1
|
Mohamed AK, Aswat M, Aharonson V. Low-Cost Dynamometer for Measuring and Regulating Wrist Extension and Flexion Motor Tasks in Electroencephalography Experiments. SENSORS (BASEL, SWITZERLAND) 2024; 24:5801. [PMID: 39275712 PMCID: PMC11397987 DOI: 10.3390/s24175801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
A brain-computer interface could control a bionic hand by interpreting electroencephalographic (EEG) signals associated with wrist extension (WE) and wrist flexion (WF) movements. Misinterpretations of the EEG may stem from variations in the force, speed and range of these movements. To address this, we designed, constructed and tested a novel dynamometer, the IsoReg, which regulates WE and WF movements during EEG recording experiments. The IsoReg restricts hand movements to isometric WE and WF, controlling their speed and range of motion. It measures movement force using a dual-load cell system that calculates the percentage of maximum voluntary contraction and displays it to help users control movement force. Linearity and measurement accuracy were tested, and the IsoReg's performance was evaluated under typical EEG experimental conditions with 14 participants. The IsoReg demonstrated consistent linearity between applied and measured forces across the required force range, with a mean accuracy of 97% across all participants. The visual force gauge provided normalised force measurements with a mean accuracy exceeding 98.66% across all participants. All participants successfully controlled the motor tasks at the correct relative forces (with a mean accuracy of 89.90%) using the IsoReg, eliminating the impact of inherent force differences between typical WE and WF movements on the EEG analysis. The IsoReg offers a low-cost method for measuring and regulating movements in future neuromuscular studies, potentially leading to improved neural signal interpretation.
Collapse
Affiliation(s)
- Abdul-Khaaliq Mohamed
- School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Muhammed Aswat
- School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Vered Aharonson
- School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
- Medical School, University of Nicosia, Nicosia 2421, Cyprus
| |
Collapse
|
2
|
Zadeh AK, Sadeghbeigi N, Safakheil H, Setarehdan SK, Alibiglou L. Connecting the dots: Sensory cueing enhances functional connectivity between pre-motor and supplementary motor areas in Parkinson's disease. Eur J Neurosci 2024; 60:4332-4345. [PMID: 38858176 DOI: 10.1111/ejn.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
People with Parkinson's disease often exhibit improvements in motor tasks when exposed to external sensory cues. While the effects of different types of sensory cues on motor functions in Parkinson's disease have been widely studied, the underlying neural mechanism of these effects and the potential of sensory cues to alter the motor cortical activity patterns and functional connectivity of cortical motor areas are still unclear. This study aims to compare changes in oxygenated haemoglobin, deoxygenated haemoglobin and correlations among different cortical regions of interest during wrist movement under different external stimulus conditions between people with Parkinson's disease and controls. Ten Parkinson's disease patients and 10 age- and sex-matched neurologically healthy individuals participated, performing repetitive wrist flexion and extension tasks under auditory and visual cues. Changes in oxygenated and deoxygenated haemoglobin in motor areas were measured using functional near-infrared spectroscopy, along with electromyograms from wrist muscles and wrist movement kinematics. The functional near-infrared spectroscopy data revealed significantly higher neural activity changes in the Parkinson's disease group's pre-motor area compared to controls (p = 0.006), and functional connectivity between the supplementary motor area and pre-motor area was also significantly higher in the Parkinson's disease group when external sensory cues were present (p = 0.016). These results indicate that external sensory cues' beneficial effects on motor tasks are linked to changes in the functional connectivity between motor areas responsible for planning and preparation of movements.
Collapse
Affiliation(s)
- Ali K Zadeh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hosein Safakheil
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Laila Alibiglou
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Tang X, Huang Z, Zhu G, Liang H, Sun H, Zhang Y, Tan Y, Cui M, Gong H, Wang X, Chen YH. Matching supplementary motor area-primary motor cortex paired transcranial magnetic stimulation improves motor dysfunction in Parkinson's disease: a single-center, double-blind randomized controlled clinical trial protocol. Front Aging Neurosci 2024; 16:1422535. [PMID: 39149144 PMCID: PMC11325724 DOI: 10.3389/fnagi.2024.1422535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background Non-invasive neuroregulation techniques have been demonstrated to improve certain motor symptoms in Parkinson's disease (PD). However, the currently employed regulatory techniques primarily concentrate on stimulating single target points, neglecting the functional regulation of networks and circuits. The supplementary motor area (SMA) has a significant value in motor control, and its functionality is often impaired in patients with PD. The matching SMA-primary motor cortex (M1) paired transcranial magnetic stimulation (TMS) treatment protocol, which benefits patients by modulating the sequential and functional connections between the SMA and M1, was elucidated in this study. Methods This was a single-center, double-blind, randomized controlled clinical trial. We recruited 78 subjects and allocated them in a 1:1 ratio by stratified randomization into the paired stimulation (n = 39) and conventional stimulation groups (n = 39). Each patient underwent 3 weeks of matching SMA-M1 paired TMS or sham-paired stimulation. The subjects were evaluated before treatment initiation, 3 weeks into the intervention, and 3 months after the cessation of therapy. The primary outcome measure in this study was the Unified Parkinson's Disease Rating Scale III, and the secondary outcome measures included non-motor functional assessment, quality of life (Parkinson's Disease Questionnaire-39), and objective assessments (electromyography and functional near-infrared spectroscopy). Discussion Clinical protocols aimed at single targets using non-invasive neuroregulation techniques often improve only one function. Emphasizing the circuit and network regulation in PD is important for enhancing the effectiveness of TMS rehabilitation. Pairing the regulation of cortical circuits may be a potential treatment method for PD. As a crucial node in motor control, the SMA has direct fiber connections with basal ganglia circuits and complex fiber connections with M1, which are responsible for motor execution. SMA regulation may indirectly regulate the function of basal ganglia circuits. Therefore, the developed cortical pairing stimulation pattern can reshape the control of information flow from the SMA to M1. The novel neuroregulation model designed for this study is based on the circuit mechanisms of PD and previous research results, with a scientific foundation and the potential to be a means of neuroregulation for PD.Clinical trial registration: ClinicalTrials.gov, identifier [ChiCTR2400083325].
Collapse
Affiliation(s)
- Xiaoshun Tang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhexue Huang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Guangyue Zhu
- Department of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Sun
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yalin Tan
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Minglong Cui
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Haiyan Gong
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu-Hui Chen
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Gulberti A, Schneider TR, Galindo-Leon EE, Heise M, Pino A, Westphal M, Hamel W, Buhmann C, Zittel S, Gerloff C, Pötter-Nerger M, Engel AK, Moll CKE. Premotor cortical beta synchronization and the network neuromodulation of externally paced finger tapping in Parkinson's disease. Neurobiol Dis 2024; 197:106529. [PMID: 38740349 DOI: 10.1016/j.nbd.2024.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.
Collapse
Affiliation(s)
- Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar E Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Heise
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Pino
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
6
|
Rashid-López R, Macías-García P, Sánchez-Fernández FL, Cano-Cano F, Sarrias-Arrabal E, Sanmartino F, Méndez-Bértolo C, Lozano-Soto E, Gutiérrez-Cortés R, González-Moraleda Á, Forero L, López-Sosa F, Zuazo A, Gómez-Molinero R, Gómez-Ramírez J, Paz-Expósito J, Rubio-Esteban G, Espinosa-Rosso R, Cruz-Gómez ÁJ, González-Rosa JJ. Neuroimaging and serum biomarkers of neurodegeneration and neuroplasticity in Parkinson's disease patients treated by intermittent theta-burst stimulation over the bilateral primary motor area: a randomized, double-blind, sham-controlled, crossover trial study. Front Aging Neurosci 2023; 15:1258315. [PMID: 37869372 PMCID: PMC10585115 DOI: 10.3389/fnagi.2023.1258315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background and objectives Intermittent theta-burst stimulation (iTBS) is a patterned form of excitatory transcranial magnetic stimulation that has yielded encouraging results as an adjunctive therapeutic option to alleviate the emergence of clinical deficits in Parkinson's disease (PD) patients. Although it has been demonstrated that iTBS influences dopamine-dependent corticostriatal plasticity, little research has examined the neurobiological mechanisms underlying iTBS-induced clinical enhancement. Here, our primary goal is to verify whether iTBS bilaterally delivered over the primary motor cortex (M1) is effective as an add-on treatment at reducing scores for both motor functional impairment and nonmotor symptoms in PD. We hypothesize that these clinical improvements following bilateral M1-iTBS could be driven by endogenous dopamine release, which may rebalance cortical excitability and restore compensatory striatal volume changes, resulting in increased striato-cortico-cerebellar functional connectivity and positively impacting neuroglia and neuroplasticity. Methods A total of 24 PD patients will be assessed in a randomized, double-blind, sham-controlled crossover study involving the application of iTBS over the bilateral M1 (M1 iTBS). Patients on medication will be randomly assigned to receive real iTBS or control (sham) stimulation and will undergo 5 consecutive sessions (5 days) of iTBS over the bilateral M1 separated by a 3-month washout period. Motor evaluation will be performed at different follow-up visits along with a comprehensive neurocognitive assessment; evaluation of M1 excitability; combined structural magnetic resonance imaging (MRI), resting-state electroencephalography and functional MRI; and serum biomarker quantification of neuroaxonal damage, astrocytic reactivity, and neural plasticity prior to and after iTBS. Discussion The findings of this study will help to clarify the efficiency of M1 iTBS for the treatment of PD and further provide specific neurobiological insights into improvements in motor and nonmotor symptoms in these patients. This novel project aims to yield more detailed structural and functional brain evaluations than previous studies while using a noninvasive approach, with the potential to identify prognostic neuroprotective biomarkers and elucidate the structural and functional mechanisms of M1 iTBS-induced plasticity in the cortico-basal ganglia circuitry. Our approach may significantly optimize neuromodulation paradigms to ensure state-of-the-art and scalable rehabilitative treatment to alleviate motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Raúl Rashid-López
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Paloma Macías-García
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - F. Luis Sánchez-Fernández
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Fátima Cano-Cano
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Esteban Sarrias-Arrabal
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Florencia Sanmartino
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Constantino Méndez-Bértolo
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Elena Lozano-Soto
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Remedios Gutiérrez-Cortés
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Álvaro González-Moraleda
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Lucía Forero
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Fernando López-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Amaya Zuazo
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Jaime Gómez-Ramírez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - José Paz-Expósito
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Raúl Espinosa-Rosso
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Jerez de la Frontera University Hospital, Jerez de la Frontera, Spain
| | - Álvaro J. Cruz-Gómez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Javier J. González-Rosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| |
Collapse
|
7
|
Mirzac D, Kreis SL, Luhmann HJ, Gonzalez-Escamilla G, Groppa S. Translating Pathological Brain Activity Primers in Parkinson's Disease Research. RESEARCH (WASHINGTON, D.C.) 2023; 6:0183. [PMID: 37383218 PMCID: PMC10298229 DOI: 10.34133/research.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Translational experimental approaches that help us better trace Parkinson's disease (PD) pathophysiological mechanisms leading to new therapeutic targets are urgently needed. In this article, we review recent experimental and clinical studies addressing abnormal neuronal activity and pathological network oscillations, as well as their underlying mechanisms and modulation. Our aim is to enhance our knowledge about the progression of Parkinson's disease pathology and the timing of its symptom's manifestation. Here, we present mechanistic insights relevant for the generation of aberrant oscillatory activity within the cortico-basal ganglia circuits. We summarize recent achievements extrapolated from available PD animal models, discuss their advantages and limitations, debate on their differential applicability, and suggest approaches for transferring knowledge on disease pathology into future research and clinical applications.
Collapse
Affiliation(s)
- Daniela Mirzac
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Svenja L. Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Skovgård K, Barrientos SA, Petersson P, Halje P, Cenci MA. Distinctive Effects of D1 and D2 Receptor Agonists on Cortico-Basal Ganglia Oscillations in a Rodent Model of L-DOPA-Induced Dyskinesia. Neurotherapeutics 2023; 20:304-324. [PMID: 36344723 PMCID: PMC10119363 DOI: 10.1007/s13311-022-01309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) in Parkinson's disease has been linked to oscillatory neuronal activities in the cortico-basal ganglia network. We set out to examine the pattern of cortico-basal ganglia oscillations induced by selective agonists of D1 and D2 receptors in a rat model of LID. Local field potentials were recorded in freely moving rats using large-scale electrodes targeting three motor cortical regions, dorsomedial and dorsolateral striatum, external globus pallidus, and substantial nigra pars reticulata. Abnormal involuntary movements were elicited by the D1 agonist SKF82958 or the D2 agonist sumanirole, while overall motor activity was quantified using video analysis (DeepLabCut). Both SKF82958 and sumanirole induced dyskinesia, although with significant differences in temporal course, overall severity, and body distribution. The D1 agonist induced prominent narrowband oscillations in the high gamma range (70-110 Hz) in all recorded structures except for the nigra reticulata. Additionally, the D1 agonist induced strong functional connectivity between the recorded structures and the phase analysis revealed that the primary motor cortex (forelimb area) was leading a supplementary motor area and striatum. Following treatment with the D2 agonist, narrowband gamma oscillations were detected only in forelimb motor cortex and dorsolateral striatum, while prominent oscillations in the theta band occurred in the globus pallidus and nigra reticulata. Our results reveal that the dyskinetic effects of D1 and D2 receptor agonists are associated with distinct patterns of cortico-basal ganglia oscillations, suggesting a recruitment of partially distinct networks.
Collapse
Affiliation(s)
- Katrine Skovgård
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian A Barrientos
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC A13, 221 84, Lund, Sweden.
| |
Collapse
|
9
|
Feng H, Jiang Y, Lin J, Qin W, Jin L, Shen X. Cortical activation and functional connectivity during locomotion tasks in Parkinson's disease with freezing of gait. Front Aging Neurosci 2023; 15:1068943. [PMID: 36967824 PMCID: PMC10032375 DOI: 10.3389/fnagi.2023.1068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Freezing of gait (FoG) is a severely disabling symptom in Parkinson's disease (PD). The cortical mechanisms underlying FoG during locomotion tasks have rarely been investigated. Objectives We aimed to compare the cerebral haemodynamic response during FoG-prone locomotion tasks in patients with PD and FoG (PD-FoG), patients with PD but without FoG (PD-nFoG), and healthy controls (HCs). Methods Twelve PD-FoG patients, 10 PD-nFoG patients, and 12 HCs were included in the study. Locomotion tasks included normal stepping, normal turning and fast turning ranked as three difficulty levels based on kinematic requirements and probability of provoking FoG. During each task, we used functional near-infrared spectroscopy to capture concentration changes of oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB) that reflected cortical activation, and recorded task performance time. The cortical regions of interest (ROIs) were prefrontal cortex (PFC), supplementary motor area (SMA), premotor cortex (PMC), and sensorimotor cortex (SMC). Intra-cortical functional connectivity during each task was estimated based on correlation of ΔHBO2 between ROIs. Two-way multivariate ANOVA with task performance time as a covariate was conducted to investigate task and group effects on cerebral haemodynamic responses of ROIs. Z statistics of z-scored connectivity between ROIs were used to determine task and group effects on functional connectivity. Results PD-FoG patients spent a nearly significant longer time completing locomotion tasks than PD-nFoG patients. Compared with PD-nFoG patients, they showed weaker activation (less ΔHBO2) in the PFC and PMC. Compared with HCs, they had comparable ΔHBO2 in all ROIs but more negative ΔHHB in the SMC, whereas PD-nFoG showed SMA and PMC hyperactivity but more negative ΔHHB in the SMC. With increased task difficulty, ΔHBO2 increased in each ROI except in the PFC. Regarding functional connectivity during normal stepping, PD-FoG patients showed positive and strong PFC-PMC connectivity, in contrast to the negative PFC-PMC connectivity observed in HCs. They also had greater PFC-SMC connectivity than the other groups. However, they exhibited decreased SMA-SMC connectivity when task difficulty increased and had lower SMA-PMC connectivity than HCs during fast turning. Conclusion Insufficient compensatory cortical activation and depletion of functional connectivity during complex locomotion in PD-FoG patients could be potential mechanisms underlying FoG. Clinical trial registration Chinese clinical trial registry (URL: http://www.chictr.org.cn, registration number: ChiCTR2100042813).
Collapse
Affiliation(s)
- HongSheng Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - YanNa Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - JinPeng Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - WenTing Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - LingJing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xia Shen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen,
| |
Collapse
|
10
|
Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:5491. [PMID: 35897995 PMCID: PMC9371095 DOI: 10.3390/s22155491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist's subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018-2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community's growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.
Collapse
Affiliation(s)
| | - Sizhe An
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Ganapati Bhat
- School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA 99164, USA;
| | - Holly Shill
- Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ 85013, USA;
| | - Umit Y. Ogras
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
11
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
12
|
Araújo-Silva F, Santinelli FB, Felipe I Imaizumi L, Silveira APB, Vieira LHP, Alcock L, Barbieri FA. Temporal dynamics of cortical activity and postural control in response to the first levodopa dose of the day in people with Parkinson's disease. Brain Res 2021; 1775:147727. [PMID: 34788638 DOI: 10.1016/j.brainres.2021.147727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Our understanding of how balance control responds to levodopa over the course of a single day in people with Parkinson's disease (PD) is limited with the majority of studies focused on isolated comparisons of ON vs. OFF levodopa medication. OBJECTIVE To evaluate the temporal dynamics of postural control following the first levodopa dose of the day during a challenging standing task in a group of people with PD. METHODS Changes in postural control were evaluated by monitoring cortical activity (covering frontal, motor, parietal and occipital areas), body sway parameters (force platform), and lower limb muscle activity (tibialis anterior and gastrocnemius medialis) in 15 individuals with PD during a semi-tandem standing task. Participants were assessed during two 60 second trials every 30 minutes (ON-30 ON-60 etc.) for 3 hours after the first matinal dose (ON-180). RESULTS Compared to when tested OFF-medication, cortical activity was increased across all four regions from ON-60 to ON-120 with early increases in alpha and beta band activity observed at ON-30. Levodopa was associated with increased gastrocnemius medialis activity (ON-30 to ON-120) and ankle co-contraction (ON-60 to ON-120). Changes in body sway outcomes (particularly in the anterior-posterior direction) were evident from ON-60 to ON-120. CONCLUSIONS Our results reveal a 60-minute window within which postural control outcomes may be obtained that are different compared to OFF-state and remain stable (from 60-minutes to 120-minutes after levodopa intake). Identifying a window of opportunity for measurement when individuals are optimally medicated is important for observations in a clinical and research setting.
Collapse
Affiliation(s)
- Fabiana Araújo-Silva
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Felipe B Santinelli
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Luis Felipe I Imaizumi
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Aline P B Silveira
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Luiz H P Vieira
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, UK
| | - Fabio A Barbieri
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil.
| |
Collapse
|
13
|
Increased prefrontal top-down control in older adults predicts motor performance and age-group association. Neuroimage 2021; 240:118383. [PMID: 34252525 DOI: 10.1016/j.neuroimage.2021.118383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Bimanual motor control declines during ageing, affecting the ability of older adults to maintain independence. An important underlying factor is cortical atrophy, particularly affecting frontal and parietal areas in older adults. As these regions and their interplay are highly involved in bimanual motor preparation, we investigated age-related connectivity changes between prefrontal and premotor areas of young and older adults during the preparatory phase of complex bimanual movements using high-density electroencephalography. Generative modelling showed that excitatory inter-hemispheric prefrontal to premotor coupling in older adults predicted age-group affiliation and was associated with poor motor-performance. In contrast, excitatory intra-hemispheric prefrontal to premotor coupling enabled older adults to maintain motor-performance at the cost of lower movement speed. Our results disentangle the complex interplay in the prefrontal-premotor network during movement preparation underlying reduced bimanual control and the well-known speed-accuracy trade-off seen in older adults.
Collapse
|
14
|
Peláez Suárez AA, Berrillo Batista S, Pedroso Ibáñez I, Casabona Fernández E, Fuentes Campos M, Chacón LM. EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson's Disease. Behav Sci (Basel) 2021; 11:40. [PMID: 33806841 PMCID: PMC8005012 DOI: 10.3390/bs11030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate EEG-derived functional connectivity (FC) patterns associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). METHODS A sample of 15 patients without cognitive impairment (PD-WCI), 15 with MCI (PD-MCI), and 26 healthy subjects were studied. The EEG was performed in the waking functional state with eyes closed, for the functional analysis it was used the synchronization likelihood (SL) and graph theory (GT). RESULTS PD-MCI patients showed decreased FC in frequencies alpha, in posterior regions, and delta with a generalized distribution. Patients, compared to the healthy people, presented a decrease in segregation (lower clustering coefficient in alpha p = 0.003 in PD-MCI patients) and increased integration (shorter mean path length in delta (p = 0.004) and theta (p = 0.002) in PD-MCI patients). There were no significant differences in the network topology between the parkinsonian groups. In PD-MCI patients, executive dysfunction correlated positively with global connectivity in beta (r = 0.47) and negatively with the mean path length at beta (r = -0.45); alterations in working memory were negatively correlated with the mean path length at beta r = -0.45. CONCLUSIONS PD patients present alterations in the FC in all frequencies, those with MCI show less connectivity in the alpha and delta frequencies. The neural networks of the patients show a random topology, with a similar organization between patients with and without MCI. In PD-MCI patients, alterations in executive function and working memory are related to beta integration.
Collapse
Affiliation(s)
- Alejandro Armando Peláez Suárez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Sheila Berrillo Batista
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| | - Ivonne Pedroso Ibáñez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Enrique Casabona Fernández
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | | | - Lilia Morales Chacón
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| |
Collapse
|
15
|
Chen L, Bedard P, Hallett M, Horovitz SG. Dynamics of Top-Down Control and Motor Networks in Parkinson's Disease. Mov Disord 2021; 36:916-926. [PMID: 33404161 DOI: 10.1002/mds.28461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Motor symptoms in Parkinson's disease (PD) patients might be related to high-level task-control deficits. We aimed at investigating the dynamics between sensorimotor network and top-down control networks (frontal-parietal, cingulo-opercular, and cerebellar) in PD and at determining the effects of levodopa on the dynamics of these networks. METHODS We investigated dynamic functional connectivity (dFC), during resting state functional magnetic resonance imaging, between sensorimotor network and top-down control networks in 36 PD patients (OFF medication, PD-OFF) and 36 healthy volunteers. We further assessed the effect of medication on dFC in18 PD patients who were also scanned ON medication. RESULTS The dFC analyses identified three discrete states: State I (35.68%) characterized by connections between the cerebellum and sensorimotor network, State II (34.17%) with connections between the sensorimotor and frontal-parietal network, and State III (30.15%) with connection between the sensorimotor and cingulo-opercular network. PD patients have significantly fewer occurrences and overall spent less time (shorter dwell time) in State II compared to healthy controls. After levodopa intake, dwell time improved toward normal. The change in dwell time before and after taking levodopa was negatively related to the respective changes in Unified Parkinson's Disease Rating Scale, Part III. PD-OFF showed significantly decreased connectivity between sensorimotor and control networks and increased connectivity within control networks. These changes were partially improved after levodopa intake. CONCLUSIONS Dopamine depletion in PD is associated with abnormalities in temporal and spatial properties between cognitive control and sensorimotor network, possibly contributing to clinical deficits. Levodopa partially restores the network function toward the values observed in healthy volunteers. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Li Chen
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Patrick Bedard
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Buril J, Burilova P, Pokorna A, Balaz M. Use of high-density EEG in patients with Parkinson's disease treated with deep brain stimulation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:366-370. [DOI: 10.5507/bp.2020.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
|
17
|
Min BK, Kim HS, Pinotsis DA, Pantazis D. Thalamocortical inhibitory dynamics support conscious perception. Neuroimage 2020; 220:117066. [PMID: 32565278 DOI: 10.1016/j.neuroimage.2020.117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022] Open
Abstract
Whether thalamocortical interactions play a decisive role in conscious perception remains an open question. We presented rapid red/green color flickering stimuli, which induced the mental perception of either an illusory orange color or non-fused red and green colors. Using magnetoencephalography, we observed 6-Hz thalamic activity associated with thalamocortical inhibitory coupling only during the conscious perception of the illusory orange color. This sustained thalamic disinhibition was temporally coupled with higher visual cortical activation during the conscious perception of the orange color, providing neurophysiological evidence of the role of thalamocortical synchronization in conscious awareness of mental representation. Bayesian model comparison consistently supported the thalamocortical model in conscious perception. Taken together, experimental and theoretical evidence established the thalamocortical inhibitory network as a gateway to conscious mental representations.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Hyun Seok Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City-University of London, London, EC1V 0HB, UK; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Petersson P, Halje P, Cenci MA. Significance and Translational Value of High-Frequency Cortico-Basal Ganglia Oscillations in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:183-196. [PMID: 30594935 PMCID: PMC6484276 DOI: 10.3233/jpd-181480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both clinical and basic investigators. In Parkinson’s disease (PD), neural activity in basal ganglia nuclei is characterized by oscillatory patterns that are believed to disrupt the dynamic processing of movement-related information and thus generate motor symptoms. Beta-band oscillations associated with hypokinetic states have been reviewed in several excellent previous articles. Here we focus on faster oscillatory phenomena that have been reported in association with a diverse range of motor states. We review the occurrence of different types of fast oscillations and the evidence supporting their pathophysiological role. We also provide a general discussion on the definition, possible mechanisms, and translational value of synchronized oscillations of different frequencies in cortico-basal ganglia structures. Revealing how oscillatory phenomena are caused and spread in cortico-basal ganglia-thalamocortical networks will offer a key to unlock the neural codes of both motor and non-motor symptoms in PD. In preclinical therapeutic research, recording of oscillatory neural activities holds the promise to unravel mechanisms of action of current and future treatments.
Collapse
Affiliation(s)
- Per Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - Pär Halje
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Grigoruţă M, Martínez-Martínez A, Dagda RY, Dagda RK. Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model. Mol Neurobiol 2020; 57:1781-1798. [PMID: 31836946 PMCID: PMC7125028 DOI: 10.1007/s12035-019-01838-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Psychological distress is a public health issue as it contributes to the development of human diseases including neuropathologies. Parkinson's disease (PD), a chronic, progressive neurodegenerative disorder, is caused by multiple factors including aging, mitochondrial dysfunction, and/or stressors. In PD, a substantial loss of substantia nigra (SN) neurons leads to rigid tremors, bradykinesia, and chronic fatigue. Several studies have reported that the hypothalamic-pituitary-adrenal (HPA) axis is altered in PD patients, leading to an increase level of cortisol which contributes to neurodegeneration and oxidative stress. We hypothesized that chronic psychological distress induces PD-like symptoms and promotes neurodegeneration in wild-type (WT) rats and exacerbates PD pathology in PINK1 knockout (KO) rats, a well-validated animal model of PD. We measured the bioenergetics profile (oxidative phosphorylation and glycolysis) in the brain by employing an XF24e Seahorse Extracellular Flux Analyzer in young rats subjected to predator-induced psychological distress. In addition, we analyzed anxiety-like behavior, motor function, expression of antioxidant enzymes, mitochondrial content, and neurotrophic factors brain-derived neurotrophic factor (BDNF) in the brain. Overall, we observed that psychological distress diminished up to 50% of mitochondrial respiration and glycolysis in the prefrontal cortex (PFC) derived from both WT and PINK1-KO rats. Mechanistically, the level of antioxidant proteins, mitochondrial content, and BDNF was significantly altered. Finally, psychological distress robustly induced anxiety and Parkinsonian symptoms in WT rats and accelerated certain symptoms of PD in PINK1-KO rats. For the first time, our collective data suggest that psychological distress can phenocopy several aspects of PD neuropathology, disrupt brain energy production, as well as induce ataxia-like behavior.
Collapse
Affiliation(s)
- Mariana Grigoruţă
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310, Ciudad Juarez, Mexico
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310, Ciudad Juarez, Mexico.
| | - Raul Y Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
20
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
21
|
Schneider L, Seeger V, Timmermann L, Florin E. Electrophysiological resting state networks of predominantly akinetic-rigid Parkinson patients: Effects of dopamine therapy. NEUROIMAGE-CLINICAL 2020; 25:102147. [PMID: 31954989 PMCID: PMC6965744 DOI: 10.1016/j.nicl.2019.102147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/21/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022]
Abstract
Analysis of whole-brain frequency-specific resting state networks with EEG. Comparison of dopamine medication ON and OFF state in Parkinson patients. Parkinson patients show distinct frequency-specific network alterations. Motor network at beta frequencies is re-instated after dopamine medication.
Parkinson's disease (PD) causes both motor and non-motor symptoms, which can partially be reversed by dopamine therapy. These symptoms as well as the effect of dopamine may be explained by distinct alterations in whole-brain architecture. We used functional connectivity (FC) and in particular resting state network (RSN) analysis to identify such whole-brain alterations in a frequency-specific manner. In addition, we hypothesized that standard dopaminergic medication would have a normalizing effect on these whole brain alterations. We recorded resting-state EEGs of 19 PD patients in the medical OFF and ON states, and of 12 healthy age-matched controls. The PD patients were either of akinetic-rigid or mixed subtype. We extracted RSNs with independent component analysis in the source space for five frequency bands. Within the sensorimotor network (SMN) the supplementary motor area (SMA) showed decreased FC in the OFF state compared to healthy controls. This finding was reversed after dopamine administration. Furthermore, in the OFF state no stable SMN beta component could be identified. The default mode network showed alterations due to PD independent of the medication state. The visual network was altered in the OFF state, and reinstated to a pattern similar to healthy controls by medication. In conclusion, PD causes distinct RSN alterations, which are partly reversed after levodopa administration. The changes within the SMN are of particular interest, because they broaden the pathophysiological understanding of PD. Our results identify the SMA as a central network hub affected in PD and a crucial effector of dopamine therapy.
Collapse
Affiliation(s)
- Lukas Schneider
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany
| | - Valentin Seeger
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Department of Neurology, University Hospital Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Esther Florin
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Nackaerts E, D'Cruz N, Dijkstra BW, Gilat M, Kramer T, Nieuwboer A. Towards understanding neural network signatures of motor skill learning in Parkinson's disease and healthy aging. Br J Radiol 2019; 92:20190071. [PMID: 30982328 DOI: 10.1259/bjr.20190071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, neurorehabilitation has been shown to be an effective therapeutic supplement for patients with Parkinson's disease (PD). However, patients still experience severe problems with the consolidation of learned motor skills. Knowledge on the neural correlates underlying this process is thus essential to optimize rehabilitation for PD. This review investigates the existing studies on neural network connectivity changes in relation to motor learning in healthy aging and PD and critically evaluates the imaging methods used from a methodological point of view. The results indicate that despite neurodegeneration there is still potential to modify connectivity within and between motor and cognitive networks in response to motor training, although these alterations largely bypass the most affected regions in PD. However, so far training-related changes are inferred and possible relationships are not substantiated by brain-behavior correlations. Furthermore, the studies included suffer from many methodological drawbacks. This review also highlights the potential for using neural network measures as predictors for the response to rehabilitation, mainly based on work in young healthy adults. We speculate that future approaches, including graph theory and multimodal neuroimaging, may be more sensitive than brain activation patterns and model-based connectivity maps to capture the effects of motor learning. Overall, this review suggests that methodological developments in neuroimaging will eventually provide more detailed knowledge on how neural networks are modified by training, thereby paving the way for optimized neurorehabilitation for patients.
Collapse
Affiliation(s)
| | - Nicholas D'Cruz
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Bauke W Dijkstra
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Kramer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- 1Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Dopamine substitution alters effective connectivity of cortical prefrontal, premotor, and motor regions during complex bimanual finger movements in Parkinson's disease. Neuroimage 2019; 190:118-132. [DOI: 10.1016/j.neuroimage.2018.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023] Open
|
24
|
Kikuchi Y, Umezaki T, Uehara T, Yamaguchi H, Yamashita K, Hiwatashi A, Sawatsubashi M, Adachi K, Yamaguchi Y, Murakami D, Kira JI, Nakagawa T. A case of multiple system atrophy-parkinsonian type with stuttering- and palilalia-like dysfluencies and putaminal atrophy. JOURNAL OF FLUENCY DISORDERS 2018; 57:51-58. [PMID: 29157667 DOI: 10.1016/j.jfludis.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Both developmental and acquired stuttering are related to the function of the basal ganglia-thalamocortical loop, which includes the putamen. Here, we present a case of stuttering- and palilalia-like dysfluencies that manifested as an early symptom of multiple system atrophy-parkinsonian type (MSA-P) and bilateral atrophy of the putamen. The patient was a 72-year-old man with no history of developmental stuttering who presented with a stutter for consultation with our otorhinolaryngology department. The patient was diagnosed with MSA-P based on parkinsonism, autonomic dysfunction, and bilateral putaminal atrophy revealed by T2-weighted magnetic resonance imaging. Treatment with levodopa improved both the motor functional deficits related to MSA-P and stuttering-like dysfluencies while reading; however, the palilalia-like dysfluencies were much less responsive to levodopa therapy. The patient died of aspiration pneumonia two years after his first consultation at our hospital. In conclusion, adult-onset stuttering- and palilalia-like dysfluencies warrant careful examination of the basal ganglia-thalamocortical loop, and especially the putamen, using neuroimaging techniques. Acquired stuttering may be related to deficits in dopaminergic function.
Collapse
Affiliation(s)
- Yoshikazu Kikuchi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Toshiro Umezaki
- Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan; International University of Health and Welfare, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Sawatsubashi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Adachi
- Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Yumi Yamaguchi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Murakami
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Cheng FY, Yang YR, Wu YR, Lu CF, Cheng SJ, Wang RY. Beta event-related desynchronization can be enhanced by different training programs and is correlated with improved postural control in individuals with Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1957-1964. [PMID: 30183638 DOI: 10.1109/tnsre.2018.2868140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to investigate the effects of a specific exercise (SE) training program focusing on balance and muscle strengthening and a turning-based treadmill (TT) training program on cortical desynchronization and postural control in Parkinson's disease (PD). METHODS Eighteen patients with PD were recruited and randomly assigned to the SE group, TT training group or control exercise (CE) group and participated in 12 30-min training sessions focusing on balance and strengthening, turning-based treadmill training, or general exercise training, respectively, followed by 10 minutes of over-ground walking in each session for 4 to 6 weeks. The outcomes included alpha event-related desynchronization (ERD), beta ERD, postural control ability indicated by postural instability and gait disorder (PIGD), the step/quick turn test (SQT), and the sensory organization test (SOT). All measurements were assessed at baseline and after training. RESULTS The results (n=6 for each group) showed that both the SE and TT groups had improved beta ERD, but not alpha ERD, in the Cz area, PIGD score, and turn sway/time in the SQT compared with the CE group. Furthermore, postural control ability was positively correlated with beta ERD in the Cz area. However, there was no significant correlation between SOT total score and alpha ERD in the Cz area. CONCLUSIONS This study showed that beta ERD in the central area and postural control can be improved with balance training, along with lower extremity muscle strengthening exercise and turning-based treadmill training, in patients with PD. Furthermore, improvement in beta ERD in the central area correlated with improvements in postural control ability. This trial was registered at http://www.anzctr.org.au/ (ACTRN12616000198426).
Collapse
|
26
|
Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S. Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 2018; 9:711. [PMID: 30210436 PMCID: PMC6119713 DOI: 10.3389/fneur.2018.00711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
27
|
Generic dynamic causal modelling: An illustrative application to Parkinson's disease. Neuroimage 2018; 181:818-830. [PMID: 30130648 PMCID: PMC7343527 DOI: 10.1016/j.neuroimage.2018.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
We present a technical development in the dynamic causal modelling of
electrophysiological responses that combines qualitatively different neural mass
models within a single network. This affords the option to couple various
cortical and subcortical nodes that differ in their form and dynamics. Moreover,
it enables users to implement new neural mass models in a straightforward and
standardized way. This generic framework hence supports flexibility and
facilitates the exploration of increasingly plausible models. We illustrate this
by coupling a basal ganglia-thalamus model to a (previously validated) cortical
model developed specifically for motor cortex. The ensuing DCM is used to infer
pathways that contribute to the suppression of beta oscillations induced by
dopaminergic medication in patients with Parkinson's disease.
Experimental recordings were obtained from deep brain stimulation electrodes
(implanted in the subthalamic nucleus) and simultaneous magnetoencephalography.
In line with previous studies, our results indicate a reduction of synaptic
efficacy within the circuit between the subthalamic nucleus and external
pallidum, as well as reduced efficacy in connections of the hyperdirect and
indirect pathway leading to this circuit. This work forms the foundation for a
range of modelling studies of the synaptic mechanisms (and pathophysiology)
underlying event-related potentials and cross-spectral densities.
Collapse
|
28
|
Turco F, Canessa A, Olivieri C, Pozzi NG, Palmisano C, Arnulfo G, Marotta G, Volkmann J, Pezzoli G, Isaias IU. Cortical response to levodopa in Parkinson's disease patients with dyskinesias. Eur J Neurosci 2018; 48:2362-2373. [PMID: 30117212 DOI: 10.1111/ejn.14114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/21/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
Abstract
Levodopa-induced dyskinesias are a common and disabling side effect of dopaminergic therapy in Parkinson's disease, but their neural mechanisms in vivo are still poorly understood. Besides striatal pathology, the importance of cortical dysfunction has been increasingly recognized. The supplementary motor area in particular, may have a relevant role in dyskinesias onset given its involvement in endogenously generated actions. The aim of the present study was to investigate the levodopa-related cortical excitability changes along with the emergence of levodopa-induced peak-of-dose dyskinesias in subjects with Parkinson's disease. Thirteen patients without dyskinesias and ten with dyskinesias received 200/50 mg fast-acting oral levodopa/benserazide following overnight withdrawal (12 hr) from their dopaminergic medication. We targeted transcranial magnetic stimulation to the supplementary motor area, ipsilateral to the most dopamine-depleted striatum defined with single-photon emission computed tomography with [123 I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane, and recorded transcranial magnetic stimulation-evoked potentials with high-density electroencephalography before and at 30, 60, and 180 min after levodopa/benserazide intake. Clinical improvement from levodopa/benserazide paralleled the increase in cortical excitability in both groups. Subjects with dyskinesias showed higher fluctuation of cortical excitability in comparison to non-dyskinetic patients, possibly reflecting dyskinetic movements. Together with endogenous brain oscillation, levodopa-related dynamics of brain state could influence the therapeutic response of neuromodulatory interventions.
Collapse
Affiliation(s)
- Francesco Turco
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Milan, Italy
| | - Andrea Canessa
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Milan, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Chiara Olivieri
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Milan, Italy
| | - Nicoló G Pozzi
- Department of Neurology, University Hospital Wuerzburg and Julius-Maximillian-University, Wuerzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital Wuerzburg and Julius-Maximillian-University, Wuerzburg, Germany.,Department of Electronics, Information and Bioengineering, MBMC Lab, Politecnico di Milano, Milan, Italy
| | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy.,Department of Neurology, University Hospital Wuerzburg and Julius-Maximillian-University, Wuerzburg, Germany
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg and Julius-Maximillian-University, Wuerzburg, Germany
| | | | - Ioannis U Isaias
- Department of Neurology, University Hospital Wuerzburg and Julius-Maximillian-University, Wuerzburg, Germany
| |
Collapse
|
29
|
The Functional Alterations in Top-Down Attention Streams of Parkinson's disease Measured by EEG. Sci Rep 2018; 8:10609. [PMID: 30006636 PMCID: PMC6045632 DOI: 10.1038/s41598-018-29036-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
Early and moderate Parkinson’s disease patients seem to have attention dysfunctions manifested differentially in separate attention streams: top-down and bottom-up. With a focus on the neurophysiological underpinnings of such differences, this study evaluated source-localized regional activity and functional connectivity of regions in the top-down and bottom-up streams as well as any discordance between the two streams. Resting state electroencephalography was used for 36 Parkinson’s disease patients and 36 healthy controls matched for age and gender. Parkinson’s disease patients showed disproportionally higher bilateral gamma activity in the bottom-up stream and higher left alpha2 connectivity in the top-down stream when compared to age-matched controls. An additional cross-frequency coupling analysis showed that Parkinson’s patients have higher alpha2-gamma coupling in the right posterior parietal cortex, which is part of the top-down stream. Higher coupling in this region was also associated with lower severity of motor symptoms in Parkinson’s disease. This study provides evidence that in Parkinson’s disease, the activity in gamma frequency band and connectivity in alpha2 frequency band is discordant between top-down and bottom-up attention streams.
Collapse
|
30
|
Loehrer PA, Nettersheim FS, Jung F, Weber I, Huber C, Dembek TA, Pelzer EA, Fink GR, Tittgemeyer M, Timmermann L. Ageing changes effective connectivity of motor networks during bimanual finger coordination. Neuroimage 2016; 143:325-342. [DOI: 10.1016/j.neuroimage.2016.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022] Open
|
31
|
Siettos C, Starke J. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:438-58. [PMID: 27340949 DOI: 10.1002/wsbm.1348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/01/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022]
Abstract
The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Constantinos Siettos
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jens Starke
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Jaywant A, Ellis TD, Roy S, Lin CC, Neargarder S, Cronin-Golomb A. Randomized Controlled Trial of a Home-Based Action Observation Intervention to Improve Walking in Parkinson Disease. Arch Phys Med Rehabil 2016; 97:665-73. [PMID: 26808782 PMCID: PMC4844795 DOI: 10.1016/j.apmr.2015.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/21/2015] [Accepted: 12/27/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the feasibility and efficacy of a home-based gait observation intervention for improving walking in Parkinson disease (PD). DESIGN Participants were randomly assigned to an intervention or control condition. A baseline walking assessment, a training period at home, and a posttraining assessment were conducted. SETTING The laboratory and participants' home and community environments. PARTICIPANTS Nondemented individuals with PD (N=23) experiencing walking difficulty. INTERVENTION In the gait observation (intervention) condition, participants viewed videos of healthy and parkinsonian gait. In the landscape observation (control) condition, participants viewed videos of moving water. These tasks were completed daily for 8 days. MAIN OUTCOME MEASURES Spatiotemporal walking variables were assessed using accelerometers in the laboratory (baseline and posttraining assessments) and continuously at home during the training period. Variables included daily activity, walking speed, stride length, stride frequency, leg swing time, and gait asymmetry. Questionnaires including the 39-item Parkinson Disease Questionnaire (PDQ-39) were administered to determine self-reported change in walking, as well as feasibility. RESULTS At posttraining assessment, only the gait observation group reported significantly improved mobility (PDQ-39). No improvements were seen in accelerometer-derived walking data. Participants found the at-home training tasks and accelerometer feasible to use. CONCLUSIONS Participants found procedures feasible and reported improved mobility, suggesting that observational training holds promise in the rehabilitation of walking in PD. Observational training alone, however, may not be sufficient to enhance walking in PD. A more challenging and adaptive task, and the use of explicit perceptual learning and practice of actions, may be required to effect change.
Collapse
Affiliation(s)
- Abhishek Jaywant
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
| | - Terry D Ellis
- Department of Physical Therapy and Athletic Training, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | | | - Cheng-Chieh Lin
- Department of Physical Therapy and Athletic Training, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Sandy Neargarder
- Department of Psychological and Brain Sciences, Boston University, Boston, MA; Department of Psychology, Bridgewater State University, Bridgewater, MA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA.
| |
Collapse
|
33
|
Calabresi P, Ghiglieri V, Mazzocchetti P, Corbelli I, Picconi B. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0184. [PMID: 26009763 DOI: 10.1098/rstb.2014.0184] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Veronica Ghiglieri
- Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Piazza Ermini 1, Perugia 06123, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy
| | - Barbara Picconi
- Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| |
Collapse
|
34
|
Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. Clin Neurophysiol 2016; 127:2010-9. [PMID: 26971483 PMCID: PMC4803022 DOI: 10.1016/j.clinph.2016.01.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/18/2015] [Accepted: 01/16/2016] [Indexed: 01/05/2023]
Abstract
We obtained invasive subthalamic nucleus recordings in 33 Parkinson’s disease patients. Phase–amplitude coupling between beta band and high-frequency oscillations correlates with severity of motor impairments. Parkinsonian pathophysiology is more closely linked with low-beta band frequencies.
Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit.
Collapse
|
35
|
Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: with reference to nervous system. Oncogene 2015; 35:4122-31. [PMID: 26686088 DOI: 10.1038/onc.2015.484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
Physical activity has been shown to suppress tumor initiation and progression. The neurotransmitter dopamine (DA) is closely related to movement and exhibits antitumor properties. However, whether the suppressive effects of physical activity on tumors was mediated by the nervous system via increased DA level remains unknowns. Here we show that regular moderate swimming (8 min/day, 9 weeks) raised DA levels in the prefrontal cortex, serum and tumor tissue, suppressed growth, reduced lung metastasis of transplanted liver cancer, and prolonged survival in a C57BL/6 mouse model, while overload swimming (16 and 32 min/day, 9 weeks) had the opposite effect. In nude mice that were orthotopically implanted with human liver cancer cell lines, DA treatment significantly suppressed growth and lung metastasis by acting on the D2 receptor (DR2). Furthermore, DR2 blockade attenuated the suppressive effect of moderate swimming on liver cancer. Both moderate swimming and DA treatment suppressed the transforming growth factor-beta (TGF-β1)-induced epithelial-mesenchymal transition of transplanted liver cancer cells. At the molecular level, DR2 signaling inhibited extracellular signal-regulated kinase phosphorylation and expression of TGF-β1 in vitro. Together, these findings demonstrated a novel mechanism by which the moderate exercise suppressed liver cancer through boosting DR2 activity, while overload exercise had the opposite effect, highlighting the possible importance of the dopaminergic system in tumor growth and metastasis of liver cancer.
Collapse
|
36
|
Estimating Directed Connectivity from Cortical Recordings and Reconstructed Sources. Brain Topogr 2015; 32:741-752. [PMID: 26350398 PMCID: PMC6592960 DOI: 10.1007/s10548-015-0450-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
In cognitive neuroscience, electrical brain activity is most commonly recorded at the scalp. In order to infer the contributions and connectivity of underlying neuronal sources within the brain, it is necessary to reconstruct sensor data at the source level. Several approaches to this reconstruction have been developed, thereby solving the so-called implicit inverse problem Michel et al. (Clin Neurophysiol 115:2195–2222, 2004). However, a unifying premise against which to validate these source reconstructions is seldom available. The dataset provided in this work, in which brain activity is simultaneously recorded on the scalp (non-invasively) by electroencephalography (EEG) and on the cortex (invasively) by electrocorticography (ECoG), can be of a great help in this direction. These multimodal recordings were obtained from a macaque monkey under wakefulness and sedation. Our primary goal was to establish the connectivity architecture between two sources of interest (frontal and parietal), and to assess how their coupling changes over the conditions. We chose these sources because previous studies have shown that the connections between them are modified by anaesthesia Boly et al. (J Neurosci 32:7082–7090, 2012). Our secondary goal was to evaluate the consistency of the connectivity results when analyzing sources recorded from invasive data (128 implanted ECoG sources) and source activity reconstructed from scalp recordings (19 EEG sensors) at the same locations as the ECoG sources. We conclude that the directed connectivity in the frequency domain between cortical sources reconstructed from scalp EEG is qualitatively similar to the connectivity inferred directly from cortical recordings, using both data-driven (directed transfer function) and biologically grounded (dynamic causal modelling) methods. Furthermore, the connectivity changes identified were consistent with previous findings Boly et al. (J Neurosci 32:7082–7090, 2012). Our findings suggest that inferences about directed connectivity based upon non-invasive electrophysiological data have construct validity in relation to invasive recordings.
Collapse
|
37
|
Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease. NEUROIMAGE-CLINICAL 2015; 9:300-9. [PMID: 26509117 PMCID: PMC4579287 DOI: 10.1016/j.nicl.2015.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. We investigate how rhythmic cues improve movement in Parkinson’s disease MEG-recorded slow and fast oscillatory activity was analysed Predictive modulation of beta oscillations was reduced in PD patients Yet rhythmicity promoted a predictive mode of cue utilization and beta modulation Results point to a facilitation of basal ganglia-cortical interaction in rhythmic cueing
Collapse
|
38
|
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task. Neuroimage 2015; 124:498-508. [PMID: 26334836 DOI: 10.1016/j.neuroimage.2015.08.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 11/23/2022] Open
Abstract
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1 during left hand grip. In conclusion, the strategy of informing EEG source-space configurations with fMRI-derived coordinates, cross-validating basic connectivity maps and analysing frequency coding allows for deeper insight into the motor network architecture of the human brain. The present results provide evidence for the robustness of non-invasively measured causal information flow from secondary motor areas such as SMA towards M1 and further contribute to the validation of the methodological approach of multimodal DCM to explore human network dynamics.
Collapse
|
39
|
Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A, Siebner HR. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level. PROGRESS IN BRAIN RESEARCH 2015; 222:261-87. [PMID: 26541384 DOI: 10.1016/bs.pbr.2015.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany.
| | - Til Ole Bergmann
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steffen Angstmann
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Grenoble Institute of Neuroscience, Research Centre U836 Inserm-UJF, Team 11 Brain Function & Neuromodulation, Grenoble, France
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
40
|
Carvalho A, Barbirato D, Araujo N, Martins JV, Cavalcanti JLS, Santos TM, Coutinho ES, Laks J, Deslandes AC. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson's disease: pilot study. Clin Interv Aging 2015; 10:183-91. [PMID: 25609935 PMCID: PMC4293290 DOI: 10.2147/cia.s68779] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Physical rehabilitation is commonly used in patients with Parkinson's disease (PD) to improve their health and alleviate the symptoms. OBJECTIVE We compared the effects of three programs, strength training (ST), aerobic training (AT), and physiotherapy, on motor symptoms, functional capacity, and electroencephalographic (EEG) activity in PD patients. METHODS Twenty-two patients were recruited and randomized into three groups: AT (70% of maximum heart rate), ST (80% of one repetition maximum), and physiotherapy (in groups). Subjects participated in their respective interventions twice a week for 12 weeks. The assessments included measures of disease symptoms (Unified Parkinson's Disease Rating Scale [UPDRS]), functional capacity (Senior Fitness Test), and EEG before and after 12 weeks of intervention. RESULTS The PD motor symptoms (UPDRS-III) in the group of patients who performed ST and AT improved by 27.5% (effect size [ES]=1.25, confidence interval [CI]=-0.11, 2.25) and 35% (ES=1.34, CI=-0.16, 2.58), respectively, in contrast to the physiotherapy group, which showed a 2.9% improvement (ES=0.07, CI=-0.85, 0.99). Furthermore, the functional capacity of all three groups improved after the intervention. The mean frequency of the EEG analysis mainly showed the effect of the interventions on the groups (F=11.50, P=0.0001). CONCLUSION ST and AT in patients with PD are associated with improved outcomes in disease symptoms and functional capacity.
Collapse
Affiliation(s)
- Alessandro Carvalho
- Centro de Doença de Alzheimer e Outros Transtornos da Velhice, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Estudo e Pesquisa do Envelhecimento, Instituto Vital Brazil, Rio de Janeiro, Brazil
| | - Dannyel Barbirato
- Centro de Doença de Alzheimer e Outros Transtornos da Velhice, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narahyana Araujo
- Centro de Doença de Alzheimer e Outros Transtornos da Velhice, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Vicente Martins
- Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Luiz Sá Cavalcanti
- Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tony Meireles Santos
- Departamento de Educação Física da Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Evandro S Coutinho
- Departamento de Epidemiologia e Métodos Quantitativos em saúde. Escola Nacional de Saúde Pública-FIOCRUZ, Rio de Janeiro, Brazil
| | - Jerson Laks
- Centro de Doença de Alzheimer e Outros Transtornos da Velhice, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Estudo e Pesquisa do Envelhecimento, Instituto Vital Brazil, Rio de Janeiro, Brazil
| | - Andrea C Deslandes
- Centro de Doença de Alzheimer e Outros Transtornos da Velhice, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Michely J, Volz LJ, Barbe MT, Hoffstaedter F, Viswanathan S, Timmermann L, Eickhoff SB, Fink GR, Grefkes C. Dopaminergic modulation of motor network dynamics in Parkinson's disease. Brain 2015; 138:664-78. [PMID: 25567321 PMCID: PMC4339773 DOI: 10.1093/brain/awu381] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using connectivity analyses based on functional MRI, Michely et al. investigate dopaminergic modulation of neural network dynamics involved in motor control in Parkinson’s disease. The findings provide insights into the pathophysiology underlying bradykinesia and deficits in executive function, and help to explain why dopaminergic treatments have a greater effect on the former. Although characteristic motor symptoms of Parkinson’s disease such as bradykinesia typically improve under dopaminergic medication, deficits in higher motor control are less responsive. We here investigated the dopaminergic modulation of network dynamics underlying basic motor performance, i.e. finger tapping, and higher motor control, i.e. internally and externally cued movement preparation and selection. Twelve patients, assessed ON and OFF medication, and 12 age-matched healthy subjects underwent functional magnetic resonance imaging. Dynamic causal modelling was used to assess effective connectivity in a motor network comprising cortical and subcortical regions. In particular, we investigated whether impairments in basic and higher motor control, and the effects induced by dopaminergic treatment are due to connectivity changes in (i) the mesial premotor loop comprising the supplementary motor area; (ii) the lateral premotor loop comprising lateral premotor cortex; and (iii) cortico-subcortical interactions. At the behavioural level, we observed a marked slowing of movement preparation and selection when patients were internally as opposed to externally cued. Preserved performance during external cueing was associated with enhanced connectivity between prefrontal cortex and lateral premotor cortex OFF medication, compatible with a context-dependent compensatory role of the lateral premotor loop in the hypodopaminergic state. Dopaminergic medication significantly improved finger tapping speed in patients, which correlated with a drug-induced coupling increase of prefrontal cortex with the supplementary motor area, i.e. the mesial premotor loop. In addition, only in the finger tapping condition, patients ON medication showed enhanced excitatory influences exerted by cortical premotor regions and the thalamus upon the putamen. In conclusion, the amelioration of bradykinesia by dopaminergic medication seems to be driven by enhanced connectivity within the mesial premotor loop and cortico-striatal interactions. In contrast, medication did not improve internal motor control deficits concurrent to missing effects at the connectivity level. This differential effect of dopaminergic medication on the network dynamics underlying motor control provides new insights into the clinical finding that in Parkinson’s disease dopaminergic drugs especially impact on bradykinesia but less on executive functions.
Collapse
Affiliation(s)
- Jochen Michely
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Lukas J Volz
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Michael T Barbe
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Felix Hoffstaedter
- 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany 4 Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Shivakumar Viswanathan
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Lars Timmermann
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany
| | - Simon B Eickhoff
- 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany 4 Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gereon R Fink
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Christian Grefkes
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| |
Collapse
|
42
|
Weiss D, Klotz R, Govindan RB, Scholten M, Naros G, Ramos-Murguialday A, Bunjes F, Meisner C, Plewnia C, Krüger R, Gharabaghi A. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. ACTA ACUST UNITED AC 2015; 138:679-93. [PMID: 25558877 DOI: 10.1093/brain/awu380] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program.
Collapse
Affiliation(s)
- Daniel Weiss
- 1 German Centre of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany 2 Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| | - Rosa Klotz
- 1 German Centre of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany 2 Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| | - Rathinaswamy B Govindan
- 4 Foetal Medicine Institute, Division of Foetal and Transitional Medicine, Children's National Health System, M3118C Washington, DC, USA
| | - Marlieke Scholten
- 1 German Centre of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany 2 Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
| | - Georgios Naros
- 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany 5 Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Tübingen, 72076 Tübingen, Germany
| | - Ander Ramos-Murguialday
- 6 Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany 7 TECNALIA, Health Technologies, 200003 San Sebastian, Spain
| | - Friedemann Bunjes
- 1 German Centre of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany 2 Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Meisner
- 8 Clinical Epidemiology and Applied Biometry, University of Tübingen, 72076 Tübingen, Germany
| | - Christian Plewnia
- 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany 9 Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, 72076 Tübingen, Germany
| | - Rejko Krüger
- 1 German Centre of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany 2 Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany 10 Clinical and Experimental Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg and Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
| | - Alireza Gharabaghi
- 3 Werner Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany 5 Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
43
|
Peng YH, Heintz R, Wang Z, Guo Y, Myers KG, Scremin OU, Maarek JMI, Holschneider DP. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain. FRONTIERS IN PHYSICS 2014; 2:72. [PMID: 25745629 PMCID: PMC4347897 DOI: 10.3389/fphy.2014.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface "Cx-2D" allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Collapse
Affiliation(s)
- Yu-Hao Peng
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhuo Wang
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G. Myers
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Oscar U. Scremin
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Physiology Department, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Michel I. Maarek
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel P. Holschneider
- Department of Biomedical Engineering, Viterbi School of Engineering, School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord 2014; 30:54-63. [PMID: 25296957 DOI: 10.1002/mds.26041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023] Open
Abstract
Levodopa (L-dopa) has been at the forefront of antiparkinsonian therapy for a half century. Recent advances in functional brain imaging have contributed substantially to the understanding of the effects of L-dopa and other dopaminergic treatment on the activity of abnormal motor and cognitive brain circuits in Parkinson's disease patients. Progress has also been made in understanding the functional pathology of dyskinesias, a common side effect of l-dopa treatment, at both regional and network levels. Here, we review these studies, focusing mainly on the new mechanistic insights provided by metabolic brain imaging and network analysis.
Collapse
Affiliation(s)
- Ji Hyun Ko
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | |
Collapse
|
45
|
te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. A shift from prospective to reactive modulation of beta-band oscillations in Parkinson's disease. Neuroimage 2014; 100:507-19. [PMID: 24969569 DOI: 10.1016/j.neuroimage.2014.06.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Increased beta (13-30 Hz) oscillatory synchrony in basal ganglia-cortical circuits is a physiological characteristic of Parkinson's disease (PD). While the function of the beta rhythm is unknown, there is evidence that its modulation serves a predictive role, in preparation of future actions. We investigate the relation between predictive beta modulation and entrainment of brain oscillations in a task inviting behavioral entrainment by a regular task structure. MEG was recorded during a serial choice response task, in a group of 12 PD patients and 12 control subjects. In one condition, the reaction stimuli allowed for temporal preparation only (random condition), while in a second condition (predictable condition) the reaction stimuli allowed both temporal and effector preparation. Reaction times were identical between groups, and both groups benefited equally from the known effector side in the predictable condition. Analysis of oscillatory activity, by contrast, revealed marked differences between groups. In patients, the proportion of preparatory beta power desynchronization preceding the reaction stimuli was significantly smaller than in controls, while the proportion of beta desynchronization following the events was larger. In addition to this shift from prospective to reactive modulation of beta-band oscillations, patients showed a trend to reduced motor cortical pre-stimulus delta phase synchronization, and later gamma power synchronization than controls. Delta phase synchronization was, furthermore, significantly correlated with predictive beta desynchronization, supporting the relevance of hierarchical coupling between oscillations of different frequencies for the analysis of oscillatory changes in PD. Together, these features of task-related oscillatory activity indicate that entrainment fails to engender the same predictive mode of motor activation in PD patients as in healthy controls.
Collapse
Affiliation(s)
- Erik S te Woerd
- Radboud University Medical Centre, Dept. of Neurology, Radboud University Nijmegen, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Peter Praamstra
- Radboud University Medical Centre, Dept. of Neurology, Radboud University Nijmegen, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Finlay CJ, Duty S, Vernon AC. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 2014; 5:95. [PMID: 24971074 PMCID: PMC4053925 DOI: 10.3389/fneur.2014.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson’s disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.
Collapse
Affiliation(s)
- Clare J Finlay
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Susan Duty
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Anthony C Vernon
- Department of Neuroscience, James Black Centre, Institute of Psychiatry, King's College London , London , UK
| |
Collapse
|