1
|
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Functional MRI of imprinting memory in awake newborn domestic chicks. Commun Biol 2024; 7:1326. [PMID: 39406830 PMCID: PMC11480507 DOI: 10.1038/s42003-024-06991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances in fMRI for avian brains now open new windows to explore bird's brain functions at the network level. We developed an fMRI technique for awake, newly hatched chicks, capturing BOLD signal changes during imprinting experiments. While early memory acquisition phases are understood, long-term storage and retrieval remain unclear. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This paradigm opens up new avenues for exploring the broader landscape of learning and memory in neonatal vertebrates, enhancing our understanding of behaviour and brain networks.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany.
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy.
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Alessandro Gozzi
- Functional neuroimaging laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- Research Center One Health Ruhr, University Research Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy
| |
Collapse
|
2
|
Yang X, Wang M, Liao Q, Zhao L, Wei J, Wang Q, Sui J, Qi S, Ma X. Multiple cognition associated multimodal brain networks in major depressive disorder. Cereb Cortex 2024; 34:bhae305. [PMID: 39077922 DOI: 10.1093/cercor/bhae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Major depressive disorder frequently leads to cognitive impairments, significantly affecting patients' quality of life. However, the neurobiological mechanisms underlying cognitive deficits remain unclear. This study aimed to explore multimodal imaging biomarkers associated with cognitive function in major depressive disorder. Five cognitive scores (sustained attention, visual recognition memory, pattern recognition memory, executive function, and working memory) were used as references to guide the fusion of gray matter volume and amplitude of the low frequency fluctuation. Social function was assessed after 2 yr. Linear regression analysis was performed to identify brain features that were associated with social function of patients with major depressive disorder. Finally, we included 131 major depressive disorder and 145 healthy controls. A multimodal frontal-insula-occipital network associated with sustained attention was found to be associated with social functioning in major depressive disorders. Analysis across different cognitive domains revealed that gray matter volume exhibited greater sensitivity to differences, while amplitude of the low frequency fluctuation consistently decreased in the right temporal-occipital-hippocampus circuit. The consistent functional changes across the 5 cognitive domains were related to symptom severity. Overall, these findings provide insights into biomarkers associated with multiple cognitive domains in major depressive disorder. These results may contribute to the development of effective treatment targeting cognitive deficits and social function.
Collapse
Affiliation(s)
- Xiao Yang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Min Wang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Qimeng Liao
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Jinxue Wei
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Qiang Wang
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Qinhuai District, Nanjing, China
| | - Xiaohong Ma
- Mental Health Center and Laboratory of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Wuhou District, Chengdu, China
| |
Collapse
|
3
|
Xu P, Wang M, Zhang T, Zhang J, Jin Z, Li L. The role of middle frontal gyrus in working memory retrieval by the effect of target detection tasks: a simultaneous EEG-fMRI study. Brain Struct Funct 2023:10.1007/s00429-023-02687-y. [PMID: 37477712 DOI: 10.1007/s00429-023-02687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Maintained working memory (WM) representations have been shown to influence visual target detection selection, while the effect of the visual target detection process on WM retrieval remains largely unknown. In the current research, we used the dual-paradigm of the visual target detection task and the delayed matching task (DMT), which contained the following four conditions: the match condition: the DMT target contained the detection target; the mismatch condition: the DMT target contained the detection distractor; the neutral condition: only the detection target was presented; the catch condition: only the DMT target was presented. Twenty-six subjects were recruited in the experiment with simultaneous EEG-fMRI data. Behaviorally, faster responses were found in the mismatch condition than in the match and neutral conditions. The EEG data found a greater parieto-occipital N1 component in the mismatch condition compared to the neutral condition, and a greater frontal N2 component in the match condition than in the mismatch condition. Moreover, compared to the match and neutral conditions, weaker activations of the bilateral middle frontal gyrus (MFG) were observed in the mismatch condition. And the representational similarity analysis (RSA) revealed significant differences in the representational patterns of the bilateral MFG between mismatch and match conditions, as well as in the representational patterns of the left MFG between mismatch and neutral conditions. Additionally, the left MFG may be the brain source of the N1 component in the mismatch condition. These findings suggest that the mismatch between the DMT target and detection target affects early attention allocation and attentional control in WM retrieval, and the MFG may play an important role in WM retrieval by the effect of the target detection task. In conclusion, our work deepens the understanding of the neural mechanisms by which visual target detection affects WM retrieval.
Collapse
Affiliation(s)
- Ping Xu
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
4
|
Improving Functional Connectivity in Developmental Dyslexia through Combined Neurofeedback and Visual Training. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study examined the effects of combined neurofeedback (NF) and visual training (VT) on children with developmental dyslexia (DD). Although NF is the first noninvasive approach to support neurological disorders, the mechanisms of its effects on the brain functional connectivity are still unclear. A key question is whether the functional connectivities of the EEG frequency networks change after the combined NF–VT training of DD children (postD). NF sessions of voluntary α/θ rhythm control were applied in a low-spatial-frequency (LSF) illusion contrast discrimination, which provides feedback with visual cues to improve the brain signals and cognitive abilities in DD children. The measures of connectivity, which are defined by small-world propensity, were sensitive to the properties of the brain electrical oscillations in the quantitative EEG-NF training. In the high-contrast LSF illusion, the z-NF reduced the α/θ scores in the frontal areas, and in the right ventral temporal, occipital–temporal, and middle occipital areas in the postD (vs. the preD) because of their suppression in the local hub θ-network and the altered global characteristics of the functional θ-frequency network. In the low-contrast condition, the z-NF stimulated increases in the α/θ scores, which induced hubs in the left-side α-frequency network of the postD, and changes in the global characteristics of the functional α-frequency network. Because of the anterior, superior, and middle temporal deficits affecting the ventral and occipital–temporal pathways, the z-NF–VT compensated for the more ventral brain regions, mainly in the left hemispheres of the postD group in the low-contrast LSF illusion. Compared to pretraining, the NF–VT increased the segregation of the α, β (low-contrast), and θ networks (high-contrast), as well as the γ2-network integration (both contrasts) after the termination of the training of the children with developmental dyslexia. The remediation compensated more for the dorsal (prefrontal, premotor, occipital–parietal connectivities) dysfunction of the θ network in the developmental dyslexia in the high-contrast LSF illusion. Our findings provide neurobehavioral evidence for the exquisite brain functional plasticity and direct effect of NF–VT on cognitive disabilities in DD children.
Collapse
|
5
|
Bae E, Kim JY, Han SW. The role of right temporo-parietal junction in stimulus evaluation. Brain Cogn 2021; 152:105770. [PMID: 34174747 DOI: 10.1016/j.bandc.2021.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
A predominant model of the temporo-parietal junction (TPJ) claims that this region is critical for attentional orienting/reorienting toward an unexpected, but behaviorally significant stimulus. However, recent studies have suggested that the TPJ is also involved in the process of evaluating stimulus, especially matching between external sensory inputs and internal representations. While some studies provide evidence for the involvement of the TPJ in stimulus evaluation, the nature of the evaluative process mediated by the TPJ remains unclear. To address this issue, we tested whether the TPJ activation amplitude and its peak latency is proportional to the demand of the evaluative process. We found that when the amount of sensory evidence for the matching process was abundant, the TPJ was transiently activated. Importantly, the TPJ activation showed a greater and more sustained pattern while the sensory evidence was accumulating for a longer period of time. These findings suggest that the TPJ function is associated with the evaluative process of matching sensory inputs with internal representations, as well as attentional reorienting.
Collapse
Affiliation(s)
- Eunhee Bae
- Department of Psychology, Chungnam National University, Daejeon, Republic of Korea
| | - Joo Yeon Kim
- Department of Research Equipment Operation, Koera Basic Science Institute, Cheong-won, Ochang, Republic of Korea
| | - Suk Won Han
- Department of Psychology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Li Q, Yan J, Liao J, Zhang X, Liu L, Fu X, Tan HY, Zhang D, Yan H. Distinct Effects of Social Stress on Working Memory in Obsessive-Compulsive Disorder. Neurosci Bull 2020; 37:81-93. [PMID: 33000423 PMCID: PMC7811969 DOI: 10.1007/s12264-020-00579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/13/2020] [Indexed: 10/30/2022] Open
Abstract
Stress might exaggerate the compulsion and impair the working memory of patients with obsessive-compulsive disorder (OCD). This study evaluated the effect of stress on the cognitive neural processing of working memory in OCD and its clinical significance using a "number calculation working memory" task. Thirty-eight patients and 55 gender- and education-matched healthy controls were examined. Stress impaired the performance of the manipulation task in patients. Healthy controls showed less engagement of the medial prefrontal cortex and striatum during the task under stress versus less stress, which was absent in the patients with OCD. The diagnosis × stress interaction effect was significant in the right fusiform, supplementary motor area, precentral cortex and caudate. The failure of suppression of the medial prefrontal cortex and striatum and stress-related hyperactivation in the right fusiform, supplementary motor area, precentral cortex, and caudate might be an OCD-related psychopathological and neural response to stress.
Collapse
Affiliation(s)
- Qianqian Li
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jinmin Liao
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lijun Liu
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiaoyu Fu
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hao Yang Tan
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Hao Yan
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
7
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
8
|
Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nat Commun 2019; 10:4242. [PMID: 31534123 PMCID: PMC6751161 DOI: 10.1038/s41467-019-12057-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Transiently storing information and mentally manipulating it is known as working memory. These operations are implemented by a distributed, fronto-parietal cognitive control network in the brain. The neural mechanisms controlling interactions within this network are yet to be determined. Here, we show that during a working memory task the brain uses an oscillatory mechanism for regulating access to prefrontal cognitive resources, dynamically controlling interactions between prefrontal cortex and remote neocortical areas. Combining EEG with non-invasive brain stimulation we show that fast rhythmical brain activity at posterior sites are nested into prefrontal slow brain waves. Depending on cognitive demand this high frequency activity is nested into different phases of the slow wave enabling dynamic coupling or de-coupling of the fronto-parietal control network adjusted to cognitive effort. This mechanism constitutes a basic principle of coordinating higher cognitive functions in the human brain.
Collapse
|
9
|
Tramonti Fantozzi MP, Diciotti S, Tessa C, Castagna B, Chiesa D, Barresi M, Ravenna G, Faraguna U, Vignali C, De Cicco V, Manzoni D. Unbalanced Occlusion Modifies the Pattern of Brain Activity During Execution of a Finger to Thumb Motor Task. Front Neurosci 2019; 13:499. [PMID: 31156377 PMCID: PMC6533560 DOI: 10.3389/fnins.2019.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
In order to assess possible influences of occlusion on motor performance, we studied by functional magnetic resonance imaging (fMRI) the changes in the blood oxygenation level dependent (BOLD) signal induced at brain level by a finger to thumb motor task in a population of subjects characterized by an asymmetric activation of jaw muscles during clenching (malocclusion). In these subjects, appropriate occlusal correction by an oral orthotic (bite) reduced the masticatory asymmetry. The finger to thumb task was performed while the subject's dental arches were touching, in two conditions: (a) with the teeth in direct contact (Bite OFF) and (b) with the bite interposed between the arches (Bite ON). Both conditions required only a very slight activation of masticatory muscles. Maps of the BOLD signal recorded during the movement were contrasted with the resting condition (activation maps). Between conditions comparison of the activation maps (Bite OFF/Bite ON) showed that, in Bite OFF, the BOLD signal was significantly higher in the trigeminal sensorimotor region, the premotor cortex, the cerebellum, the inferior temporal and occipital cortex, the calcarine cortex, the precuneus on both sides, as well as in the right posterior cingulate cortex. These data are consistent with the hypothesis that malocclusion makes movement performance more difficult, leading to a stronger activation of (a) sensorimotor areas not dealing with the control of the involved body part, (b) regions planning the motor sequence, and (c) the cerebellum, which is essential in motor coordination. Moreover, the findings of a higher activation of temporo-occipital cortex and precuneus/cingulus, respectively, suggest that, during malocclusion, the movement occurs with an increased visual imagery activity, and requires a stronger attentive effort.
Collapse
Affiliation(s)
| | - Stefano Diciotti
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Carlo Tessa
- Department of Radiology, Versilia Hospital, Azienda USL Toscana Nord Ovest, Camaiore, Italy
| | | | - Daniele Chiesa
- Department of Orthopedics, University of Genoa, Genoa, Italy
| | - Massimo Barresi
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Giulio Ravenna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Vignali
- Department of Radiology, Versilia Hospital, Azienda USL Toscana Nord Ovest, Camaiore, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Shah-Basak PP, Dunkley BT, Ye AX, Wong S, da Costa L, Pang EW. Altered beta-band functional connectivity may be related to 'performance slowing' in good outcome aneurysmal subarachnoid patients. Neurosci Lett 2019; 699:64-70. [PMID: 30711525 DOI: 10.1016/j.neulet.2019.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Recent evidence suggests that good neurological outcome in subarachnoid hemorrhage (SAH) does not equate to good neuropsychological and cognitive outcome. These individuals continue to face cognitive difficulties in tasks involving mental flexibility, short-term memory and attention, resulting in decreased independence in daily living and reduced ability to return to work. In the current study, we examined the functional connectivity profiles using magnetoencephalography (MEG) in SAH patients, versus controls, during a visual short-term memory, 1-back, task. Our results found that a global measure of MEG-based phase synchrony in the beta band (15-30 Hz), derived from a time window during correct recognition, significantly differentiated the controls from the patients. During correct recognition, the connectivity patterns in the controls were characterized by inter-hemispheric parieto-frontal connections, involving the posterior parietal cortex, while patients appeared to recruit an entirely different network of regions, involving the anterior frontal and temporal regions. Reduced beta-band synchrony during recognition was associated with overall poorer performance, demonstrated as lower accuracy and slower reaction times in patients, but not in controls. This differentiation between groups suggests an important and distinct role of beta-band phase synchronization, perhaps for memory retrieval, associated with good performance. Performance slowing, short-term memory and attention deficits in these patients may be attributed to the impaired beta-band connectivity among prefrontal regions and the posterior parietal cortex.
Collapse
Affiliation(s)
- Priyanka P Shah-Basak
- Department of Diagnostic Imaging, The Hospital for Sick Children, Canada; Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Canada; Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Annette X Ye
- Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | - Simeon Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | - Leodante da Costa
- Department of Surgery, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, University of Toronto, Canada.
| |
Collapse
|
11
|
Konstantinou N, Pettemeridou E, Stamatakis EA, Seimenis I, Constantinidou F. Altered Resting Functional Connectivity Is Related to Cognitive Outcome in Males With Moderate-Severe Traumatic Brain Injury. Front Neurol 2019; 9:1163. [PMID: 30687219 PMCID: PMC6335280 DOI: 10.3389/fneur.2018.01163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
TBI results in significant cognitive impairments and in altered brain functional connectivity. However, no studies explored so far, the relationship between global functional connectivity and cognitive outcome in chronic moderate-severe TBI. This proof of principle study employed the intrinsic connectivity contrast, an objective voxel-based metric of global functional connectivity, in a small sample of chronic moderate-severe TBI participants and a group of healthy controls matched on gender (males), age, and education. Cognitive tests assessing executive functions, verbal memory, visual memory, attention/organization, and cognitive reserve were administered. Group differences in terms of global functional connectivity maps were assessed and the association between performance on the cognitive measures and global functional connectivity was examined. Next, we investigated the spatial extent of functional connectivity in the brain regions found to be associated with cognitive performance, using traditional seed-based analyses. Global functional connectivity of the TBI group was altered, compared to the controls. Moreover, the strength of global functional connectivity in affected brain areas was associated with cognitive outcome. These findings indicate that impaired global functional connectivity is a significant consequence of TBI suggesting that cognitive impairments following TBI may be partly attributed to altered functional connectivity between brain areas involved in the specific cognitive functions.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Department of Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Eva Pettemeridou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, Democritus University of Thrace, Alexandroupoli, Greece
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
12
|
|
13
|
Wong OW, Chan AY, Wong A, Lau CK, Yeung JH, Mok VC, Lam LC, Chan S. Eye movement parameters and cognitive functions in Parkinson's disease patients without dementia. Parkinsonism Relat Disord 2018; 52:43-48. [PMID: 29571955 DOI: 10.1016/j.parkreldis.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Cognitive deficits and eye movement abnormalities have been demonstrated to be detectable early clinical manifestations of Parkinson's disease. Understanding the relationship between these phenotypes may yield insight into the underlying anatomical pathways, assisting in the search for simple non-invasive markers of early neurodegeneration. OBJECTIVE To explore the correlations between eye movement parameters with multi-domain cognitive functions in patients suffering from Parkinson's disease without dementia. METHOD This is a cross-sectional case-control study of Parkinson's disease patients without dementia. Participants underwent global and domain-specific cognitive tests and an eye-tracking visual search task to characterize eye movement parameters. RESULTS 62 Chinese Parkinson's disease patients without dementia and 62 sex-, age- and education-matched controls were recruited. The disease group performed worse in multiple cognitive tasks and exhibited a smaller saccadic amplitude. Negative correlations between the eye fixation duration and performance in semantic verbal fluency, verbal and visual recognition memory tasks were observed, though there was no moderation effect on the correlations due to the presence of Parkinson's disease. A common cholinergic deficit in the temporal and parietal regions may account for the observed correlations. The lack of association with predominantly frontal-executive tasks may suggest specificity of these correlations. CONCLUSION Prolonged visual fixation duration is correlated with poorer performance in semantic verbal fluency, verbal and visual recognition memory tasks in Parkinson's disease patients without dementia, although these correlations are not specific. The clinical utility of eye movement parameters as an early marker for cognitive decline in Parkinson's disease warrants further exploration in longitudinal studies.
Collapse
Affiliation(s)
- Oscar Wh Wong
- Department of Psychiatry, Tai Po Hospital, Hong Kong SAR.
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR.
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.
| | - Claire Ky Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR.
| | - Jonas Hm Yeung
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong SAR.
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.
| | - Linda Cw Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Tai Po Hospital, G/F, Multi-centre Building, 9 Chuen On Road, Tai Po, Hong Kong SAR.
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Tai Po Hospital, G/F, Multi-centre Building, 9 Chuen On Road, Tai Po, Hong Kong SAR.
| |
Collapse
|
14
|
Shah-Basak PP, Urbain C, Wong S, da Costa L, Pang EW, Dunkley BT, Taylor MJ. Concussion Alters the Functional Brain Processes of Visual Attention and Working Memory. J Neurotrauma 2017; 35:267-277. [PMID: 29020848 DOI: 10.1089/neu.2017.5117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Millions of North Americans sustain a concussion or a mild traumatic brain injury annually, and are at risk of cognitive, emotional, and physical sequelae. Although functional MRI (fMRI) studies have provided an initial framework for examining functional deficits induced by concussion, particularly working memory and attention, the temporal dynamics underlying these deficits are not well understood. We used magnetoencephalography (MEG), a modality with millisecond temporal resolution, in conjunction with a 1-back visual working memory (VWM) paradigm using scenes from everyday life to characterize spatiotemporal functional differences at specific VWM stages, in adults had had or had not had a recent concussion. MEG source-level differences between groups were determined by whole-brain analyses during encoding and recognition phases. Despite comparable behavioral performance, abnormal hypo- and hyperactivation patterns were found in brain areas involving frontoparietal, ventral occipitotemporal, temporal, and subcortical areas in concussed patients. These patterns and their timing varied as a function of VWM stagewise processing, linked to early attentional control, visuoperceptual scene processing, and VWM maintenance and retrieval processes. Parietal hypoactivation, starting at 60 ms during encoding, was correlated with symptom severity, possibly linked to impaired top-down attentional processing. Hyperactivation in the scene-selective occipitotemporal areas, the medial temporal complex, specifically the right hippocampus and orbitofrontal areas during encoding and/or recognition, lead us to posit inefficient but compensatory visuoperceptual, relational, and retrieval processing. Although injuries sustained after the concussion were considered "mild," these data suggest that they can have prolonged effects on early attentional and VWM processes.
Collapse
Affiliation(s)
- Priyanka P Shah-Basak
- 1 Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario, Canada
- 2 Rotman Research Institute , Baycrest Centre, Toronto, Ontario, Canada
| | - Charline Urbain
- 1 Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario, Canada
- 3 Laboratoire de Cartographie Fonctionnelle du Cerveau, Erasme Hospital , ULB Bruxelles, Belgium
| | - Simeon Wong
- 1 Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario, Canada
| | - Leodante da Costa
- 4 Department of Surgery, Division of Neurosurgery, Sunnybrook Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Elizabeth W Pang
- 5 Division of Neurology, The Hospital for Sick Children , Toronto, Ontario, Canada
- 6 Program in Neuroscience and Mental Health, SickKids Research Institute , Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- 1 Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario, Canada
- 6 Program in Neuroscience and Mental Health, SickKids Research Institute , Toronto, Ontario, Canada
- 7 Department of Medical Imaging, Sunnybrook Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Margot J Taylor
- 1 Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario, Canada
- 7 Department of Medical Imaging, Sunnybrook Hospital, University of Toronto , Toronto, Ontario, Canada
- 8 Department of Psychology, Sunnybrook Hospital, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
15
|
Neural evidence for defective top-down control of visual processing in Parkinson's and Alzheimer's disease. Neuropsychologia 2017; 106:236-244. [DOI: 10.1016/j.neuropsychologia.2017.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/11/2017] [Accepted: 09/27/2017] [Indexed: 01/29/2023]
|
16
|
Bergström F, Eriksson J. Neural Evidence for Non-conscious Working Memory. Cereb Cortex 2017; 28:3217-3228. [DOI: 10.1093/cercor/bhx193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fredrik Bergström
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Sweden
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Johan Eriksson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Sweden
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
| |
Collapse
|
17
|
Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM. Simultaneous EEG-fMRI for working memory of the human brain. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:363-78. [PMID: 27043850 DOI: 10.1007/s13246-016-0438-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
Collapse
Affiliation(s)
- Rana Fayyaz Ahmad
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Aamir Saeed Malik
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia.,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Faruque Reza
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
18
|
Lou W, Shi L, Wang D, Tam CWC, Chu WCW, Mok VCT, Cheng ST, Lam LCW. Decreased activity with increased background network efficiency in amnestic MCI during a visuospatial working memory task. Hum Brain Mapp 2015; 36:3387-403. [PMID: 26032982 DOI: 10.1002/hbm.22851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/02/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022] Open
Abstract
Recent studies have demonstrated the working memory impairment in patients with amnestic mild cognitive impairment (aMCI). However, the neurophysiological basis of the working memory deficit in aMCI is poorly understood. The aim of this study was to explore the abnormal activity during encoding and recognition procedures, as well as the reorganization of the background network maintaining the working memory state in aMCI. Using event-related fMRI during a visuospatial working memory task with three recognition difficulty levels, the task-related activations and network efficiency of the background network in 17 aMCI patients and 19 matched controls were investigated. Compared with cognitively healthy controls, patients with aMCI showed significantly decreased activity in the frontal and visual cortices during the encoding phase, while during the recognition phase, decreased activity was detected in the frontal, parietal, and visual regions. In addition, increased local efficiency was also observed in the background network of patients with aMCI. The results suggest patients with aMCI showed impaired encoding and recognition functions during the visuospatial working memory task, and may pay more effort to maintain the cognitive state. This study extends our understanding of the impaired working memory function in aMCI and provides a new perspective to investigate the compensatory mechanism in aMCI.
Collapse
Affiliation(s)
- Wutao Lou
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong.,Research Center for Medical Image Computing, The Chinese University of Hong Kong, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong.,Chow Yuk Ho Center of Innovative Technology for Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong.,Research Center for Medical Image Computing, The Chinese University of Hong Kong, Hong Kong.,Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Cindy W C Tam
- Department of Psychiatry, North District Hospital, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Sheung-Tak Cheng
- Department of Health and Physical Education, Hong Kong Institute of Education, Hong Kong.,Department of Clinical Psychology, Norwich Medical School, University of East Anglia, Norfolk, United Kingdom
| | - Linda C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Majerus S, Cowan N, Péters F, Van Calster L, Phillips C, Schrouff J. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory. Cereb Cortex 2014; 26:166-79. [PMID: 25146374 DOI: 10.1093/cercor/bhu189] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM.
Collapse
Affiliation(s)
- Steve Majerus
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium Cyclotron Research Centre, Université de Liège, 4000 Liège, Belgium Fund for Scientific Research FNRS, 1000 Brussels, Belgium
| | - Nelson Cowan
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211-2500, USA
| | - Frédéric Péters
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium
| | - Laurens Van Calster
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium
| | - Christophe Phillips
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium Fund for Scientific Research FNRS, 1000 Brussels, Belgium
| | - Jessica Schrouff
- Cyclotron Research Centre, Université de Liège, 4000 Liège, Belgium Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|