1
|
Ventura-Bort C, Wirkner J, Wendt J, Schwabe L, Dolcos F, Hamm AO, Weymar M. Opposing effects of pre-encoding stress on neural substrates of item and emotional contextual source memory retrieval. Neurobiol Stress 2024; 33:100691. [PMID: 39634489 PMCID: PMC11616609 DOI: 10.1016/j.ynstr.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Although the mediating role of the stress hormone systems in memory for single- especially emotional- events is well-stablished, less is known about the influence of stress on memory for associated contextual information (source memory). Here, we investigated the impact of acute stress on the neural underpinnings of emotional contextual source memory. Participants underwent a stress or a control manipulation before they encoded objects paired with pleasant, neutral, or unpleasant backgrounds. One week later, item and contextual source memory were tested. Acute stress modulated the neural signature of item and contextual source memory in an opposite fashion: stressed participants showed larger activation in the precuneus and the medial prefrontal cortex (mPFC) during the retrieval of items, while the retrieval of contextual unpleasant information was associated with lower activation in the angular gyrus (AG) and mPFC. Furthermore, as revealed by cross-region representational similarity analyses, stress also reduced the memory reinstatement of the previously encoded visual cortex representations of object/unpleasant background pairings in the AG and mPFC. These results suggest that pre-encoding stress induction increases the activity of memory-related regions for single items but reduces the activity of these regions during the retrieval of contextual unpleasant information. Our findings provide new insights into the dissociative effects of stress on item and contextual source memory which could have clinical relevance for stress-related disorders.
Collapse
Affiliation(s)
- Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Janine Wirkner
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Florin Dolcos
- Beckman Institute for Advanced Science and Technology, Psychology Department, and Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alfons O. Hamm
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Metz S, Mengering L, Lipka R, Rosada C, Otte C, Heekeren H, Wingenfeld K. The effects of yohimbine and hydrocortisone on selective attention to fearful faces: An fMRI study. Psychoneuroendocrinology 2024; 165:107031. [PMID: 38581746 DOI: 10.1016/j.psyneuen.2024.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Selective attention to salient emotional information can enable an advantage in the face of danger. The present study aims to investigate the influence of the stress neuromodulators, norepinephrine and cortisol, on selective attention processes to fearful faces and its neuronal activation. METHODS AND MATERIALS We used a randomized, double-blind, placebo-controlled design. 167 healthy men between 18 and 35 years (mean [SD] age: 25.23 [4.24] years) participated in the study. Participants received either: (A) yohimbine (n= 41), (B) hydrocortisone (n = 41), (C) yohimbine and hydrocortisone (n = 42) or (D) placebo only (n= 43) and participated in a dot-probe task with fearful and neutral faces in an fMRI scanner. RESULTS We found an attentional bias toward fearful faces across all groups and related neuronal activation in the left cuneus. We did not find any differences between experimental treatment groups in selective attention and its neuronal activation. DISCUSSION Our results provide evidence that fearful faces lead to an attentional bias with related neuronal activation in the left cuneus. We did not replicate formerly reported activation in the amygdala, intraparietal sulcus, dorsal anterior cingulate cortex, and thalamus. Suitability of the dot-probe task for fMRI studies and insignificant treatment effects are discussed.
Collapse
Affiliation(s)
- Sophie Metz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Medical Psychology, Luisenstraße 57, Berlin 10117, Germany
| | - Leon Mengering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Renée Lipka
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Catarina Rosada
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Hauke Heekeren
- Universität Hamburg, Mittelweg 177, Hamburg 20148, Germany
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany.
| |
Collapse
|
3
|
Fox HC, Milivojevic V, Sinha R. Therapeutics for Substance-Using Women: The Need to Elucidate Sex-Specific Targets for Better-Tailored Treatments. Handb Exp Pharmacol 2023; 282:127-161. [PMID: 37592081 DOI: 10.1007/164_2023_687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In the last decade, alcohol consumption in the US has risen by 84% in women compared with 35% in men. Furthermore, research has shown that sex- and gender-related differences may disadvantage women in terms of developing a range of psychological, cognitive, and medical problems considerably earlier in their drinking history than men, and despite consuming a similar quantity of substances. While this "telescoping" process has been acknowledged in the literature, a concomitant understanding of the underlying biobehavioral mechanisms, and an increase in the development of specific treatments tailored to women, has not occurred. In the current chapter we focus on understanding why the need for personalized, sex-specific medications is imperative, and highlight some of the potential sex-specific gonadal and stress-related adaptations underpinning the accelerated progress from controlled to compulsive drug and alcohol seeking in women. We additionally discuss the efficacy of these mechanisms as novel targets for medications development, using exogenous progesterone and guanfacine as examples. Finally, we assess some of the challenges faced and progress made in terms of developing innovative medications in women. We suggest that agents such as exogenous progesterone and adrenergic medications, such as guanfacine, may provide some efficacy in terms of attenuating stress-induced craving for several substances, as well as improving the ability to emotionally regulate in the face of stress, preferentially in women. However, to fully leverage the potential of these therapeutics in substance-using women, greater focus needs to the placed on reducing barriers to treatment and research by encouraging women into clinical trials.
Collapse
Affiliation(s)
- Helen C Fox
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, Mueller EM. Alpha-2 Adrenoreceptor Antagonist Yohimbine Potentiates Consolidation of Conditioned Fear. Int J Neuropsychopharmacol 2022; 25:759-773. [PMID: 35748393 PMCID: PMC9515133 DOI: 10.1093/ijnp/pyac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans. METHODS Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride (200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs CS-) and extinguished fear (extinguished CS+ vs CS-) was assessed 1 day later, and a 64-channel electroencephalogram was recorded. RESULTS The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a placebo and sulpiride) enhanced fear recall during day 2. CONCLUSIONS These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned fear associations, which may be a key mechanism in the etiology of fear-related disorders.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Correspondence: Matthias F. J. Sperl, Justus Liebig University Giessen, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany ()
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany,Department of Psychology, Experimental Psychology and Methods, University of Leipzig, Leipzig, Germany,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, & Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Romero-Martínez Á, Sarrate-Costa C, Moya-Albiol L. A Systematic Review of the Role of Oxytocin, Cortisol, and Testosterone in Facial Emotional Processing. BIOLOGY 2021; 10:1334. [PMID: 34943249 PMCID: PMC8698823 DOI: 10.3390/biology10121334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
A topic of interest is the way decoding and interpreting facial emotional expressions can lead to mutual understanding. Facial emotional expression is a basic source of information that guarantees the functioning of other higher cognitive processes (e.g., empathy, cooperativity, prosociality, or decision-making, among others). In this regard, hormones such as oxytocin, cortisol, and/or testosterone have been found to be important in modifying facial emotion processing. In fact, brain structures that participate in facial emotion processing have been shown to be rich in receptors for these hormones. Nonetheless, much of this research has been based on correlational designs. In recent years, a growing number of researchers have tried to carry out controlled laboratory manipulation of these hormones by administering synthetic forms of these hormones. The main objective of this study was to carry out a systematic review of studies that assess whether manipulation of these three hormones effectively promotes significant alterations in facial emotional processing. To carry out this review, PRISMA quality criteria for reviews were followed, using the following digital databases: PsycINFO, PubMed, Dialnet, Psicodoc, Web of Knowledge, and the Cochrane Library, and focusing on manuscripts with a robust research design (e.g., randomized, single- or double-blind, and/or placebo-controlled) to increase the value of this systematic review. An initial identification of 6340 abstracts and retrieval of 910 full texts led to the final inclusion of 101 papers that met all the inclusion criteria. Only about 18% of the manuscripts included reported a direct effect of hormone manipulation. In fact, emotional accuracy seemed to be enhanced after oxytocin increases, but it diminished when cortisol and/or testosterone increased. Nonetheless, when emotional valence and participants' gender were included, hormonal manipulation reached significance (in around 53% of the articles). In fact, these studies offered a heterogeneous pattern in the way these hormones altered speed processing, attention, and memory. This study reinforces the idea that these hormones are important, but not the main modulators of facial emotion processing. As our comprehension of hormonal effects on emotional processing improves, the potential to design good treatments to improve this ability will be greater.
Collapse
Affiliation(s)
- Ángel Romero-Martínez
- Department of Psychobiology, University of Valencia, Avenida Blasco Ibañez, 21, 46010 Valencia, Spain; (C.S.-C.); (L.M.-A.)
| | | | | |
Collapse
|
6
|
Chae WR, Metz S, Pantazidis P, Dziobek I, Hellmann-Regen J, Wingenfeld K, Otte C. Effects of glucocorticoid and noradrenergic activity on implicit and explicit facial emotion recognition in healthy young men. Stress 2021; 24:1050-1056. [PMID: 33860721 DOI: 10.1080/10253890.2021.1908255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The ability to recognize emotions from facial expressions is crucial for social interaction. Only few studies have examined the effect of stress hormones on facial emotion recognition, although stressful events affect social interactions on a daily basis. Those studies that examined facial emotion recognition mostly used explicit prompts to trigger consciously controlled processing. However, facial emotions are processed mainly implicitly in real life. Therefore, we investigated separate and combined effects of noradrenergic and glucocorticoid stimulation on implicit and explicit facial emotion recognition. One hundred and four healthy men (mean age = 24.1 years ±SD 3.5) underwent the Face Puzzle task to test implicit and explicit facial emotion recognition after receiving either 10 mg hydrocortisone or 10 mg yohimbine (an alpha 2-adrenergic receptor antagonist that increases noradrenergic activity) or 10 mg hydrocortisone/10 mg yohimbine combined or placebo. Salivary cortisol and salivary alpha amylase (sAA) were measured during the experiment. Compared to the placebo condition hydrocortisone significantly increased salivary cortisol and yohimbine significantly increased sAA. Participants were better and faster in explicit than in implicit facial emotion recognition. However, there was no effect of separate and combined noradrenergic and glucocorticoid stimulation on implicit and explicit facial emotion recognition performance compared to placebo. Our results do not support an essential role of the glucocorticoid and noradrenergic system in FER in young healthy men.
Collapse
Affiliation(s)
- Woo Ri Chae
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Sophie Metz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Pierre Pantazidis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
7
|
Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev 2021; 127:820-836. [PMID: 34052280 DOI: 10.1016/j.neubiorev.2021.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
Discrimination of facial expressions is an elementary function of the human brain. While the way emotions are represented in the brain has long been debated, common and specific neural representations in recognition of facial expressions are also complicated. To examine brain organizations and asymmetry on discrete and dimensional facial emotions, we conducted an activation likelihood estimation meta-analysis and meta-analytic connectivity modelling on 141 studies with a total of 3138 participants. We found consistent engagement of the amygdala and a common set of brain networks across discrete and dimensional emotions. The left-hemisphere dominance of the amygdala and AI across categories of facial expression, but category-specific lateralization of the vmPFC, suggesting a flexibly asymmetrical neural representations of facial expression recognition. These results converge to characteristic activation and connectivity patterns across discrete and dimensional emotion categories in recognition of facial expressions. Our findings provide the first quantitatively meta-analytic brain network-based evidence supportive of the psychological constructionist hypothesis in facial expression recognition.
Collapse
|
8
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
9
|
Wirz L, Reuter M, Felten A, Schwabe L. An endocannabinoid receptor polymorphism modulates affective processing under stress. Soc Cogn Affect Neurosci 2019; 13:1177-1189. [PMID: 30239920 PMCID: PMC6234318 DOI: 10.1093/scan/nsy083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/17/2018] [Indexed: 02/04/2023] Open
Abstract
Stress has a critical impact on affective and cognitive processing. Based on rodent data suggesting that endocannabinoid signaling via CB1 receptors serves as an emotional buffer, we hypothesized that a common variant of the gene coding for the CB1 receptor modulates affective processing under stress (CNR1; rs1049353 A vs G allele). Therefore, 139 participants, genotyped for this polymorphism, underwent a stress or control manipulation before they viewed emotionally neutral and negative pictures in a magnetic resonance imaging scanner. The ventromedial prefrontal cortex, known for its crucial role in emotion regulation, was significantly more activated in AA/AG vs GG genotype carriers when viewing negative pictures after stress. Under no-stress conditions, AA/AG genotype carriers showed enhanced crosstalk between the ventrolateral prefrontal cortex and the amygdala. We further assessed participants' 24 h-delayed memory for the presented pictures and found that memory performance correlated with amygdala and hippocampus activity and connectivity in stressed carriers of the AA/AG but not the GG genotype. These findings underline the modulatory role of the endocannabinoid system in stress effects on emotion and cognition and provide insights into the neural mechanisms that may contribute to the suggested protective effect of the AA/AG genotype of the CB1 receptor polymorphism against stress-related psychopathologies.
Collapse
Affiliation(s)
- Lisa Wirz
- Department of Cognitive Psychology, University of Hamburg, Hamburg Germany
| | - Martin Reuter
- Department of Differential and Biological Psychology, University of Bonn, Bonn, Germany
| | - Andrea Felten
- Department of Differential and Biological Psychology, University of Bonn, Bonn, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, University of Hamburg, Hamburg Germany
| |
Collapse
|
10
|
The impact of Yohimbine-induced arousal on facets of behavioural impulsivity. Psychopharmacology (Berl) 2019; 236:1783-1795. [PMID: 30635680 PMCID: PMC6602985 DOI: 10.1007/s00213-018-5160-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE State-dependent changes in physiological arousal may influence impulsive behaviours. OBJECTIVES To examine the relationship between arousal and impulsivity, we assessed the effects of yohimbine (an α2-adrenergic receptor antagonist, which increases physiological arousal via noradrenaline release) on performance on established laboratory-based impulsivity measures in healthy volunteers. METHODS Forty-three participants received a single dose of either yohimbine hydrochloride or placebo before completing a battery of impulsivity measures. Blood pressure and heart rate were monitored throughout the study. RESULTS Participants in the yohimbine group showed higher blood pressure and better response inhibition in the Stop Signal Task, relative to the placebo group. Additionally, individual changes in blood pressure were associated with performance on Delay Discounting and Information Sampling tasks: raised blood pressure following drug ingestion was associated with more far-sighted decisions in the Delay Discounting Task (lower temporal impulsivity) yet reduced information gathering in the Information Sampling Task (increased reflection impulsivity). CONCLUSIONS These results support the notion that impulsive behaviour is dependent upon state physiological arousal; however, distinct facets of impulsivity are differentially affected by physiological changes.
Collapse
|
11
|
Goldstein-Piekarski AN, Greer SM, Saletin JM, Harvey AG, Williams LM, Walker MP. Sex, Sleep Deprivation, and the Anxious Brain. J Cogn Neurosci 2018; 30:565-578. [PMID: 29244642 PMCID: PMC6143348 DOI: 10.1162/jocn_a_01225] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insufficient sleep is a known trigger of anxiety. Nevertheless, not everyone experiences these effects to the same extent. One determining factor is sex, wherein women experience a greater anxiogenic impact in response to sleep loss than men. However, the underlying brain mechanism(s) governing this sleep-loss-induced anxiety increase, including the markedly different reaction in women and men, is unclear. Here, we tested the hypothesis that structural brain morphology in a discrete network of emotion-relevant regions represents one such explanatory factor. Healthy participants were assessed across sleep-rested and sleep-deprived conditions, with brain structure quantified using gray matter volume measures. Sleep loss triggered greater levels of anxiety in women compared with men. Reduced gray matter volume in the anterior insula and lateral orbitofrontal cortex predicted the anxiogenic impact of sleep loss in women, yet predicted resilience in men, and did so with high discrimination accuracy. In contrast, gray matter volume in ventromedial prefrontal cortex predicted the anxiogenic impact of sleep loss in both men and women. Structural human brain morphology therefore appears to represent one mechanistic pathway (and possible biomarker) determining anxiety vulnerability to sleep loss-a discovery that may help explain the higher prevalence of sleep disruption and anxiety in women.
Collapse
Affiliation(s)
- Andrea N. Goldstein-Piekarski
- University of California, Berkeley
- Stanford University
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System
| | | | - Jared M. Saletin
- University of California, Berkeley
- Alpert Medical School of Brown University
| | | | - Leanne M. Williams
- Stanford University
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System
| | | |
Collapse
|
12
|
Kaag AM, Reneman L, Homberg J, van den Brink W, van Wingen GA. Enhanced Amygdala-Striatal Functional Connectivity during the Processing of Cocaine Cues in Male Cocaine Users with a History of Childhood Trauma. Front Psychiatry 2018; 9:70. [PMID: 29593581 PMCID: PMC5857536 DOI: 10.3389/fpsyt.2018.00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Childhood trauma is associated with increased levels of anxiety later in life, an increased risk for the development of substance use disorders, and neurodevelopmental abnormalities in the amygdala and frontostriatal circuitry. The aim of this study was to investigate the (neurobiological) link among childhood trauma, state anxiety, and amygdala-frontostriatal activity in response to cocaine cues in regular cocaine users. METHODS In this study, we included 59 non-treatment seeking regular cocaine users and 58 non-drug using controls. Blood oxygenation level-dependent responses were measured using functional magnetic resonance imaging while subjects performed a cue reactivity paradigm with cocaine and neutral cues. Psychophysiological interaction analyses were applied to assess functional connectivity between the amygdala and other regions in the brain. Self-report questionnaires were used to measure childhood trauma, state anxiety, drug use, drug use severity, and craving. RESULTS Neural activation was increased during the presentation of cocaine cues, in a widespread network including the frontostriatal circuit and amygdala in cocaine users but not in controls. Functional coupling between the amygdala and medial prefrontal cortex was reduced in response to cocaine cues, in both cocaine users and controls, which was further diminished with increasing state anxiety. Importantly, amygdala-striatal connectivity was positively associated with childhood trauma in regular cocaine users, while there was a negative association in controls. At the behavioral level, state anxiety was positively associated with cocaine use severity and craving related to negative reinforcement. CONCLUSION Childhood trauma is associated with enhanced amygdala-striatal connectivity during cocaine cue reactivity in regular cocaine users, which may contribute to increased habit behavior and poorer cognitive control. While we cannot draw conclusions on causality, this study provides novel information on how childhood trauma may contribute to the development and persistence of cocaine use disorder.
Collapse
Affiliation(s)
- Anne Marije Kaag
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Departement of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam, Netherlands
| | - Judith Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Medical Centre, Nijmegen, Netherlands
| | - Wim van den Brink
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | - Guido A. van Wingen
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Kluen LM, Agorastos A, Wiedemann K, Schwabe L. Noradrenergic Stimulation Impairs Memory Generalization in Women. J Cogn Neurosci 2017; 29:1279-1291. [PMID: 28253079 DOI: 10.1162/jocn_a_01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.
Collapse
|
14
|
Zoladz PR, Dailey AM, Nagle HE, Fiely MK, Mosley BE, Brown CM, Duffy TJ, Scharf AR, Earley MB, Rorabaugh BR. ADRA2B deletion variant influences time-dependent effects of pre-learning stress on long-term memory. Neurobiol Learn Mem 2017; 140:71-81. [PMID: 28254464 DOI: 10.1016/j.nlm.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30min prior to learning a list of words that varied in emotional valence and arousal level. Participants' memory for the words was tested immediately (recall) and 24h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA.
| | - Alison M Dailey
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Hannah E Nagle
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Miranda K Fiely
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Brianne E Mosley
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Callie M Brown
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Tessa J Duffy
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Amanda R Scharf
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - McKenna B Earley
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical & Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| |
Collapse
|
15
|
Schwabe L. Memory under stress: from single systems to network changes. Eur J Neurosci 2016; 45:478-489. [PMID: 27862513 DOI: 10.1111/ejn.13478] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| |
Collapse
|
16
|
Feng P, Zheng Y, Feng T. Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction. Soc Cogn Affect Neurosci 2016; 11:991-1001. [PMID: 27013104 DOI: 10.1093/scan/nsw031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/08/2016] [Indexed: 11/14/2022] Open
Abstract
Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation.
Collapse
Affiliation(s)
- Pan Feng
- Faculty of Psychology, Southwest University, and
| | - Yong Zheng
- Faculty of Psychology, Southwest University, and Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, and Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| |
Collapse
|
17
|
Margittai Z, Nave G, Strombach T, van Wingerden M, Schwabe L, Kalenscher T. Exogenous cortisol causes a shift from deliberative to intuitive thinking. Psychoneuroendocrinology 2016; 64:131-5. [PMID: 26658173 DOI: 10.1016/j.psyneuen.2015.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Abstract
People often rely on intuitive judgments at the expense of deliberate reasoning, but what determines the dominance of intuition over deliberation is not well understood. Here, we employed a psychopharmacological approach to unravel the role of two major endocrine stress mediators, cortisol and noradrenaline, in cognitive reasoning. Healthy participants received placebo, cortisol (hydrocortisone) and/or yohimbine, a drug that increases noradrenergic stimulation, before performing the cognitive reflection test (CRT). We found that cortisol impaired performance in the CRT by biasing responses toward intuitive, but incorrect answers. Elevated stimulation of the noradrenergic system, however, had no effect. We interpret our results in the context of the dual systems theory of judgment and decision making. We propose that cortisol causes a shift from deliberate, reflective cognition toward automatic, reflexive information processing.
Collapse
Affiliation(s)
- Zsofia Margittai
- Comparative Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Gideon Nave
- Computation & Neural Systems, Caltech 228-77, Pasadena 91125, CA, USA
| | - Tina Strombach
- Comparative Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany; Chair of Marketing, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Lars Schwabe
- Department of Cognitive Psychology, Institute for Psychology, University of Hamburg, 20146 Hamburg, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Everaerd D, Klumpers F, van Wingen G, Tendolkar I, Fernández G. Association between neuroticism and amygdala responsivity emerges under stressful conditions. Neuroimage 2015; 112:218-224. [DOI: 10.1016/j.neuroimage.2015.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/06/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022] Open
|
19
|
Blocking the mineralocorticoid receptor in humans prevents the stress-induced enhancement of centromedial amygdala connectivity with the dorsal striatum. Neuropsychopharmacology 2015; 40:947-56. [PMID: 25355243 PMCID: PMC4330508 DOI: 10.1038/npp.2014.271] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/12/2014] [Accepted: 09/29/2014] [Indexed: 11/08/2022]
Abstract
Two research lines argue for rapid stress-induced reallocations of neural network activity involving the amygdala. One focuses on the role of norepinephrine (NE) in mediating a shift towards the salience network and improving vigilance processing, whereas the other focuses on the role of cortisol in enhancing automatic, habitual responses. It has been suggested that the mineralocorticoid receptor (MR) is critical in shifting towards habitual responses, which are supported by the dorsal striatum. However, until now it remained unclear whether these two reallocations of neural recourses might be part of the same phenomenon and develop immediately after stress onset. We combined methods used in both approaches and hypothesized specifically that stress would lead to rapidly enhanced involvement of the striatum as assessed by amygala-striatal connectivity. Furthermore, we tested the hypothesis that this shift depends on cortisol interacting with the MR, by using a randomized, placebo-controlled, full-factorial, between-subjects design with the factors stress and MR-blockade (spironolactone). We investigated 101 young, healthy men using functional magnetic resonance imaging after stress induction, which led to increased negative mood, heart rate, and cortisol levels. We confirmed our hypothesis by revealing a stress-by-MR-blockade interaction on the functional connectivity between the centromedial amygdala (CMA) and the dorsal striatum. Stress rapidly enhanced CMA-striatal connectivity and this effect was correlated with the stress-induced cortisol response, but required MR availability. This finding might suggest that the stress-induced shift described by distinct research lines might capture different aspects of the same phenomenon, ie, a reallocation of neural resources coordinated by both NE and cortisol.
Collapse
|
20
|
Zoladz PR, Kalchik AE, Hoffman MM, Aufdenkampe RL, Lyle SM, Peters DM, Brown CM, Cadle CE, Scharf AR, Dailey AM, Wolters NE, Talbot JN, Rorabaugh BR. ADRA2B deletion variant selectively predicts stress-induced enhancement of long-term memory in females. Psychoneuroendocrinology 2014; 48:111-22. [PMID: 24997351 DOI: 10.1016/j.psyneuen.2014.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
Clarifying the mechanisms that underlie stress-induced alterations of learning and memory may lend important insight into susceptibility factors governing the development of stress-related psychological disorders, such as post-traumatic stress disorder (PTSD). Previous work has shown that carriers of the ADRA2B Glu(301)-Glu(303) deletion variant exhibit enhanced emotional memory, greater amygdala responses to emotional stimuli and greater intrusiveness of traumatic memories. We speculated that carriers of this deletion variant might also be more vulnerable to stress-induced enhancements of long-term memory, which would implicate the variant as a possible susceptibility factor for traumatic memory formation. One hundred and twenty participants (72 males, 48 females) submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they studied a list of 42 words varying in emotional valence and arousal and then completed an immediate free recall test. Twenty-four hours later, participants' memory for the word list was examined via free recall and recognition assessments. Stressed participants exhibiting greater heart rate responses to the stressor had enhanced recall on the 24-h assessment. Importantly, this enhancement was independent of the emotional nature of the learned information. In contrast to previous work, we did not observe a general enhancement of memory for emotional information in ADRA2B deletion carriers. However, stressed female ADRA2B deletion carriers, particularly those exhibiting greater heart rate responses to the stressor, did demonstrate greater recognition memory than all other groups. Collectively, these findings implicate autonomic mechanisms in the pre-learning stress-induced enhancement of long-term memory and suggest that the ADRA2B deletion variant may selectively predict stress effects on memory in females. Such findings lend important insight into the physiological mechanisms underlying stress effects on learning and their sex-dependent nature.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA.
| | - Andrea E Kalchik
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Mackenzie M Hoffman
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Rachael L Aufdenkampe
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Sarah M Lyle
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - David M Peters
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Callie M Brown
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Chelsea E Cadle
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Amanda R Scharf
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Alison M Dailey
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, Ada, OH 45810, USA
| | - Nicholas E Wolters
- Department of Pharmaceutical & Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, OH 45810, USA
| | - Jeffery N Talbot
- Research Center on Substance Abuse and Depression, Roseman University of Health Sciences, Henderson, NV 89014, USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical & Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, OH 45810, USA
| |
Collapse
|
21
|
Hermans EJ, Battaglia FP, Atsak P, de Voogd LD, Fernández G, Roozendaal B. How the amygdala affects emotional memory by altering brain network properties. Neurobiol Learn Mem 2014; 112:2-16. [PMID: 24583373 DOI: 10.1016/j.nlm.2014.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/25/2022]
Abstract
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences.
Collapse
Affiliation(s)
- Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands.
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands; Departments for Neuroinformatics and Neurophysiology, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525 AJ, The Netherlands
| | - Piray Atsak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Lycia D de Voogd
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Benno Roozendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| |
Collapse
|
22
|
van den Bos R, Taris R, Scheppink B, de Haan L, Verster JC. Salivary cortisol and alpha-amylase levels during an assessment procedure correlate differently with risk-taking measures in male and female police recruits. Front Behav Neurosci 2014; 7:219. [PMID: 24474909 PMCID: PMC3893681 DOI: 10.3389/fnbeh.2013.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 01/10/2023] Open
Abstract
Recent laboratory studies have shown that men display more risk-taking behavior in decision-making tasks following stress, whilst women are more risk-aversive or become more task-focused. In addition, these studies have shown that sex differences are related to levels of the stress hormone cortisol (indicative of activation of the hypothalamus-pituitary-adrenocortical-axis): the higher the levels of cortisol the more risk-taking behavior is shown by men, whereas women generally display more risk-aversive or task-focused behavior following higher levels of cortisol. Here, we assessed whether such relationships hold outside the laboratory, correlating levels of cortisol obtained during a job-related assessment procedure with decision-making parameters in the Cambridge Gambling Task (CGT) in male and female police recruits. The CGT allows for discriminating different aspects of reward-based decision-making. In addition, we correlated levels of alpha-amylase [indicative of activation of the sympatho-adrenomedullary-axis (SAM)] and decision-making parameters. In line with earlier studies men and women only differed in risk-adjustment in the CGT. Salivary cortisol levels correlated positively and strongly with risk-taking measures in men, which was significantly different from the weak negative correlation in women. In contrast, and less strongly so, salivary alpha-amylase levels correlated positively with risk-taking in women, which was significantly different from the weak negative correlation with risk-taking in men. Collectively, these data support and extend data of earlier studies indicating that risky decision-making in men and women is differently affected by stress hormones. The data are briefly discussed in relation to the effects of stress on gambling.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Radboud University NijmegenNijmegen, Netherlands
| | - Ruben Taris
- Police Academy, Recruitment and SelectionApeldoorn, Netherlands
| | | | - Lydia de Haan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands
- Centre for Human Psychopharmacology, Swinburne University of TechnologyMelbourne, Australia
| |
Collapse
|
23
|
van den Bos R, Jolles JW, Homberg JR. Social modulation of decision-making: a cross-species review. Front Hum Neurosci 2013; 7:301. [PMID: 23805092 PMCID: PMC3693511 DOI: 10.3389/fnhum.2013.00301] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023] Open
Abstract
Taking decisions plays a pivotal role in daily life and comprises a complex process of assessing and weighing short-term and long-term costs and benefits of competing actions. Decision-making has been shown to be affected by factors such as sex, age, genotype, and personality. Importantly, also the social environment affects decisions, both via social interactions (e.g., social learning, cooperation and competition) and social stress effects. Although everyone is aware of this social modulating role on daily life decisions, this has thus far only scarcely been investigated in human and animal studies. Furthermore, neuroscientific studies rarely discuss social influence on decision-making from a functional perspective such as done in behavioral ecology studies. Therefore, the first aim of this article is to review the available data of the influence of the social context on decision-making both from a causal and functional perspective, drawing on animal and human studies. Also, there is currently still a gap between decision-making in real life where influences of the social environment are extensive, and decision-making as measured in the laboratory, which is often done without any (deliberate) social influences. However, methods are being developed to bridge this gap. Therefore, the second aim of this review is to discuss these methods and ways in which this gap can be increasingly narrowed. We end this review by formulating future research questions.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Faculty of Science, Radboud University NijmegenNijmegen, Netherlands
| | | | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, UMC St. RadboudNijmegen, Netherlands
| |
Collapse
|