studies have investigated the impact of visual stimuli on motor cortical responses, but few studies have systematically investigated the impact of motor responses on visual oscillations. We found that when participants are asked to move in response to a visual stimulus, occipital alpha power was modulated whereas gamma responses were unaffected. This suggests that these responses have dissociable roles in visuomotor integration.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alex I Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R Joe
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychology, University of Nebraska at Omaha, Nebraska
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska
- College of Medicine, Creighton University, Omaha, Nebraska
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
Wiesman AI, da Silva Castanheira J, Baillet S. Stability of spectral estimates in resting-state magnetoencephalography: Recommendations for minimal data duration with neuroanatomical specificity. Neuroimage 2021; 247:118823. [PMID: 34923132 PMCID: PMC8852336 DOI: 10.1016/j.neuroimage.2021.118823] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The principle of resting-state paradigms is appealing and practical for collecting data from impaired patients and special populations, especially if data collection times can be minimized. To achieve this goal, researchers need to ensure estimated signal features of interest are robust. In electro- and magnetoencephalography (EEG, MEG) we are not aware of any studies of the minimal length of data required to yield a robust one-session snapshot of the frequency-spectrum derivatives that are typically used to characterize the complex dynamics of the brain’s resting-state. We aimed to fill this knowledge gap by studying the stability of common spectra measures of resting-state MEG source time series obtained from large samples of single-session recordings from shared data repositories featuring different recording conditions and instrument technologies (OMEGA: N = 107; Cam-CAN: N = 50). We discovered that the rhythmic and arrhythmic spectral properties of intrinsic brain activity can be robustly estimated in most cortical regions when derived from relatively short segments of 30-s to 120-s of resting-state data, regardless of instrument technology and resting-state paradigm. Using an adapted leave-one-out approach and Bayesian analysis, we also provide evidence that the stability of spectral features over time is unaffected by age, sex, handedness, and general cognitive function. In summary, short MEG sessions are sufficient to yield robust estimates of frequency-defined brain activity during resting-state. This study may help guide future empirical designs in the field, particularly when recording times need to be minimized, such as with patient or special populations.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal QC, Canada.
| | | | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal QC, Canada
| |
Collapse
|
7
|
Genetic risk for schizophrenia is associated with altered visually-induced gamma band activity: evidence from a population sample stratified polygenic risk. Transl Psychiatry 2021; 11:592. [PMID: 34785639 PMCID: PMC8595678 DOI: 10.1038/s41398-021-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Gamma oscillations (30-90 Hz) have been proposed as a signature of cortical visual information processing, particularly the balance between excitation and inhibition, and as a biomarker of neuropsychiatric diseases. Magnetoencephalography (MEG) provides highly reliable visual-induced gamma oscillation estimates, both at sensor and source level. Recent studies have reported a deficit of visual gamma activity in schizophrenia patients, in medication naive subjects, and high-risk clinical participants, but the genetic contribution to such a deficit has remained unresolved. Here, for the first time, we use a genetic risk score approach to assess the relationship between genetic risk for schizophrenia and visual gamma activity in a population-based sample drawn from a birth cohort. We compared visual gamma activity in a group (N = 104) with a high genetic risk profile score for schizophrenia (SCZ-PRS) to a group with low SCZ-PRS (N = 99). Source-reconstructed V1 activity was extracted using beamformer analysis applied to MEG recordings using individual MRI scans. No group differences were found in the induced gamma peak amplitude or peak frequency. However, a non-parametric statistical contrast of the response spectrum revealed more robust group differences in the amplitude of high-beta/gamma power across the frequency range, suggesting that overall spectral shape carries important biological information beyond the individual frequency peak. Our findings show that changes in gamma band activity correlate with liability to schizophrenia and suggest that the index changes to synaptic function and neuronal firing patterns that are of pathophysiological relevance rather than consequences of the disorder.
Collapse
|
8
|
Narrow and Broad γ Bands Process Complementary Visual Information in Mouse Primary Visual Cortex. eNeuro 2021; 8:ENEURO.0106-21.2021. [PMID: 34663617 PMCID: PMC8570688 DOI: 10.1523/eneuro.0106-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
γ Band plays a key role in the encoding of visual features in the primary visual cortex (V1). In rodents V1 two ranges within the γ band are sensitive to contrast: a broad γ band (BB) increasing with contrast, and a narrow γ band (NB), peaking at ∼60 Hz, decreasing with contrast. The functional roles of the two bands and the neural circuits originating them are not completely clear yet. Here, we show, combining experimental and simulated data, that in mice V1 (1) BB carries information about high contrast and NB about low contrast; (2) BB modulation depends on excitatory-inhibitory interplay in the cortex, while NB modulation is because of entrainment to the thalamic drive. In awake mice presented with alternating gratings, NB power progressively decreased from low to intermediate levels of contrast where it reached a plateau. Conversely, BB power was constant across low levels of contrast, but it progressively increased from intermediate to high levels of contrast. Furthermore, BB response was stronger immediately after contrast reversal, while the opposite held for NB. These complementary modulations were reproduced by a recurrent excitatory-inhibitory leaky integrate-and-fire network provided that the thalamic inputs were composed of a sustained and a periodic component having complementary sensitivity ranges. These results show that in rodents the thalamic-driven NB plays a specific key role in encoding visual contrast. Moreover, we propose a simple and effective network model of response to visual stimuli in rodents that might help in investigating network dysfunctions of pathologic visual information processing.
Collapse
|
9
|
Duecker K, Gutteling TP, Herrmann CS, Jensen O. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex. J Neurosci 2021; 41:6684-6698. [PMID: 34230106 PMCID: PMC8336697 DOI: 10.1523/jneurosci.3134-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.
Collapse
Affiliation(s)
- Katharina Duecker
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Tjerk P Gutteling
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Christoph S Herrmann
- Department of Psychology, Faculty VI-Medicine and Health Sciences, Carl-von-Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
10
|
Midfrontal theta as moderator between beta oscillations and precision control. Neuroimage 2021; 235:118022. [PMID: 33836271 DOI: 10.1016/j.neuroimage.2021.118022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Control of movements using visual information is crucial for many daily activities, and such visuomotor control has been revealed to be supported by alpha and beta cortical oscillations. However, it has been remained to be unclear how midfrontal theta and occipital gamma oscillations, which are associated with high-level cognitive functions, would be involved in this process to facilitate performance. Here we addressed this fundamental open question in healthy young adults by measuring high-density cortical activity during a precision force-matching task. We manipulated the amount of error by changing visual feedback gain (low, medium, and high visual gains) and analyzed event-related spectral perturbations. Increasing the visual feedback gain resulted in a decrease in force error and variability. There was an increase in theta synchronization in the midfrontal area and also in beta desynchronization in the sensorimotor and posterior parietal areas with higher visual feedback gains. Gamma de/synchronization was not evident during the task. In addition, we found a moderation effect of midfrontal theta on the positive relationship between the beta oscillations and force error. Subsequent simple slope analysis indicated that the effect of beta oscillations on force error was weaker when midfrontal theta was high. Our findings suggest that the midfrontal area signals the increased need of cognitive control to refine behavior by modulating the visuomotor processing at theta frequencies.
Collapse
|
11
|
Zachariou M, Roberts MJ, Lowet E, De Weerd P, Hadjipapas A. Empirically constrained network models for contrast-dependent modulation of gamma rhythm in V1. Neuroimage 2021; 229:117748. [PMID: 33460798 DOI: 10.1016/j.neuroimage.2021.117748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Gamma oscillations are thought to play a key role in neuronal network function and neuronal communication, yet the underlying generating mechanisms have not been fully elucidated to date. At least partly, this may be due to the fact that even in simple network models of interconnected inhibitory (I) and excitatory (E) neurons, many parameters remain unknown and are set based on practical considerations or by convention. Here, we mitigate this problem by requiring PING (Pyramidal Interneuron Network Gamma) models to simultaneously satisfy a broad set of criteria for realistic behaviour based on empirical data spanning both the single unit (spikes) and local population (LFP) levels while unknown parameters are varied. By doing so, we were able to constrain the parameter ranges and select empirically valid models. The derived model constraints implied weak rather than strong PING as the generating mechanism for gamma, connectivity between E and I neurons within specific bounds, and variations of the external input to E but not I neurons. Constrained models showed valid behaviours, including gamma frequency increases with contrast and power saturation or decay at high contrasts. Using an empirically-validated model we studied the route to gamma instability at high contrasts. This involved increased heterogeneity of E neurons with increasing input triggering a breakdown of I neuron pacemaker function. Further, we illustrate the model's capacity to resolve disputes in the literature concerning gamma oscillation properties and GABA conductance proxies. We propose that the models derived in our study will be useful for other modelling studies, and that our approach to the empirical constraining of PING models can be expanded when richer empirical datasets become available. As local gamma networks are the building blocks of larger networks that aim to understand complex cognition through their interactions, there is considerable value in improving our models of these building blocks.
Collapse
Affiliation(s)
- Margarita Zachariou
- Medical School, University of Nicosia, Nicosia 2408, Cyprus; Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 ER, The Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Faculty of Science and Engineering, Maastricht University, Maastricht 6229 ER, the Netherlands
| | | |
Collapse
|
12
|
Perry G, Taylor NW, Bothwell PCH, Milbourn CC, Powell G, Singh KD. The gamma response to colour hue in humans: Evidence from MEG. PLoS One 2020; 15:e0243237. [PMID: 33332389 PMCID: PMC7746285 DOI: 10.1371/journal.pone.0243237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
It has recently been demonstrated through invasive electrophysiology that visual stimulation with extended patches of uniform colour generates pronounced gamma oscillations in the visual cortex of both macaques and humans. In this study we sought to discover if this oscillatory response to colour can be measured non-invasively in humans using magnetoencephalography. We were able to demonstrate increased gamma (40–70 Hz) power in response to full-screen stimulation with four different colour hues and found that the gamma response is particularly strong for long wavelength (i.e. red) stimulation, as was found in previous studies. However, we also found that gamma power in response to colour was generally weaker than the response to an identically sized luminance-defined grating. We also observed two additional responses in the gamma frequency: a lower frequency response around 25–35 Hz that showed fewer clear differences between conditions than the gamma response, and a higher frequency response around 70–100 Hz that was present for red stimulation but not for other colours. In a second experiment we sought to test whether differences in the gamma response between colour hues could be explained by their chromatic separation from the preceding display. We presented stimuli that alternated between each of the three pairings of the three primary colours (red, green, blue) at two levels of chromatic separation defined in the CIELUV colour space. We observed that the gamma response was significantly greater to high relative to low chromatic separation, but that at each level of separation the response was greater for both red-blue and red-green than for blue-green stimulation. Our findings suggest that the stronger gamma response to red stimulation cannot be wholly explained by the chromatic separation of the stimuli.
Collapse
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Nathan W Taylor
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Philippa C H Bothwell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Colette C Milbourn
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Georgina Powell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Pinotsis DA, Miller EK. Differences in visually induced MEG oscillations reflect differences in deep cortical layer activity. Commun Biol 2020; 3:707. [PMID: 33239652 PMCID: PMC7688644 DOI: 10.1038/s42003-020-01438-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Neural activity is organized at multiple scales, ranging from the cellular to the whole brain level. Connecting neural dynamics at different scales is important for understanding brain pathology. Neurological diseases and disorders arise from interactions between factors that are expressed in multiple scales. Here, we suggest a new way to link microscopic and macroscopic dynamics through combinations of computational models. This exploits results from statistical decision theory and Bayesian inference. To validate our approach, we used two independent MEG datasets. In both, we found that variability in visually induced oscillations recorded from different people in simple visual perception tasks resulted from differences in the level of inhibition specific to deep cortical layers. This suggests differences in feedback to sensory areas and each subject's hypotheses about sensations due to differences in their prior experience. Our approach provides a new link between non-invasive brain imaging data, laminar dynamics and top-down control.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London, EC1V 0HB, UK.
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Shaw AD, Muthukumaraswamy SD, Saxena N, Sumner RL, Adams NE, Moran RJ, Singh KD. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine. Neuroimage 2020; 221:117189. [PMID: 32711064 PMCID: PMC7762824 DOI: 10.1016/j.neuroimage.2020.117189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022] Open
Abstract
Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, UK
| | - Rachael L Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie E Adams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
15
|
Dubey A, Ray S. Comparison of tuning properties of gamma and high-gamma power in local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Sci Rep 2020; 10:5422. [PMID: 32214127 PMCID: PMC7096473 DOI: 10.1038/s41598-020-61961-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Electrocorticogram (ECoG), obtained from macroelectrodes placed on the cortex, is typically used in drug-resistant epilepsy patients, and is increasingly being used to study cognition in humans. These studies often use power in gamma (30-70 Hz) or high-gamma (>80 Hz) ranges to make inferences about neural processing. However, while the stimulus tuning properties of gamma/high-gamma power have been well characterized in local field potential (LFP; obtained from microelectrodes), analogous characterization has not been done for ECoG. Using a hybrid array containing both micro and ECoG electrodes implanted in the primary visual cortex of two female macaques (for some stimulus conditions, separate ECoG and microelectrode arrays in two additional male macaques were also used), we compared the stimulus tuning preferences of gamma/high-gamma power in LFP versus ECoG in up to four monkeys, and found them to be surprisingly similar. High-gamma power, thought to index the average firing rate around the electrode, was highest for the smallest stimulus (0.3° radius), and decreased with increasing size in both LFP and ECoG, suggesting local origins of both signals. Further, gamma oscillations were similarly tuned in LFP and ECoG to stimulus orientation, contrast and spatial frequency. This tuning was significantly weaker in electroencephalogram (EEG), suggesting that ECoG is more like LFP than EEG. Overall, our results validate the use of ECoG in clinical and basic cognitive research.
Collapse
Affiliation(s)
- Agrita Dubey
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Center for Neural Science, New York University, New York, 10003, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
16
|
Orekhova EV, Rostovtseva EN, Manyukhina VO, Prokofiev AO, Obukhova TS, Nikolaeva AY, Schneiderman JF, Stroganova TA. Spatial suppression in visual motion perception is driven by inhibition: Evidence from MEG gamma oscillations. Neuroimage 2020; 213:116753. [PMID: 32194278 DOI: 10.1016/j.neuroimage.2020.116753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Spatial suppression (SS) is a visual perceptual phenomenon that is manifest in a reduction of directional sensitivity for drifting high-contrast gratings whose size exceeds the center of the visual field. Gratings moving at faster velocities induce stronger SS. The neural processes that give rise to such size- and velocity-dependent reductions in directional sensitivity are currently unknown, and the role of surround inhibition is unclear. In magnetoencephalogram (MEG), large high-contrast drifting gratings induce a strong gamma response (GR), which also attenuates with an increase in the gratings' velocity. It has been suggested that the slope of this GR attenuation is mediated by inhibitory interactions in the primary visual cortex. Herein, we investigate whether SS is related to this inhibitory-based MEG measure. We evaluated SS and GR in two independent samples of participants: school-age boys and adult women. The slope of GR attenuation predicted inter-individual differences in SS in both samples. Test-retest reliability of the neuro-behavioral correlation was assessed in the adults, and was high between two sessions separated by several days or weeks. Neither frequencies nor absolute amplitudes of the GRs correlated with SS, which highlights the functional relevance of velocity-related changes in GR magnitude caused by augmentation of incoming input. Our findings provide evidence that links the psychophysical phenomenon of SS to inhibitory-based neural responses in the human primary visual cortex. This supports the role of inhibitory interactions as an important underlying mechanism for spatial suppression.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden.
| | - Ekaterina N Rostovtseva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation; National Research University Higher School of Economics, Moscow, Russian Federation, Moscow, Russian Federation
| | - Andrey O Prokofiev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
17
|
Bartoli E, Bosking W, Chen Y, Li Y, Sheth SA, Beauchamp MS, Yoshor D, Foster BL. Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex. Curr Biol 2019; 29:3345-3358.e7. [PMID: 31588003 PMCID: PMC6810857 DOI: 10.1016/j.cub.2019.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
Neocortical gamma activity has long been hypothesized as a mechanism for synchronizing brain regions to support visual perception and cognition more broadly. Although early studies focused on narrowband gamma oscillations (∼20-60 Hz), recent work has emphasized a more broadband "high-gamma" response (∼70-150+ Hz). These responses are often conceptually or analytically treated as synonymous markers of gamma activity. Using high-density intracranial recordings from the human visual cortex, we challenge this view by showing distinct spectral, temporal, and functional properties of narrow and broadband gamma. Across four experiments, narrowband gamma was strongly selective for gratings and long-wavelength colors, displaying a delayed response onset, sustained temporal profile, and contrast-dependent peak frequency. In addition, induced narrowband gamma oscillations lacked phase consistency across stimulus repetitions and displayed highly focal inter-site synchronization. In contrast, broadband gamma was consistently observed for all presented stimuli, displaying a rapid response onset, transient temporal profile, and invariant spectral properties. We exploited stimulus tuning to highlight the functional dissociation of these distinct signals, reconciling prior inconsistencies across species and stimuli regarding the ubiquity of visual gamma oscillations during natural vision. The occurrence of visual narrowband gamma oscillations, unlike broadband high gamma, appears contingent on specific structural and chromatic stimulus attributes intersecting with the receptive field. Together, these findings have important implications for the study, analysis, and functional interpretation of neocortical gamma-range activity.
Collapse
Affiliation(s)
- Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - William Bosking
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yvonne Chen
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ye Li
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Brett L Foster
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Pinotsis DA, Loonis R, Bastos AM, Miller EK, Friston KJ. Bayesian Modelling of Induced Responses and Neuronal Rhythms. Brain Topogr 2019; 32:569-582. [PMID: 27718099 PMCID: PMC6592965 DOI: 10.1007/s10548-016-0526-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
Neural rhythms or oscillations are ubiquitous in neuroimaging data. These spectral responses have been linked to several cognitive processes; including working memory, attention, perceptual binding and neuronal coordination. In this paper, we show how Bayesian methods can be used to finesse the ill-posed problem of reconstructing-and explaining-oscillatory responses. We offer an overview of recent developments in this field, focusing on (i) the use of MEG data and Empirical Bayes to build hierarchical models for group analyses-and the identification of important sources of inter-subject variability and (ii) the construction of novel dynamic causal models of intralaminar recordings to explain layer-specific activity. We hope to show that electrophysiological measurements contain much more spatial information than is often thought: on the one hand, the dynamic causal modelling of non-invasive (low spatial resolution) electrophysiology can afford sub-millimetre (hyper-acute) resolution that is limited only by the (spatial) complexity of the underlying (dynamic causal) forward model. On the other hand, invasive microelectrode recordings (that penetrate different cortical layers) can reveal laminar-specific responses and elucidate hierarchical message passing and information processing within and between cortical regions at a macroscopic scale. In short, the careful and biophysically grounded modelling of sparse data enables one to characterise the neuronal architectures generating oscillations in a remarkable detail.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK.
| | - Roman Loonis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andre M Bastos
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
19
|
Peter A, Uran C, Klon-Lipok J, Roese R, van Stijn S, Barnes W, Dowdall JR, Singer W, Fries P, Vinck M. Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 2019; 8:42101. [PMID: 30714900 PMCID: PMC6391066 DOI: 10.7554/elife.42101] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/30/2019] [Indexed: 12/03/2022] Open
Abstract
The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context. Gamma-synchronized (30–80 Hz) firing may provide a complementary signal to rates, reflecting stronger synchronization between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background, suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted from context.
Collapse
Affiliation(s)
- Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,International Max Planck Research School for Neural Circuits, Frankfurt, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Rasmus Roese
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Sylvia van Stijn
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Max Planck Institute for Brain Research, Frankfurt, Germany
| | - William Barnes
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Jarrod R Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| |
Collapse
|
20
|
Liu CC, Hajra SG, Song X, Doesburg SM, Cheung TPL, D'Arcy RCN. Cognitive loading via mental arithmetic modulates effects of blink-related oscillations on precuneus and ventral attention network regions. Hum Brain Mapp 2018; 40:377-393. [PMID: 30240494 DOI: 10.1002/hbm.24378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Blink-related oscillations (BROs) have been linked with environmental monitoring processes associated with blinking, with cortical activations in the bilateral precuneus. Although BROs have been described under resting and passive fixation conditions, little is known about their characteristics under cognitive loading. To address this, we investigated BRO effects during both mental arithmetic (MA) and passive fixation (PF) tasks using magnetoencephalography (n =20), while maintaining the same sensory environment in both tasks. Our results confirmed the presence of BRO effects in both MA and PF tasks, with similar characteristics including blink-related increase in global field power and blink-related activation of the bilateral precuneus. In addition, cognitive loading due to MA also modulated BRO effects by decreasing BRO-induced cortical activations in key brain regions including the bilateral anterior precuneus. Interestingly, blinking during MA-but not PF-activated regions of the ventral attention network (i.e., right supramarginal gyrus and inferior frontal gyrus), suggesting possible recruitment of these areas for blink processing under cognitive loading conditions. Time-frequency analysis revealed a consistent pattern of BRO-related effects in the precuneus in both tasks, but with task-related functional segregation within the anterior and posterior subregions. Based on these findings, we postulate a potential neurocognitive mechanism for blink processing in the precuneus. This study is the first investigation of BRO effects under cognitive loading, and our results provide compelling new evidence for the important cognitive implications of blink-related processing in the human brain.
Collapse
Affiliation(s)
- Careesa C Liu
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sujoy Ghosh Hajra
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xiaowei Song
- Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Teresa P L Cheung
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| | - Ryan C N D'Arcy
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health Authority, British Columbia, Canada
| |
Collapse
|
21
|
van Pelt S, Shumskaya E, Fries P. Cortical volume and sex influence visual gamma. Neuroimage 2018; 178:702-712. [PMID: 29883733 DOI: 10.1016/j.neuroimage.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Visually induced gamma-band activity (GBA) has been implicated in several central cognitive functions, in particular perceptual binding, the feedforward routing of attended stimulus information and memory encoding. Several studies have documented that the strength and frequency of GBA are influenced by both subject-intrinsic factors like age, and subject-extrinsic factors such as stimulus contrast. Here, we investigated the relative contributions of previously tested factors, additional factors, and their interactions, in a cohort of 158 subjects recorded with magnetoencephalography (MEG). In agreement with previous studies, we found that gamma strength and gamma peak frequency increase with stimulus contrast and stimulus velocity. Also in confirmation of previous findings, we report that gamma peak frequency declines with subject age. In addition, we found that gamma peak frequency is higher for subjects with thicker occipital cortex, but lower for larger occipital cortices. Also, gamma peak frequency is higher in female than male subjects. Extrinsic factors (stimulus contrast and velocity) and intrinsic factors (age, cortical thickness and sex) together explained 21% of the variance in gamma peak frequency and 20% of the variance in gamma strength. These results can contribute to our understanding of the mechanisms, by which gamma is generated, and the mechanisms, through which it affects the cognitive performance of a given individual subject.
Collapse
Affiliation(s)
- Stan van Pelt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Fries
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| |
Collapse
|
22
|
Popov T, Jensen O, Schoffelen JM. Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. Neuroimage 2018; 178:277-286. [PMID: 29803957 DOI: 10.1016/j.neuroimage.2018.05.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023] Open
Abstract
Oscillatory activity in the alpha and gamma bands is considered key in shaping functional brain architecture. Power increases in the high-frequency gamma band are typically reported in parallel to decreases in the low-frequency alpha band. However, their functional significance and in particular their interactions are not well understood. The present study shows that, in the context of an N-back working memory task, alpha power decreases in the dorsal visual stream are related to gamma power increases in early visual areas. Granger causality analysis revealed directed interregional interactions from dorsal to ventral stream areas, in accordance with task demands. Present results reveal a robust, behaviorally relevant, and architectonically decisive power-to-power relationship between alpha and gamma activity. This relationship suggests that anatomically distant power fluctuations in oscillatory activity can link cerebral network dynamics on trial-by-trial basis during cognitive operations such as working memory.
Collapse
Affiliation(s)
- Tzvetan Popov
- Department of Psychology, Universtität Konstanz, Germany
| | - Ole Jensen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, The Netherlands; School of Psychology, University of Birmingham, Hills Building, Birmingham, B15 2TT, UK
| | - Jan-Mathijs Schoffelen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, The Netherlands.
| |
Collapse
|
23
|
Wilson TW, McDermott TJ, Mills MS, Coolidge NM, Heinrichs-Graham E. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG. Cereb Cortex 2018; 28:1597-1609. [PMID: 28334214 PMCID: PMC5907344 DOI: 10.1093/cercor/bhx055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 01/03/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology and Experimental Neurosciences, UNMC, Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| | | | | | | | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Large Visual Stimuli Induce Two Distinct Gamma Oscillations in Primate Visual Cortex. J Neurosci 2018; 38:2730-2744. [PMID: 29440388 PMCID: PMC5852657 DOI: 10.1523/jneurosci.2270-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/17/2023] Open
Abstract
Recent studies have shown the existence of two gamma rhythms in the hippocampus subserving different functions but, to date, primate studies in primary visual cortex have reported a single gamma rhythm. Here, we show that large visual stimuli induce a slow gamma (25–45 Hz) in area V1 of two awake adult female bonnet monkeys and in the EEG of 15 human subjects (7 males and 8 females), in addition to the traditionally known fast gamma (45–70 Hz). The two rhythms had different tuning characteristics for stimulus orientation, contrast, drift speed, and size. Further, fast gamma had short latency, strongly entrained spikes and was coherent over short distances, reflecting short-range processing, whereas slow gamma appeared to reflect long-range processing. Together, two gamma rhythms can potentially provide better coding or communication mechanisms and a more comprehensive biomarker for diagnosis of mental disorders. SIGNIFICANCE STATEMENT Gamma rhythm has been associated with high-level cognitive functions such as attention and feature binding and has been reported to be abnormal in brain disorders such as autism and schizophrenia. Unlike previous studies that have shown a single gamma rhythm in the primate visual cortex, we found that large visual gratings induce two distinct gamma oscillations in both monkey LFP and human EEG. These rhythms, termed slow (25–45 Hz) and fast (45–70 Hz), exhibited distinct tuning preferences, latencies, and coherence profiles, potentially reflecting processing at two different ranges. Multiple gamma oscillations in visual cortex may provide a richer representation of external visual stimuli and could be used for developing brain–machine interfacing applications and screening tests for neuropsychiatric disorders.
Collapse
|
25
|
Magazzini L, Muthukumaraswamy SD, Campbell AE, Hamandi K, Lingford-Hughes A, Myers JFM, Nutt DJ, Sumner P, Wilson SJ, Singh KD. Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation. Hum Brain Mapp 2018; 37:3882-3896. [PMID: 27273695 PMCID: PMC5082569 DOI: 10.1002/hbm.23283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
The frequency of visual gamma oscillations is determined by both the neuronal excitation-inhibition balance and the time constants of GABAergic processes. The gamma peak frequency has been linked to sensory processing, cognitive function, cortical structure, and may have a genetic contribution. To disentangle the intricate relationship among these factors, accurate and reliable estimates of peak frequency are required. Here, a bootstrapping approach that provides estimates of peak frequency reliability, thereby increasing the robustness of the inferences made on this parameter was developed. The method using both simulated data and real data from two previous pharmacological MEG studies of visual gamma with alcohol and tiagabine was validated. In particular, the study by Muthukumaraswamy et al. [] (Neuropsychopharmacology 38(6):1105-1112), in which GABAergic enhancement by tiagabine had previously demonstrated a null effect on visual gamma oscillations, contrasting with strong evidence from both animal models and very recent human studies was re-evaluated. After improved peak frequency estimation and additional exclusion of unreliably measured data, it was found that the GABA reuptake inhibitor tiagabine did produce, as predicted, a marked decrease in visual gamma oscillation frequency. This result demonstrates the potential impact of objective approaches to data quality control, and provides additional translational evidence for the mechanisms of GABAergic transmission generating gamma oscillations in humans. Hum Brain Mapp 37:3882-3896, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland, 1123, New Zealand
- School of Psychology, Faculty of Science, Auckland University, Auckland, 1123, New Zealand
| | - Anne E Campbell
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Khalid Hamandi
- The Epilepsy Unit, University Hospital of Wales, Cardiff, CF14 4XW, United Kingdom
| | - Anne Lingford-Hughes
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Jim F M Myers
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - David J Nutt
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Sue J Wilson
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College London, W12 0NN, London, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
26
|
Pantazis D, Fang M, Qin S, Mohsenzadeh Y, Li Q, Cichy RM. Decoding the orientation of contrast edges from MEG evoked and induced responses. Neuroimage 2017; 180:267-279. [PMID: 28712993 DOI: 10.1016/j.neuroimage.2017.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022] Open
Abstract
Visual gamma oscillations have been proposed to subserve perceptual binding, but their strong modulation by diverse stimulus features confounds interpretations of their precise functional role. Overcoming this challenge necessitates a comprehensive account of the relationship between gamma responses and stimulus features. Here we used multivariate pattern analyses on human MEG data to characterize the relationships between gamma responses and one basic stimulus feature, the orientation of contrast edges. Our findings confirmed we could decode orientation information from induced responses in two dominant frequency bands at 24-32 Hz and 50-58 Hz. Decoding was higher for cardinal than oblique orientations, with similar results also obtained for evoked MEG responses. In contrast to multivariate analyses, orientation information was mostly absent in univariate signals: evoked and induced responses in early visual cortex were similar in all orientations, with only exception an inverse oblique effect observed in induced responses, such that cardinal orientations produced weaker oscillatory signals than oblique orientations. Taken together, our results showed multivariate methods are well suited for the analysis of gamma oscillations, with multivariate patterns robustly encoding orientation information and predominantly discriminating cardinal from oblique stimuli.
Collapse
Affiliation(s)
- Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mingtong Fang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Qin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yalda Mohsenzadeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
27
|
Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 2017; 20:951-959. [PMID: 28481348 PMCID: PMC5511041 DOI: 10.1038/nn.4562] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.
Collapse
|
28
|
Pinotsis DA, Perry G, Litvak V, Singh KD, Friston KJ. Intersubject variability and induced gamma in the visual cortex: DCM with empirical Bayes and neural fields. Hum Brain Mapp 2016; 37:4597-4614. [PMID: 27593199 PMCID: PMC5111616 DOI: 10.1002/hbm.23331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
This article describes the first application of a generic (empirical) Bayesian analysis of between‐subject effects in the dynamic causal modeling (DCM) of electrophysiological (MEG) data. It shows that (i) non‐invasive (MEG) data can be used to characterize subject‐specific differences in cortical microcircuitry and (ii) presents a validation of DCM with neural fields that exploits intersubject variability in gamma oscillations. We find that intersubject variability in visually induced gamma responses reflects changes in the excitation‐inhibition balance in a canonical cortical circuit. Crucially, this variability can be explained by subject‐specific differences in intrinsic connections to and from inhibitory interneurons that form a pyramidal‐interneuron gamma network. Our approach uses Bayesian model reduction to evaluate the evidence for (large sets of) nested models—and optimize the corresponding connectivity estimates at the within and between‐subject level. We also consider Bayesian cross‐validation to obtain predictive estimates for gamma‐response phenotypes, using a leave‐one‐out procedure. Hum Brain Mapp 37:4597–4614, 2016. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | - Vladimir Litvak
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG
| |
Collapse
|
29
|
Tan HRM, Gross J, Uhlhaas PJ. MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable. Neuroimage 2016; 137:34-44. [PMID: 27153980 PMCID: PMC5405052 DOI: 10.1016/j.neuroimage.2016.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test-retest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the test-retest reliability of visually induced gamma (30-100Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N=13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC=0.861). Peak stimulus-induced gamma frequency (53-72Hz) yielded the highest measures of stability (ICCsensor=0.940; ICCsource=0.966) followed by spectral signal change (ICCsensor=0.890; ICCsource=0.893) and peak frequency bandwidth (ICCsensor=0.856; ICCsource=0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high test-retest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high test-retest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies.
Collapse
Affiliation(s)
- H-R M Tan
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology (INP), College of Medical, Veterinary and Life Sciences, College of Science and Engineering, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom.
| | - J Gross
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology (INP), College of Medical, Veterinary and Life Sciences, College of Science and Engineering, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom
| | - P J Uhlhaas
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology (INP), College of Medical, Veterinary and Life Sciences, College of Science and Engineering, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
30
|
Gamma Frequency and the Spatial Tuning of Primary Visual Cortex. PLoS One 2016; 11:e0157374. [PMID: 27362265 PMCID: PMC4928794 DOI: 10.1371/journal.pone.0157374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/28/2016] [Indexed: 12/05/2022] Open
Abstract
Visual stimulation produces oscillatory gamma responses in human primary visual cortex (V1) that also relate to visual perception. We have shown previously that peak gamma frequency positively correlates with central V1 cortical surface area. We hypothesized that people with larger V1 would have smaller receptive fields and that receptive field size, not V1 area, might explain this relationship. Here we set out to test this hypothesis directly by investigating the relationship between fMRI estimated population receptive field (pRF) size and gamma frequency in V1. We stimulated both the near-center and periphery of the visual field using both large and small stimuli in each location and replicated our previous finding of a positive correlation between V1 surface area and peak gamma frequency. Counter to our expectation, we found that between participants V1 size (and not PRF size) accounted for most of the variability in gamma frequency. Within-participants we found that gamma frequency increased, rather than decreased, with stimulus eccentricity directly contradicting our initial hypothesis.
Collapse
|
31
|
Robson SE, Muthukumarawswamy SD, John Evans C, Shaw A, Brealy J, Davis B, McNamara G, Perry G, Singh KD. Structural and neurochemical correlates of individual differences in gamma frequency oscillations in human visual cortex. J Anat 2016; 227:409-17. [PMID: 26352409 DOI: 10.1111/joa.12339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/30/2022] Open
Abstract
Neuronal oscillations in the gamma frequency range play an important role in stimulus processing in the brain. The frequency of these oscillations can vary widely between participants and is strongly genetically determined, but the cause of this variability is not understood. Previous studies have reported correlations between individual differences in gamma frequency and the concentration of the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), as well as with age and primary visual cortex (V1) area and thickness. This study assessed the relationships between all of these variables in the same group of participants. There were no significant correlations between gamma frequency and GABA+ concentration, V1 area or V1 thickness, although the relationship with GABA+/Cr approached significance. Considering age as a covariate further reduced the strength of all correlations and, in an additional dataset with a larger age range, gamma frequency was strongly inversely correlated with age but not V1 thickness or area, suggesting that age modulates gamma frequency via an additional, as yet unknown, mechanism. Consistent with other recent studies, these findings do not demonstrate a clear relationship between gamma frequency and GABA+ concentration. Further investigation of additional variables and the interactions between them will be necessary in order to more accurately determine predictors of the frequency of gamma oscillations.
Collapse
Affiliation(s)
- Siân E Robson
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.,Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - C John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Alexander Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jennifer Brealy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Brittany Davis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Grainne McNamara
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
Deouell LY. Microsaccades mediate a bottom-up mechanism for cross-frequency coupling in early visual cortex (Commentary on Lowet et al.). Eur J Neurosci 2016; 43:1284-5. [PMID: 26790688 DOI: 10.1111/ejn.13181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leon Y Deouell
- Department of Psychology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
33
|
Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, Ciumas C, Ryvlin P, Jerbi K. Gamma oscillations in V1 are correlated with GABA(A) receptor density: A multi-modal MEG and Flumazenil-PET study. Sci Rep 2015; 5:16347. [PMID: 26572733 PMCID: PMC4647220 DOI: 10.1038/srep16347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/02/2022] Open
Abstract
High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic inhibition. In humans, search for evidence linking total GABA concentration to gamma oscillations has led to promising -but also to partly diverging- observations. Here, we provide the first evidence of a direct relationship between the density of GABAA receptors and gamma oscillatory gamma responses in human primary visual cortex (V1). By combining Flumazenil-PET (to measure resting-levels of GABAA receptor density) and MEG (to measure visually-induced gamma oscillations), we found that GABAA receptor densities correlated positively with the frequency and negatively with amplitude of visually-induced gamma oscillations in V1. Our findings demonstrate that gamma-band response profiles of primary visual cortex across healthy individuals are shaped by GABAA-receptor-mediated inhibitory neurotransmission. These results bridge the gap with in-vitro and animal studies and may have future clinical implications given that altered GABAergic function, including dysregulation of GABAA receptors, has been related to psychiatric disorders including schizophrenia and depression.
Collapse
Affiliation(s)
- Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland.,Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Julien Jung
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Department of Epileptology and Functional Neurology, Lyon Neurological Hospital, F-69000, Lyon, France
| | - Sandrine Bouvard
- CERMEP imaging center, F-69003, Bron, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France
| | - Françoise Lecaignard
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,CERMEP imaging center, F-69003, Bron, France
| | - Amélie Lothe
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Carolina Ciumas
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France
| | - Philippe Ryvlin
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France.,Department of Clinical Neurosciences, CHUV, 1011, Lausanne, Switzerland
| | - Karim Jerbi
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Department of Psychology, University of Montreal, H3C 3J7 Montreal, Québec, Canada
| |
Collapse
|
34
|
Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders. J Neurodev Disord 2015; 7:21. [PMID: 26261460 PMCID: PMC4530485 DOI: 10.1186/s11689-015-9121-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. METHODS Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. RESULTS Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. CONCLUSIONS Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.
Collapse
|
35
|
Orekhova EV, Butorina AV, Sysoeva OV, Prokofyev AO, Nikolaeva AY, Stroganova TA. Frequency of gamma oscillations in humans is modulated by velocity of visual motion. J Neurophysiol 2015; 114:244-55. [PMID: 25925324 PMCID: PMC4507959 DOI: 10.1152/jn.00232.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the "spatial suppression" effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8-15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain.
Collapse
Affiliation(s)
- Elena V Orekhova
- The MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia
| | - Anna V Butorina
- The MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia
| | - Olga V Sysoeva
- The MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia
| | - Andrey O Prokofyev
- The MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia
| | | | - Tatiana A Stroganova
- The MEG Centre, Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
36
|
Perry G. The effects of cross-orientation masking on the visual gamma response in humans. Eur J Neurosci 2015; 41:1484-95. [DOI: 10.1111/ejn.12900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Imaging Centre (CUBRIC); School of Psychology; Cardiff University; 70 Park Place Cardiff CF10 3AT UK
- Institute of Psychological Medicine and Clinical Neurosciences; School of Medicine; Cardiff University; Cardiff UK
| |
Collapse
|
37
|
Perry G, Randle JM, Koelewijn L, Routley BC, Singh KD. Linear tuning of gamma amplitude and frequency to luminance contrast: evidence from a continuous mapping paradigm. PLoS One 2015; 10:e0124798. [PMID: 25906070 PMCID: PMC4408014 DOI: 10.1371/journal.pone.0124798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/18/2015] [Indexed: 02/02/2023] Open
Abstract
Individual differences in the visual gamma (30–100Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10–25Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.
Collapse
Affiliation(s)
- Gavin Perry
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - James M. Randle
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Loes Koelewijn
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Bethany C. Routley
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D. Singh
- Cardiff University Brain Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
38
|
Hadjipapas A, Lowet E, Roberts MJ, Peter A, De Weerd P. Parametric variation of gamma frequency and power with luminance contrast: A comparative study of human MEG and monkey LFP and spike responses. Neuroimage 2015; 112:327-340. [PMID: 25769280 DOI: 10.1016/j.neuroimage.2015.02.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
Gamma oscillations contribute significantly to the manner in which neural activity is bound into functional assemblies. The mechanisms that underlie the human gamma response, however, are poorly understood. Previous computational models of gamma rely heavily on the results of invasive recordings in animals, and it is difficult to assess whether these models hold in humans. Computational models of gamma predict specific changes in gamma spectral response with increased excitatory drive. Hence, differences and commonalities between spikes, LFPs and MEG in the spectral responses to changes in excitatory drive can lead to a refinement of existing gamma models. We compared gamma spectral responses to varying contrasts in a monkey dataset acquired previously (Roberts et al., 2013) with spectral responses to similar contrast variations in a new human MEG dataset. We found parametric frequency shifts with increasing contrast in human MEG at the single-subject and the single-trial level, analogous to those observed in the monkey. Additionally, we observed parametric modulations of spectral asymmetry, consistent across spikes, LFP and MEG. However, while gamma power scaled linearly with contrast in MEG, it saturated at high contrasts in both the LFP and spiking data. Thus, while gamma frequency changes to varying contrasts were comparable across spikes, LFP and MEG, gamma power changes were not. This indicates that gamma frequency may be a more stable parameter across scales of measurements and species than gamma power. The comparative approach undertaken here represents a fruitful path towards a better understanding of gamma oscillations in the human brain.
Collapse
Affiliation(s)
- A Hadjipapas
- University of Nicosia Medical School, Cyprus; St George's University of London, UK.
| | - E Lowet
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Maastricht University, Maastricht, The Netherlands.
| | - M J Roberts
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Maastricht University, Maastricht, The Netherlands
| | - A Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany; International Max Planck Research School for Neural Circuits, Frankfurt, Germany
| | - P De Weerd
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Perry G, Brindley LM, Muthukumaraswamy SD, Singh KD, Hamandi K. Evidence for increased visual gamma responses in photosensitive epilepsy. Epilepsy Res 2014; 108:1076-86. [DOI: 10.1016/j.eplepsyres.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/05/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
40
|
Wang Z, Fan H, Han F. A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory-inhibitory networks. Cogn Neurodyn 2014; 8:335-44. [PMID: 25009675 DOI: 10.1007/s11571-014-9290-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/23/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022] Open
Abstract
A great number of biological experiments show that gamma oscillation occurs in many brain areas after the presentation of stimulus. The neural systems in these brain areas are highly heterogeneous. Specifically, the neurons and synapses in these neural systems are diversified; the external inputs and parameters of these neurons and synapses are heterogeneous. How the gamma oscillation generated in such highly heterogeneous networks remains a challenging problem. Aiming at this problem, a highly heterogeneous complex network model that takes account of many aspects of real neural circuits was constructed. The network model consists of excitatory neurons and fast spiking interneurons, has three types of synapses (GABAA, AMPA, and NMDA), and has highly heterogeneous external drive currents. We found a new regime for robust gamma oscillation, i.e. the oscillation in inhibitory neurons is rather accurate but the oscillation in excitatory neurons is weak, in such highly heterogeneous neural networks. We also found that the mechanism of the oscillation is a mixture of interneuron gamma (ING) and pyramidal-interneuron gamma (PING). We explained the mixture ING and PING mechanism in a consistent-way by a compound post-synaptic current, which has a slowly rising-excitatory stage and a sharp decreasing-inhibitory stage.
Collapse
Affiliation(s)
- Zhijie Wang
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Hong Fan
- Glorious Sun School of Business and Management, Donghua University, Shanghai, 200051 China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| |
Collapse
|
41
|
Elvsåshagen T, Moberget T, Bøen E, Hol PK, Malt UF, Andersson S, Westlye LT. The surface area of early visual cortex predicts the amplitude of the visual evoked potential. Brain Struct Funct 2014; 220:1229-36. [DOI: 10.1007/s00429-013-0703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/30/2013] [Indexed: 01/17/2023]
|
42
|
Abstract
Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin--prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.
Collapse
|
43
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|
44
|
Sedley W, Cunningham MO. Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer. Front Hum Neurosci 2013; 7:595. [PMID: 24065913 PMCID: PMC3778316 DOI: 10.3389/fnhum.2013.00595] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/03/2013] [Indexed: 01/04/2023] Open
Abstract
Cortical gamma oscillations occur alongside perceptual processes, and in proportion to perceptual salience. They have a number of properties that make them ideal candidates to explain perception, including incorporating synchronized discharges of neural assemblies, and their emergence over a fast timescale consistent with that of perception. These observations have led to widespread assumptions that gamma oscillations' role is to cause or facilitate conscious perception (i.e., a "positive" role). While the majority of the human literature on gamma oscillations is consistent with this interpretation, many or most of these studies could equally be interpreted as showing a suppressive or inhibitory (i.e., "negative") role. For example, presenting a stimulus and recording a response of increased gamma oscillations would only suggest a role for gamma oscillations in the representation of that stimulus, and would not specify what that role were; if gamma oscillations were inhibitory, then they would become selectively activated in response to the stimulus they acted to inhibit. In this review, we consider two classes of gamma oscillations: "broadband" and "narrowband," which have very different properties (and likely roles). We first discuss studies on gamma oscillations that are non-discriminatory, with respect to the role of gamma oscillations, followed by studies that specifically support specifically a positive or negative role. These include work on perception in healthy individuals, and in the pathological contexts of phantom perception and epilepsy. Reference is based as much as possible on magnetoencephalography (MEG) and electroencephalography (EEG) studies, but we also consider evidence from invasive recordings in humans and other animals. Attempts are made to reconcile findings within a common framework. We conclude with a summary of the pertinent questions that remain unanswered, and suggest how future studies might address these.
Collapse
Affiliation(s)
- William Sedley
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University Medical School Newcastle Upon Tyne, UK
| | | |
Collapse
|
45
|
van Pelt S, Fries P. Visual stimulus eccentricity affects human gamma peak frequency. Neuroimage 2013; 78:439-47. [PMID: 23611863 DOI: 10.1016/j.neuroimage.2013.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022] Open
Abstract
The peak frequency of neuronal gamma-band synchronization has received much attention in recent years. Gamma peak frequency shifts to higher frequency values for higher contrast, faster moving, and attended stimuli. In monkey V1, gamma peak frequency for a drifting grating is higher for a parafoveal as compared to an eccentric stimulus (Lima et al., 2010). This effect might be due to the cortical magnification factor: the higher cortical magnification for parafoveal stimuli increases the velocity with which the cortical representations of the moving grating stripes move across the cortical surface. Since faster moving stimuli lead to higher gamma frequency, a faster moving cortical representation might do the same. This explanation predicts that the eccentricity effect on gamma peak frequency is absent for stationary stimuli. To test this, we investigated the effect of eccentricity on gamma peak frequency by recording magnetoencephalography in human subjects while they viewed moving or stationary gratings. We found that both the moving and the stationary stimuli induced lower peak frequencies for larger eccentricities, arguing against an explanation based on the cortical magnification factor. We further investigated whether this eccentricity effect was explained by differences in the size or the spatial frequency of the expected cortical activation. Neither of those explained the eccentricity effect. We propose that the different stimulus and top-down factors leading to higher gamma peak frequency all result in higher stimulus salience, that salience is translated into gamma peak frequency, and that gamma peak frequency might subserve the preferential processing of neuronal activity induced by salient stimuli.
Collapse
Affiliation(s)
- Stan van Pelt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt, Germany.
| | | |
Collapse
|
46
|
Muthukumaraswamy SD, Singh KD. Visual gamma oscillations: the effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings. Neuroimage 2012; 69:223-30. [PMID: 23274186 DOI: 10.1016/j.neuroimage.2012.12.038] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Increases in the power of neural oscillations in the gamma (>40 Hz) band are a key signature of information processing in cortical neuronal networks. However, non-invasive detection of these very small oscillations is difficult due to the presence of potential artefacts (both muscular and ocular) in the same frequency band and requires highly optimised paradigms. Numerous studies have shown that the properties of visual gamma-band responses to simple pattern stimuli are highly tuned to the stimuli parameters used. The aim of this work was to compare gamma oscillation response properties across some of the more commonly used stimulus configurations. To do this, MEG and EEG recordings were made during the presentation of eight different stimulus types in a 2 × 2 × 2 design. For the first stimulus factor, "Type", the stimulus pattern was either an annulus grating or a square wave grating. For the second stimulus factor, "Field", stimuli were presented in either four visual field quadrants simultaneously or only in the lower left quadrant. Finally, for the "Move" factor, stimuli either drifted at 1.33°s(-1) or were stationary. For MEG gamma band responses, the following main effects were observed, a) gamma-band power was increased for annular stimuli compared to square wave stimuli, b) gamma-band power was increased for full field stimuli compared to single quadrant stimuli and c) gamma-band power was larger for drifting compared to stationary stimuli and were of significantly higher frequency. For the detectors used, the signal to noise ratio was substantially higher for MEG than EEG. The advantages and disadvantages of the different types of stimulus types are discussed.
Collapse
|