1
|
Cao J, Bulger E, Shinn-Cunningham B, Grover P, Kainerstorfer JM. Diffuse Optical Tomography Spatial Prior for EEG Source Localization in Human Visual Cortex. Neuroimage 2023:120210. [PMID: 37311535 DOI: 10.1016/j.neuroimage.2023.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Electroencephalography (EEG) and diffuse optical tomography (DOT) are imaging methods which are widely used for neuroimaging. While the temporal resolution of EEG is high, the spatial resolution is typically limited. DOT, on the other hand, has high spatial resolution, but the temporal resolution is inherently limited by the slow hemodynamics it measures. In our previous work, we showed using computer simulations that when using the results of DOT reconstruction as the spatial prior for EEG source reconstruction, high spatio-temporal resolution could be achieved. In this work, we experimentally validate the algorithm by alternatingly flashing two visual stimuli at a speed that is faster than the temporal resolution of DOT. We show that the joint reconstruction using both EEG and DOT clearly resolves the two stimuli temporally, and the spatial confinement is drastically improved in comparison to reconstruction using EEG alone.
Collapse
Affiliation(s)
- Jiaming Cao
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
| | - Eli Bulger
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
| | - Barbara Shinn-Cunningham
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States
| | - Pulkit Grover
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, Pennsylvania, United States; Neuroscience Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, United States.
| |
Collapse
|
2
|
Shi Y, Li Y, Koike Y. Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants. Bioengineering (Basel) 2023; 10:664. [PMID: 37370595 DOI: 10.3390/bioengineering10060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Electroencephalogram (EEG) channel optimization can reduce redundant information and improve EEG decoding accuracy by selecting the most informative channels. This article aims to investigate the universality regarding EEG channel optimization in terms of how well the selected EEG channels can be generalized to different participants. In particular, this study proposes a sparse logistic regression (SLR)-based EEG channel optimization algorithm using a non-zero model parameter ranking method. The proposed channel optimization algorithm was evaluated in both individual analysis and group analysis using the raw EEG data, compared with the conventional channel selection method based on the correlation coefficients (CCS). The experimental results demonstrate that the SLR-based EEG channel optimization algorithm not only filters out most redundant channels (filters 75-96.9% of channels) with a 1.65-5.1% increase in decoding accuracy, but it can also achieve a satisfactory level of decoding accuracy in the group analysis by employing only a few (2-15) common EEG electrodes, even for different participants. The proposed channel optimization algorithm can realize better universality for EEG decoding, which can reduce the burden of EEG data acquisition and enhance the real-world application of EEG-based brain-computer interface (BCI).
Collapse
Affiliation(s)
- Yuxi Shi
- School of Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yuanhao Li
- School of Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
3
|
Bourguignon NJ, Bue SL, Guerrero-Mosquera C, Borragán G. Bimodal EEG-fNIRS in Neuroergonomics. Current Evidence and Prospects for Future Research. FRONTIERS IN NEUROERGONOMICS 2022; 3:934234. [PMID: 38235461 PMCID: PMC10790898 DOI: 10.3389/fnrgo.2022.934234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 01/19/2024]
Abstract
Neuroergonomics focuses on the brain signatures and associated mental states underlying behavior to design human-machine interfaces enhancing performance in the cognitive and physical domains. Brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have been considered key methods for achieving this goal. Recent research stresses the value of combining EEG and fNIRS in improving these interface systems' mental state decoding abilities, but little is known about whether these improvements generalize over different paradigms and methodologies, nor about the potentialities for using these systems in the real world. We review 33 studies comparing mental state decoding accuracy between bimodal EEG-fNIRS and unimodal EEG and fNIRS in several subdomains of neuroergonomics. In light of these studies, we also consider the challenges of exploiting wearable versions of these systems in real-world contexts. Overall the studies reviewed suggest that bimodal EEG-fNIRS outperforms unimodal EEG or fNIRS despite major differences in their conceptual and methodological aspects. Much work however remains to be done to reach practical applications of bimodal EEG-fNIRS in naturalistic conditions. We consider these points to identify aspects of bimodal EEG-fNIRS research in which progress is expected or desired.
Collapse
Affiliation(s)
| | - Salvatore Lo Bue
- Department of Life Sciences, Royal Military Academy of Belgium, Brussels, Belgium
| | | | - Guillermo Borragán
- Center for Research in Cognition and Neuroscience, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Li R, Yang D, Fang F, Hong KS, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155865. [PMID: 35957421 PMCID: PMC9371171 DOI: 10.3390/s22155865] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 05/29/2023]
Abstract
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS-EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS-EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS-EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS-EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS-EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS-EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS-EEG data analyses in future research.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Dalin Yang
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, St. Louis, MO 63110, USA
| | - Feng Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
5
|
Kwak Y, Song WJ, Kim SE. FGANet: fNIRS-guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2022; 30:329-339. [PMID: 35130163 DOI: 10.1109/tnsre.2022.3149899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-invasive brain-computer interfaces (BCIs) have been widely used for neural decoding, linking neural signals to control devices. Hybrid BCI systems using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention for overcoming the limitations of EEG- and fNIRS-standalone BCI systems. However, most hybrid EEG-fNIRS BCI studies have focused on late fusion because of discrepancies in their temporal resolutions and recording locations. Despite the enhanced performance of hybrid BCIs, late fusion methods have difficulty in extracting correlated features in both EEG and fNIRS signals. Therefore, in this study, we proposed a deep learning-based early fusion structure, which combines two signals before the fully-connected layer, called the fNIRS-guided attention network (FGANet). First, 1D EEG and fNIRS signals were converted into 3D EEG and fNIRS tensors to spatially align EEG and fNIRS signals at the same time point. The proposed fNIRS-guided attention layer extracted a joint representation of EEG and fNIRS tensors based on neurovascular coupling, in which the spatially important regions were identified from fNIRS signals, and detailed neural patterns were extracted from EEG signals. Finally, the final prediction was obtained by weighting the sum of the prediction scores of the EEG and fNIRS-guided attention features to alleviate performance degradation owing to delayed fNIRS response. In the experimental results, the FGANet significantly outperformed the EEG-standalone network. Furthermore, the FGANet has 4.0% and 2.7% higher accuracy than the state-of-the-art algorithms in mental arithmetic and motor imagery tasks, respectively.
Collapse
|
6
|
Sweeti. Attentional load classification in multiple object tracking task using optimized support vector machine classifier: a step towards cognitive brain-computer interface. J Med Eng Technol 2021; 46:69-77. [PMID: 34825850 DOI: 10.1080/03091902.2021.1992519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cognitive brain-computer interface (cBCI) is an emerging area with applications in neurorehabilitation and performance monitoring. cBCI works on the cognitive brain signal that does not require a person to pay much effort unlike the motor brain-computer interface (BCI) however existing cBCI systems currently offer lower accuracy than the motor BCI. Since attention is one of the cognitive signals that can be used to realise the cBCI, this work uses the multiple object tracking (MOT) task to acquire the desired electroencephalograph (EEG) signal from healthy subjects. The main objective of the paper is to explore the preliminary applications of support vector machine (SVM) classifier to classify the attentional load in multiple object tracking task. Results show that the attentional load can be classified using SVM with sensitivity, specificity, and accuracy of 94.03%, 92.50%, and 93.28%, respectively using the spectral entropy EEG feature. The classification performance promises the potential application of the current approach in the cognitive brain-computer interface for neurorehabilitation.
Collapse
Affiliation(s)
- Sweeti
- Medical Electronics Engineering Department, M. S. Ramaiah Institute of Technology, Bangalore, India
| |
Collapse
|
7
|
Moslehi AH, Davies TC. EEG Electrode Selection for a Two-Class Motor Imagery Task in a BCI Using fNIRS Prior Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6627-6630. [PMID: 34892627 DOI: 10.1109/embc46164.2021.9630786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study investigated the possibility of using functional near infrared spectroscopy (fNIRS) during right- and left-hand motor imagery tasks to select an optimum set of electroencephalography (EEG) electrodes for a brain computer interface. fNIRS has better spatial resolution allowing areas of brain activity to more readily be identified. The ReliefF algorithm was used to identify the most reliable fNIRS channels. Then, EEG electrodes adjacent to those channels were selected for classification. This study used three different classifiers of linear and quadratic discriminant analyses, and support vector machine to examine the proposed method.Clinical Relevance- Reducing the number of sensors in a BCI makes the system more usable for patients with severe disabilities.
Collapse
|
8
|
Grässler B, Herold F, Dordevic M, Gujar TA, Darius S, Böckelmann I, Müller NG, Hökelmann A. Multimodal measurement approach to identify individuals with mild cognitive impairment: study protocol for a cross-sectional trial. BMJ Open 2021; 11:e046879. [PMID: 34035103 PMCID: PMC8154928 DOI: 10.1136/bmjopen-2020-046879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The diagnosis of mild cognitive impairment (MCI), that is, the transitory phase between normal age-related cognitive decline and dementia, remains a challenging task. It was observed that a multimodal approach (simultaneous analysis of several complementary modalities) can improve the classification accuracy. We will combine three noninvasive measurement modalities: functional near-infrared spectroscopy (fNIRS), electroencephalography and heart rate variability via ECG. Our aim is to explore neurophysiological correlates of cognitive performance and whether our multimodal approach can aid in early identification of individuals with MCI. METHODS AND ANALYSIS This study will be a cross-sectional with patients with MCI and healthy controls (HC). The neurophysiological signals will be measured during rest and while performing cognitive tasks: (1) Stroop, (2) N-back and (3) verbal fluency test (VFT). Main aims of statistical analysis are to (1) determine the differences in neurophysiological responses of HC and MCI, (2) investigate relationships between measures of cognitive performance and neurophysiological responses and (3) investigate whether the classification accuracy can be improved by using our multimodal approach. To meet these targets, statistical analysis will include machine learning approaches.This is, to the best of our knowledge, the first study that applies simultaneously these three modalities in MCI and HC. We hypothesise that the multimodal approach improves the classification accuracy between HC and MCI as compared with a unimodal approach. If our hypothesis is verified, this study paves the way for additional research on multimodal approaches for dementia research and fosters the exploration of new biomarkers for an early detection of nonphysiological age-related cognitive decline. ETHICS AND DISSEMINATION Ethics approval was obtained from the local Ethics Committee (reference: 83/19). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT04427436, registered on 10 June 2020, https://clinicaltrials.gov/ct2/show/study/NCT04427436.
Collapse
Affiliation(s)
- Bernhard Grässler
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Fabian Herold
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
| | - Milos Dordevic
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
| | - Tariq Ali Gujar
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Darius
- Occupational Medicine, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Irina Böckelmann
- Occupational Medicine, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Notger G Müller
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Anita Hökelmann
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
De Sousa C, Gaillard C, Di Bello F, Ben Hadj Hassen S, Ben Hamed S. Behavioral validation of novel high resolution attention decoding method from multi-units & local field potentials. Neuroimage 2021; 231:117853. [PMID: 33582274 DOI: 10.1016/j.neuroimage.2021.117853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/28/2022] Open
Abstract
The ability to access brain information in real-time is crucial both for a better understanding of cognitive functions and for the development of therapeutic applications based on brain-machine interfaces. Great success has been achieved in the field of neural motor prosthesis. Progress is still needed in the real-time decoding of higher-order cognitive processes such as covert attention. Recently, we showed that we can track the location of the attentional spotlight using classification methods applied to prefrontal multi-unit activity (MUA) in the non-human primates. Importantly, we demonstrated that the decoded (x,y) attentional spotlight parametrically correlates with the behavior of the monkeys thus validating our decoding of attention. We also demonstrate that this spotlight is extremely dynamic. Here, in order to get closer to non-invasive decoding applications, we extend our previous work to local field potential signals (LFP). Specifically, we achieve, for the first time, high decoding accuracy of the (x,y) location of the attentional spotlight from prefrontal LFP signals, to a degree comparable to that achieved from MUA signals, and we show that this LFP content is predictive of behavior. This LFP attention-related information is maximal in the gamma band (30-250 Hz), peaking between 60 to 120 Hz. In addition, we introduce a novel two-step decoding procedure based on the labelling of maximally attention-informative trials during the decoding procedure. This procedure strongly improves the correlation between our real-time MUA and LFP based decoding and behavioral performance, thus further refining the functional relevance of this real-time decoding of the (x,y) locus of attention. This improvement is more marked for LFP signals than for MUA signals. Overall, this study demonstrates that the attentional spotlight can be accessed from LFP frequency content, in real-time, and can be used to drive high-information content cognitive brain-machine interfaces for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Carine De Sousa
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
| | - C Gaillard
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - F Di Bello
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - S Ben Hadj Hassen
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - S Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
10
|
Khan H, Naseer N, Yazidi A, Eide PK, Hassan HW, Mirtaheri P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front Hum Neurosci 2021; 14:613254. [PMID: 33568979 PMCID: PMC7868344 DOI: 10.3389/fnhum.2020.613254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Noman Naseer
- Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Hafiz Wajahat Hassan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet—Oslo Metropolitan University, Oslo, Norway
- Department of Biomedical Engineering, Michigan Technological University, Michigan, MI, United States
| |
Collapse
|
11
|
Khan MU, Hasan MAH. Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD). Front Hum Neurosci 2020; 14:599802. [PMID: 33363459 PMCID: PMC7753369 DOI: 10.3389/fnhum.2020.599802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system—achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals—is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.
Collapse
Affiliation(s)
- Muhammad Umer Khan
- Department of Mechatronics Engineering, Atilim University, Ankara, Turkey
| | - Mustafa A H Hasan
- Department of Mechatronics Engineering, Atilim University, Ankara, Turkey
| |
Collapse
|
12
|
He Z, Li Z, Yang F, Wang L, Li J, Zhou C, Pan J. Advances in Multimodal Emotion Recognition Based on Brain-Computer Interfaces. Brain Sci 2020; 10:E687. [PMID: 33003397 PMCID: PMC7600724 DOI: 10.3390/brainsci10100687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022] Open
Abstract
With the continuous development of portable noninvasive human sensor technologies such as brain-computer interfaces (BCI), multimodal emotion recognition has attracted increasing attention in the area of affective computing. This paper primarily discusses the progress of research into multimodal emotion recognition based on BCI and reviews three types of multimodal affective BCI (aBCI): aBCI based on a combination of behavior and brain signals, aBCI based on various hybrid neurophysiology modalities and aBCI based on heterogeneous sensory stimuli. For each type of aBCI, we further review several representative multimodal aBCI systems, including their design principles, paradigms, algorithms, experimental results and corresponding advantages. Finally, we identify several important issues and research directions for multimodal emotion recognition based on BCI.
Collapse
Affiliation(s)
- Zhipeng He
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| | - Zina Li
- School of Computer, South China Normal University, Guangzhou 510641, China;
| | - Fuzhou Yang
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| | - Lei Wang
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| | - Jingcong Li
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| | - Chengju Zhou
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| | - Jiahui Pan
- School of Software, South China Normal University, Foshan 528225, China; (Z.H.); (F.Y.); (L.W.); (J.L.); (C.Z.)
| |
Collapse
|
13
|
Papanastasiou G, Drigas A, Skianis C, Lytras M. Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon 2020; 6:e04250. [PMID: 32954024 PMCID: PMC7482019 DOI: 10.1016/j.heliyon.2020.e04250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/23/2019] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this article is to explore a paradigm shift on Brain Computer Interface (BCI) research, as well as on intervention best practices for training and rehabilitation of students with neurodevelopmental disorders. Recent studies indicate that BCI devices have positive impact on students' attention skills and working memory as well as on other skills, such as visuospatial, social, imaginative and emotional abilities. BCI applications aim to emulate humans' brain and address the appropriate understanding for each student's neurodevelopmental disorders. Studies conducted to provide knowledge about BCI-based intervention applications regarding memory, attention, visuospatial, learning, collaboration, and communication, social, creative and emotional skills are highlighted. Only non-invasive BCI type of applications are being investigated based upon representative, non-exhaustive and state-of-the-art studies within the field. This article examines the progress of BCI research so far, while different BCI paradigms are investigated. BCI-based applications could successfully regulate students' cognitive abilities when used for their training and rehabilitation. Future directions to investigate BCI-based applications for training and rehabilitation of students with neurodevelopmental disorders concerning the different populations involved are discussed.
Collapse
Affiliation(s)
- George Papanastasiou
- NSCR Demokritos, Patr. Gregoriou E' & 27, Neapoleos str., 15341, Greece.,University of the Aegean Karlovassi Samos, 83200, Greece
| | - Athanasios Drigas
- NSCR Demokritos, Patr. Gregoriou E' & 27, Neapoleos str., 15341, Greece
| | | | - Miltiadis Lytras
- The American College of Greece, 6 Gravias str., 153 42, Greece.,King Abdulaziz University, Saudi Arabia
| |
Collapse
|
14
|
Nishimoto T, Higashi H, Morioka H, Ishii S. EEG-based personal identification method using unsupervised feature extraction and its robustness against intra-subject variability. J Neural Eng 2020; 17:026007. [PMID: 31958785 DOI: 10.1088/1741-2552/ab6d89] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain activity signals are possible biomarkers for personal authentication. However, they are inherently variable due to measurement-environment factors and subject-dependent factors; electroencephalography (EEG) signals could be different in days even for the same task, subject, and experimental settings. This variability could cause loss of consistency of the signals across multiple measurements of a single subject, and hence decrease the performance of EEG-based personal identification. In this study, we evaluated the influence of the variability on personal EEG features by using our original EEG dataset. APPROACH We collected EEG signals in twenty subjects across four rounds (morning and afternoon daily for two days). At each round, we reinstalled an EEG cap on the subjects' scalps. To extract personal EEG features that were invariant across the sessions, we proposed unsupervised learning methods; common dictionary learning and t-distributed stochastic neighbor embedding. To assess the performance of personal identification, we compared two different experimental settings; test data recorded in the same round as the training data (Setting SR) and test data recorded in different rounds (Setting DR). MAIN RESULTS The performance in SR was better than that in DR, suggesting that features dependent on the rounds were dominant. However, the 40% accuracy rate in DR, which is significantly higher than the chance level, suggests that our proposed method robustly extracted the personal features against the variability, in most cases. Furthermore, we also evaluated the performance of a problem, which involved detecting individuals who were not registered in the authentication system. In this problem, we obtained a similar result that the variability for the rounds influenced the performance. However, we obtained a good performance in the detection of some unknown subjects even in DR. SIGNIFICANCE We found the variability in EEG data actually affected the personal features that were used for personal identification. Even considering the variability in EEG data, however, we found our proposed method is applicable in personal authentication scenarios, i.e. personal identification and unknown detection.
Collapse
Affiliation(s)
- Takashi Nishimoto
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan. Currently affiliated with Technology & Intellectual Property HQ, OMRON Co., Ltd., Kyoto, Japan
| | | | | | | |
Collapse
|
15
|
Brain–machine interfaces using functional near-infrared spectroscopy: a review. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00592-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Rezazadeh Sereshkeh A, Yousefi R, Wong AT, Rudzicz F, Chau T. Development of a ternary hybrid fNIRS-EEG brain–computer interface based on imagined speech. BRAIN-COMPUTER INTERFACES 2019. [DOI: 10.1080/2326263x.2019.1698928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Alborz Rezazadeh Sereshkeh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Rozhin Yousefi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Andrew T Wong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, Canada
- Vector Institute, University of Toronto, Toronto, Canada
| | - Tom Chau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| |
Collapse
|
17
|
Takeda Y, Suzuki K, Kawato M, Yamashita O. MEG Source Imaging and Group Analysis Using VBMEG. Front Neurosci 2019; 13:241. [PMID: 30967756 PMCID: PMC6438955 DOI: 10.3389/fnins.2019.00241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Variational Bayesian Multimodal EncephaloGraphy (VBMEG) is a MATLAB toolbox that estimates distributed source currents from magnetoencephalography (MEG)/electroencephalography (EEG) data by integrating functional MRI (fMRI) (https://vbmeg.atr.jp/). VBMEG also estimates whole-brain connectome dynamics using anatomical connectivity derived from a diffusion MRI (dMRI). In this paper, we introduce the VBMEG toolbox and demonstrate its usefulness. By collaborating with VBMEG's tutorial page (https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html), we show its full pipeline using an open dataset recorded by Wakeman and Henson (2015). We import the MEG data and preprocess them to estimate the source currents. From the estimated source currents, we perform a group analysis and examine the differences of current amplitudes between conditions by controlling the false discovery rate (FDR), which yields results consistent with previous studies. We highlight VBMEG's characteristics by comparing these results with those obtained by other source imaging methods: weighted minimum norm estimate (wMNE), dynamic statistical parametric mapping (dSPM), and linearly constrained minimum variance (LCMV) beamformer. We also estimate source currents from the EEG data and the whole-brain connectome dynamics from the MEG data and dMRI. The observed results indicate the reliability, characteristics, and usefulness of VBMEG.
Collapse
Affiliation(s)
- Yusuke Takeda
- ATR Neural Information Analysis Laboratories, Kyoto, Japan
| | - Keita Suzuki
- ATR Neural Information Analysis Laboratories, Kyoto, Japan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | | |
Collapse
|
18
|
Cinel C, Valeriani D, Poli R. Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects. Front Hum Neurosci 2019; 13:13. [PMID: 30766483 PMCID: PMC6365771 DOI: 10.3389/fnhum.2019.00013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues.
Collapse
Affiliation(s)
- Caterina Cinel
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Davide Valeriani
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Riccardo Poli
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| |
Collapse
|
19
|
A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J Neurosci Methods 2018; 313:44-53. [PMID: 30590086 DOI: 10.1016/j.jneumeth.2018.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hybrid brain computer interfaces (BCIs) combining multiple brain imaging modalities have been proposed recently to boost the performance of single modality BCIs. NEW METHOD In this paper, we propose a novel motor imagery (MI) hybrid BCI that uses electrical brain activity recorded using Electroencephalography (EEG) as well as cerebral blood flow velocity measured using functional transcranial Doppler ultrasound (fTCD). Features derived from the power spectrum for both EEG and fTCD signals were calculated. Mutual information and linear support vector machines (SVM) were employed for feature selection and classification. RESULTS Using the EEG-fTCD combination, average accuracies of 88.33%, 89.48%, and 82.38% were achieved for right arm MI versus baseline, left arm MI versus baseline, and right arm MI versus left arm MI respectively. Compared to performance measures obtained using EEG only, the hybrid system provided significant improvement in terms of accuracy by 4.48%, 5.36%, and 4.76% respectively. In addition, average transmission rates of 4.17, 5.45, and 10.57 bits/min were achieved for right arm MI versus baseline, left arm MI versus baseline, and right arm MI versus left arm MI respectively. COMPARISON WITH EXISTING METHODS Compared to EEG-fNIRS hybrid BCIs in literature, we achieved similar or higher accuracies with shorter task duration. CONCLUSIONS The proposed hybrid system is a promising candidate for real-time BCI applications.
Collapse
|
20
|
Meng J, Streitz T, Gulachek N, Suma D, He B. Three-Dimensional Brain-Computer Interface Control Through Simultaneous Overt Spatial Attentional and Motor Imagery Tasks. IEEE Trans Biomed Eng 2018; 65:2417-2427. [PMID: 30281428 PMCID: PMC6219871 DOI: 10.1109/tbme.2018.2872855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE While noninvasive electroenceph-alography (EEG) based brain-computer interfacing (BCI) has been successfully demonstrated in two-dimensional (2-D) control tasks, little work has been published regarding its extension to practical three-dimensional (3-D) control. METHODS In this study, we developed a new BCI approach for 3-D control by combining a novel form of endogenous visuospatial attentional modulation, defined as overt spatial attention (OSA), and motor imagery (MI). RESULTS OSA modulation was shown to provide comparable control to conventional MI modulation in both 1-D and 2-D tasks. Furthermore, this paper provides evidence for the functional independence of traditional MI and OSA, as well as an investigation into the simultaneous use of both. Using this newly proposed BCI paradigm, 16 participants successfully completed a 3-D eight-target control task. Nine of these subjects further demonstrated robust 3-D control in a 12-target task, significantly outperforming the information transfer rate achieved in the 1-D and 2-D control tasks (29.7 ± 1.6 b/min). CONCLUSION These results strongly support the hypothesis that noninvasive EEG-based BCI can provide robust 3-D control through endogenous neural modulation in broader populations with limited training. SIGNIFICANCE Through the combination of the two strategies (MI and OSA), a substantial portion of the recruited subjects were capable of robustly controlling a virtual cursor in 3-D space. The proposed novel approach could broaden the dimensionality of BCI control and shorten the training time.
Collapse
|
21
|
Fuchigami T, Shikauchi Y, Nakae K, Shikauchi M, Ogawa T, Ishii S. Zero-shot fMRI decoding with three-dimensional registration based on diffusion tensor imaging. Sci Rep 2018; 8:12342. [PMID: 30120378 PMCID: PMC6098116 DOI: 10.1038/s41598-018-30676-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) acquisitions include a great deal of individual variability. This individuality often generates obstacles to the efficient use of databanks from multiple subjects. Although recent studies have suggested that inter-regional connectivity reflects individuality, conventional three-dimensional (3D) registration methods that calibrate inter-subject variability are based on anatomical information about the gray matter shape (e.g., T1-weighted). Here, we present a new registration method focusing more on the white matter structure, which is directly related to the connectivity in the brain, and apply it to subject-transfer brain decoding. Our registration method based on diffusion tensor imaging (DTI) transferred functional maps of each individual to a common anatomical space, where a decoding analysis of multi-voxel patterns was performed. The decoder trained on functional maps from other individuals in the common space showed a transfer decoding accuracy comparable to that of an individual decoder trained on single-subject functional maps. The DTI-based registration allowed more precise transformation of gray matter boundaries than a well-established T1-based method. These results suggest that the DTI-based registration is a promising tool for standardization of the brain functions, and moreover, will allow us to perform ‘zero-shot’ learning of decoders which is profitable in brain machine interface scenes.
Collapse
Affiliation(s)
- Takuya Fuchigami
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.,ATR Cognitive Mechanisms Laboratories, Kyoto, 619-0288, Japan.,FUJIFILM Corporation, Minato, Tokyo, Japan
| | - Yumi Shikauchi
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.,Rhythm-based Brain Information Processing, RIKEN BSI-TOYOTA Collaboration Center, Wako, 351-0198, Japan
| | - Ken Nakae
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Manabu Shikauchi
- ATR Cognitive Mechanisms Laboratories, Kyoto, 619-0288, Japan.,Cingulate Co. Ltd., Osaka, Japan
| | - Takeshi Ogawa
- ATR Cognitive Mechanisms Laboratories, Kyoto, 619-0288, Japan
| | - Shin Ishii
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan. .,ATR Cognitive Mechanisms Laboratories, Kyoto, 619-0288, Japan.
| |
Collapse
|
22
|
Croce P, Zappasodi F, Merla A, Chiarelli AM. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data. J Neural Eng 2018; 14:046029. [PMID: 28504643 DOI: 10.1088/1741-2552/aa7321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. APPROACH Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). MAIN RESULTS We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. SIGNIFICANCE The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, 'G.dAnnunzio' University, Chieti, Italy. Institute of Advanced Biomedical Technologies, 'G.dAnnunzio' University, Chieti, Italy
| | | | | | | |
Collapse
|
23
|
Classification of Targets and Distractors Present in Visual Hemifields Using Time-Frequency Domain EEG Features. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:9213707. [PMID: 29808111 PMCID: PMC5902061 DOI: 10.1155/2018/9213707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 11/27/2022]
Abstract
This paper presents a classification system to classify the cognitive load corresponding to targets and distractors present in opposite visual hemifields. The approach includes the study of EEG (electroencephalogram) signal features acquired in a spatial attention task. The process comprises of EEG feature selection based on the feature distribution, followed by the stepwise discriminant analysis- (SDA-) based channel selection. Repeated measure analysis of variance (rANOVA) is applied to test the statistical significance of the selected features. Classifiers are developed and compared using the selected features to classify the target and distractor present in visual hemifields. The results provide a maximum classification accuracy of 87.2% and 86.1% and an average classification accuracy of 76.5 ± 4% and 76.2 ± 5.3% over the thirteen subjects corresponding to the two task conditions. These correlates present a step towards building a feature-based neurofeedback system for visual attention.
Collapse
|
24
|
Trachel RE, Brochier TG, Clerc M. Brain-computer interaction for online enhancement of visuospatial attention performance. J Neural Eng 2018; 15:046017. [PMID: 29667934 DOI: 10.1088/1741-2552/aabf16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE this study on real-time decoding of visuospatial attention has two objectives: first, to reliably decode self-directed shifts of attention from electroencephalography (EEG) data, and second, to analyze whether this information can be used to enhance visuospatial performance. Visuospatial performance was measured in a target orientation discrimination task, in terms of reaction time, and error rate. APPROACH Our experiment extends the Posner paradigm by introducing a new type of ambiguous cues to indicate upcoming target location. The cues are designed so that their ambiguity is imperceptible to the user. This entails endogenous shifts of attention which are truly self-directed. Two protocols were implemented to exploit the decoding of attention shifts. The first 'adaptive' protocol uses the decoded locus to display the target. In the second 'warning' protocol, the target position is defined in advance, but a warning is flashed when the target mismatches the decoded locus. MAIN RESULTS Both protocols were tested in an online experiment involving ten subjects. The reaction time improved in both the adaptive and the warning protocol. The error rate was improved in the adaptive protocol only. SIGNIFICANCE This proof of concept study brings evidence that visuospatial brain-computer interfaces (BCIs) can be used to enhance improving human-machine interaction in situations where humans must react to off-center events in the visual field.
Collapse
Affiliation(s)
- R E Trachel
- Institut de Neurosciences de la Timone (INT), CNRS-Aix-Marseille Université, Campus Santé Timone, 27, Boulevard Jean Moulin. 13385 Marseille Cedex 5, France. Inria Sophia Antipolis-Méditerranée, 2004, route des Lucioles-BP 93, 06902 Sophia Antipolis Cedex, France
| | | | | |
Collapse
|
25
|
Almajidy RK, Boudria Y, Hofmann UG, Besio W, Mankodiya K. Multimodal 2D Brain Computer Interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:1067-70. [PMID: 26736449 DOI: 10.1109/embc.2015.7318549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.
Collapse
|
26
|
Cai C, Ogawa K, Kochiyama T, Tanaka H, Imamizu H. Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement. Neuroimage 2018; 172:654-662. [PMID: 29428581 DOI: 10.1016/j.neuroimage.2018.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 12/11/2017] [Accepted: 02/07/2018] [Indexed: 11/29/2022] Open
Abstract
Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure.
Collapse
Affiliation(s)
- Chang Cai
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Keihanna Science City, Kyoto 619-0288, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Suita, Osaka 565-0871, Japan.
| | - Kenji Ogawa
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Keihanna Science City, Kyoto 619-0288, Japan; Department of Psychology, Graduate School of Letters, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR-Promotions, Keihanna Science City, Kyoto 619-0288, Japan
| | - Hirokazu Tanaka
- School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Hiroshi Imamizu
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, Keihanna Science City, Kyoto 619-0288, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Suita, Osaka 565-0871, Japan; Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
Ahn S, Jun SC. Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces - Current Limitations and Future Directions. Front Hum Neurosci 2017; 11:503. [PMID: 29093673 PMCID: PMC5651279 DOI: 10.3389/fnhum.2017.00503] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
Multi-modal integration, which combines multiple neurophysiological signals, is gaining more attention for its potential to supplement single modality's drawbacks and yield reliable results by extracting complementary features. In particular, integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) is cost-effective and portable, and therefore is a fascinating approach to brain-computer interface (BCI). However, outcomes from the integration of these two modalities have yielded only modest improvement in BCI performance because of the lack of approaches to integrate the two different features. In addition, mismatch of recording locations may hinder further improvement. In this literature review, we surveyed studies of the integration of EEG/fNIRS in BCI thoroughly and discussed its current limitations. We also suggested future directions for efficient and successful multi-modal integration of EEG/fNIRS in BCI systems.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sung C Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
28
|
Chiarelli AM, Zappasodi F, Di Pompeo F, Merla A. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. NEUROPHOTONICS 2017; 4:041411. [PMID: 28840162 PMCID: PMC5566595 DOI: 10.1117/1.nph.4.4.041411] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/24/2017] [Indexed: 05/24/2023]
Abstract
Multimodal monitoring has become particularly common in the study of human brain function. In this context, combined, synchronous measurements of functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) are getting increased interest. Because of the absence of electro-optical interference, it is quite simple to integrate these two noninvasive recording procedures of brain activity. fNIRS and EEG are both scalp-located procedures. fNIRS estimates brain hemodynamic fluctuations relying on spectroscopic measurements, whereas EEG captures the macroscopic temporal dynamics of brain electrical activity through passive voltages evaluations. The "orthogonal" neurophysiological information provided by the two technologies and the increasing interest in the neurovascular coupling phenomenon further encourage their integration. This review provides, together with an introduction regarding the principles and future directions of the two technologies, an evaluation of major clinical and nonclinical applications of this flexible, low-cost combination of neuroimaging modalities. fNIRS-EEG systems exploit the ability of the two technologies to be conducted in an environment or experimental setting and/or on subjects that are generally not suited for other neuroimaging modalities, such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography. fNIRS-EEG brain monitoring settles itself as a useful multimodal tool for brain electrical and hemodynamic activity investigation.
Collapse
Affiliation(s)
- Antonio M. Chiarelli
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Filippo Zappasodi
- Università G. d’Annunzio, Department of Neuroscience, Imaging and Clinical Science, Chieti, Italy
- Università G. d’Annunzio, Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Francesco Di Pompeo
- Università G. d’Annunzio, Department of Neuroscience, Imaging and Clinical Science, Chieti, Italy
- Università G. d’Annunzio, Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Arcangelo Merla
- Università G. d’Annunzio, Department of Neuroscience, Imaging and Clinical Science, Chieti, Italy
- Università G. d’Annunzio, Institute for Advanced Biomedical Technologies, Chieti, Italy
| |
Collapse
|
29
|
Liu Y, Ayaz H, Shewokis PA. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. BRAIN-COMPUTER INTERFACES 2017. [DOI: 10.1080/2326263x.2017.1304020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yichuan Liu
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
- Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, Drexel University, Philadelphia, PA, USA
| | - Hasan Ayaz
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
- Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- The Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia A. Shewokis
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, USA
- Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, Drexel University, Philadelphia, PA, USA
- Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Al-Shargie F, Tang TB, Kiguchi M. Stress Assessment Based on Decision Fusion of EEG and fNIRS Signals. IEEE ACCESS 2017; 5:19889-19896. [DOI: 10.1109/access.2017.2754325] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
31
|
Decoding of top-down cognitive processing for SSVEP-controlled BMI. Sci Rep 2016; 6:36267. [PMID: 27808125 PMCID: PMC5093690 DOI: 10.1038/srep36267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/12/2016] [Indexed: 11/13/2022] Open
Abstract
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
Collapse
|
32
|
The occurrence of individual slow waves in sleep is predicted by heart rate. Sci Rep 2016; 6:29671. [PMID: 27445083 PMCID: PMC4957222 DOI: 10.1038/srep29671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022] Open
Abstract
The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved.
Collapse
|
33
|
Direct Two-Dimensional Access to the Spatial Location of Covert Attention in Macaque Prefrontal Cortex. Curr Biol 2016; 26:1699-1704. [DOI: 10.1016/j.cub.2016.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 11/18/2022]
|
34
|
Ahn S, Nguyen T, Jang H, Kim JG, Jun SC. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data. Front Hum Neurosci 2016; 10:219. [PMID: 27242483 PMCID: PMC4865510 DOI: 10.3389/fnhum.2016.00219] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions.
Collapse
Affiliation(s)
- Sangtae Ahn
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology Gwangju, South Korea
| | - Thien Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology Gwangju, South Korea
| | - Hyojung Jang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology Gwangju, South Korea
| | - Jae G Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology Gwangju, South Korea
| | - Sung C Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology Gwangju, South Korea
| |
Collapse
|
35
|
Yoshimura N, Nishimoto A, Belkacem AN, Shin D, Kambara H, Hanakawa T, Koike Y. Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents. Front Neurosci 2016; 10:175. [PMID: 27199638 PMCID: PMC4853397 DOI: 10.3389/fnins.2016.00175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG) cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI) data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR) method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing.
Collapse
Affiliation(s)
- Natsue Yoshimura
- Precision and Intelligence Laboratory, Tokyo Institute of TechnologyYokohama, Japan
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and PsychiatryTokyo, Japan
| | - Atsushi Nishimoto
- Precision and Intelligence Laboratory, Tokyo Institute of TechnologyYokohama, Japan
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and PsychiatryTokyo, Japan
| | | | - Duk Shin
- Department of Electronics and Mechatronics, Tokyo Polytechnic UniversityAtsugi, Japan
| | - Hiroyuki Kambara
- Precision and Intelligence Laboratory, Tokyo Institute of TechnologyYokohama, Japan
| | - Takashi Hanakawa
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and PsychiatryTokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Yasuharu Koike
- Precision and Intelligence Laboratory, Tokyo Institute of TechnologyYokohama, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and PsychiatryTokyo, Japan
- Solution Science Research Laboratory, Tokyo Institute of TechnologyYokohama, Japan
| |
Collapse
|
36
|
Banville H, Falk T. Recent advances and open challenges in hybrid brain-computer interfacing: a technological review of non-invasive human research. BRAIN-COMPUTER INTERFACES 2016. [DOI: 10.1080/2326263x.2015.1134958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal neuroimaging computing: the workflows, methods, and platforms. Brain Inform 2015; 2:181-195. [PMID: 27747508 PMCID: PMC4737665 DOI: 10.1007/s40708-015-0020-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.
Collapse
Affiliation(s)
- Sidong Liu
- School of IT, The University of Sydney, Sydney, Australia.
| | - Weidong Cai
- School of IT, The University of Sydney, Sydney, Australia
| | - Siqi Liu
- School of IT, The University of Sydney, Sydney, Australia
| | - Fan Zhang
- School of IT, The University of Sydney, Sydney, Australia
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Michael Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dagan Feng
- School of IT, The University of Sydney, Sydney, Australia
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sonia Pujol
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| |
Collapse
|
38
|
Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform 2015; 2:167-180. [PMID: 27747507 PMCID: PMC4737664 DOI: 10.1007/s40708-015-0019-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022] Open
Abstract
Multimodal neuroimaging is increasingly used in neuroscience research, as it overcomes the limitations of individual modalities. One of the most important applications of multimodal neuroimaging is the provision of vital diagnostic data for neuropsychiatric disorders. Multimodal neuroimaging computing enables the visualization and quantitative analysis of the alterations in brain structure and function, and has reshaped how neuroscience research is carried out. Research in this area is growing exponentially, and so it is an appropriate time to review the current and future development of this emerging area. Hence, in this paper, we review the recent advances in multimodal neuroimaging (MRI, PET) and electrophysiological (EEG, MEG) technologies, and their applications to the neuropsychiatric disorders. We also outline some future directions for multimodal neuroimaging where researchers will design more advanced methods and models for neuropsychiatric research.
Collapse
Affiliation(s)
- Sidong Liu
- School of IT, The University of Sydney, Sydney, Australia.
| | - Weidong Cai
- School of IT, The University of Sydney, Sydney, Australia
| | - Siqi Liu
- School of IT, The University of Sydney, Sydney, Australia
| | - Fan Zhang
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Michael Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, and the Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dagan Feng
- School of IT, The University of Sydney, Sydney, Australia
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sonia Pujol
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| |
Collapse
|
39
|
Morioka H, Kanemura A, Hirayama JI, Shikauchi M, Ogawa T, Ikeda S, Kawanabe M, Ishii S. Learning a common dictionary for subject-transfer decoding with resting calibration. Neuroimage 2015; 111:167-78. [DOI: 10.1016/j.neuroimage.2015.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/22/2015] [Accepted: 02/08/2015] [Indexed: 11/26/2022] Open
|
40
|
Astrand E, Wardak C, Ben Hamed S. Selective visual attention to drive cognitive brain-machine interfaces: from concepts to neurofeedback and rehabilitation applications. Front Syst Neurosci 2014; 8:144. [PMID: 25161613 PMCID: PMC4130369 DOI: 10.3389/fnsys.2014.00144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 02/02/2023] Open
Abstract
Brain–machine interfaces (BMIs) using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy, and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from non-invasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive brain-computer interfaces (BCIs), including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other cognitive signal.
Collapse
Affiliation(s)
- Elaine Astrand
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| | - Claire Wardak
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| | - Suliann Ben Hamed
- CNRS, Cognitive Neuroscience Center, UMR 5229, University of Lyon 1 Bron Cedex, France
| |
Collapse
|
41
|
Takeda Y, Yamanaka K, Yamagishi N, Sato MA. Revealing time-unlocked brain activity from MEG measurements by common waveform estimation. PLoS One 2014; 9:e98014. [PMID: 24879410 PMCID: PMC4039443 DOI: 10.1371/journal.pone.0098014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.
Collapse
Affiliation(s)
- Yusuke Takeda
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Kyoto, Japan
- * E-mail:
| | - Kentaro Yamanaka
- Graduate School of Human Life Sciences, Showa Women’s University, Tokyo, Japan
| | - Noriko Yamagishi
- Department of Cognitive Neuroscience, ATR Cognitive Mechanisms Laboratories, Kyoto, Japan
- Brain Networks and Communication Laboratory, Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Masa-aki Sato
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Kyoto, Japan
| |
Collapse
|