1
|
Nakajima R, Osada T, Kinoshita M, Ogawa A, Okita H, Konishi S, Nakada M. More widespread functionality of posterior language area in patients with brain tumors. Hum Brain Mapp 2024; 45:e26801. [PMID: 39087903 PMCID: PMC11293139 DOI: 10.1002/hbm.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Akitoshi Ogawa
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Hirokazu Okita
- Department of Physical Medicine and RehabilitationKanazawa University HospitalKanazawaJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
- Sapiens Life SciencesEvolution and Medicine Research CenterKanazawa UniversityKanazawaJapan
| |
Collapse
|
2
|
Tsai ML, Wang CC, Wang AYD, Lee FC, Chang H, Liu YL, Wong TT, Peng SJ. Antiseizure Medications Normalize Electroencephalographic Functional Connectivity and Power in Children With Benign Epilepsy With Centrotemporal Spikes. Pediatr Neurol 2024; 156:41-50. [PMID: 38729071 DOI: 10.1016/j.pediatrneurol.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The decision to treat children with benign epilepsy with centrotemporal spikes (BECTS) using antiseizure medications (ASM) is controversial. Our goal is to compare the effect of ASM treatment on the alteration of electroencephalographic (EEG) functional connectivity and power across four frequency bands in children with BECTS. METHODS Children with BECTS with two-year follow-up were retrospectively divided into ASM versus non-ASM groups. The network properties of the EEGs as based on network-based statistic and graph theory were evaluated by the following indices: global efficiency, clustering coefficient, betweenness centrality, and nodal strength in four frequency bands (delta, theta, alpha, and beta). EEG power including absolute power (AP) and relative power (RP) was analyzed in four frequency bands. RESULTS In children with BECTS with ASM treatment, there was no significant change in EEG connectivity across all bands before and after two years of ASM. In children with BECTS without ASM treatment, there was a significant increase of global efficiency, clustering coefficient, and nodal strength but not the betweenness centrality in the delta band after two years of follow-up. A decrease in AP in the delta and theta bands and a decrease in RP in the theta band were found in the ASM group after two years of treatment. CONCLUSIONS Our results suggest that ASM may play a role in modulating the development of increasing overall brain connectivity and in downregulating overt synaptic activity, but not intrinsic focal connectivity, in the early years of BECTS. The changes in the EEG power indicate that ASM significantly normalized slow-wave band power.
Collapse
Affiliation(s)
- Min-Lan Tsai
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Chin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Andy Yu-Der Wang
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Feng-Chin Lee
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Lin Liu
- Division of Pediatric Neurology, Department of Pediatrics, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tai-Tong Wong
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Wirsich J, Iannotti GR, Ridley B, Shamshiri EA, Sheybani L, Grouiller F, Bartolomei F, Seeck M, Lazeyras F, Ranjeva JP, Guye M, Vulliemoz S. Altered correlation of concurrently recorded EEG-fMRI connectomes in temporal lobe epilepsy. Netw Neurosci 2024; 8:466-485. [PMID: 38952816 PMCID: PMC11142634 DOI: 10.1162/netn_a_00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/17/2024] [Indexed: 07/03/2024] Open
Abstract
Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.
Collapse
Affiliation(s)
- Jonathan Wirsich
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giannina Rita Iannotti
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elhum A. Shamshiri
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Fabrice Bartolomei
- Aix-Marseille Univ, INS, INSERM, UMR 1106, Marseille, France
- AP-HM CHU Timone, Service d’épileptologie, Marseille, France
| | - Margitta Seeck
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Silva Alves A, Rigoni I, Mégevand P, Lagarde S, Picard F, Seeck M, Vulliémoz S, Roehri N. High-density electroencephalographic functional networks in genetic generalized epilepsy: Preserved whole-brain topology hides local reorganization. Epilepsia 2024; 65:961-973. [PMID: 38306118 DOI: 10.1111/epi.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level. METHODS We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system. RESULTS Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1). SIGNIFICANCE In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.
Collapse
Affiliation(s)
- André Silva Alves
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Mégevand
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stanislas Lagarde
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabienne Picard
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Roehri
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci 2024; 8:1-23. [PMID: 38562292 PMCID: PMC10861166 DOI: 10.1162/netn_a_00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ai H, Yang C, Lu M, Ren J, Li Z, Zhang Y. Abnormal white matter structural network topological property in patients with temporal lobe epilepsy. CNS Neurosci Ther 2024; 30:e14414. [PMID: 37622409 PMCID: PMC10805448 DOI: 10.1111/cns.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies have demonstrated white matter (WM) abnormalities in patients with temporal lobe epilepsy (TLE). However, alterations in the topological properties of the WM structural network in patients with TLE remain unclear. Graph theoretical analysis provides a new perspective for evaluating the connectivity of WM structural networks. METHODS DTI was used to map the structural networks of 18 patients with TLE (10 males and 8 females) and 29 (17 males and 12 females) age- and gender-matched normal controls (NC). Graph theory was used to analyze the whole-brain networks and their topological properties between the two groups. Finally, partial correlation analyses were performed on the weighted network properties and clinical characteristics, namely, duration of epilepsy, verbal intelligence quotient (IQ), and performance IQ. RESULTS Patients with TLE exhibited reduced global efficiency and increased characteristic path length. A total of 31 regions with nodal efficiency alterations were detected in the fractional anisotropy_ weighted network of the patients. Communication hubs, such as the middle temporal gyrus, right inferior temporal gyrus, left calcarine, and right superior parietal gyrus, were also differently distributed in the patients compared with the NC. Several node regions showed close relationships with duration of epilepsy, verbal IQ, and performance IQ. CONCLUSIONS Our results demonstrate the disruption of the WM structural network in TLE patients. This study may contribute to the further understanding of the pathological mechanism of TLE.
Collapse
Affiliation(s)
- Haiming Ai
- Faculty of Science and TechnologyBeijing Open UniversityBeijingChina
| | - Chunlan Yang
- College of Life Science and BioengineeringBeijing University of TechnologyBeijingChina
| | - Min Lu
- College of Life Science and BioengineeringBeijing University of TechnologyBeijingChina
| | - Jiechuan Ren
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhimei Li
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yining Zhang
- Department of EquipmentBaoding first Central HospitalBaodingChina
| |
Collapse
|
7
|
Hall GR, Hutchings F, Horsley J, Simpson CM, Wang Y, de Tisi J, Miserocchi A, McEvoy AW, Vos SB, Winston GP, Duncan JS, Taylor PN. Epileptogenic networks in extra temporal lobe epilepsy. Netw Neurosci 2023; 7:1351-1362. [PMID: 38144694 PMCID: PMC10631792 DOI: 10.1162/netn_a_00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/22/2023] [Indexed: 12/26/2023] Open
Abstract
Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre- and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < -1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery.
Collapse
Affiliation(s)
- Gerard R. Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Hutchings
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Callum M. Simpson
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anna Miserocchi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew W. McEvoy
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Nedlands, Australia
| | - Gavin P. Winston
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, Canada
| | - John S. Duncan
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Cohen NT, Xie H, Gholipour T, Gaillard WD. A scoping review of the functional magnetic resonance imaging-based functional connectivity of focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:3130-3142. [PMID: 37731142 DOI: 10.1111/epi.17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, George Washington University Epilepsy Center, Washington, District of Columbia, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Karpychev V, Malyutina S, Zhuravleva A, Bronov O, Kuzin V, Marinets A, Dragoy O. Disruptions in modular structure and network integration of language-related network predict language performance in temporal lobe epilepsy: Evidence from graph-based analysis. Epilepsy Behav 2023; 147:109407. [PMID: 37688840 DOI: 10.1016/j.yebeh.2023.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a network disorder that alters the total organization of the language-related network. Task-based functional magnetic resonance imaging (fMRI) aimed at functional connectivity is a direct method to investigate how the network is reorganized. However, such studies are scarce and represented mostly by the resting-state analysis of the individual connections between regions. To fill this gap, we used a graph-based analysis, which allows us to cover the total language-related network changes, such as disruptions in an integration/segregation balance, during a language task in TLE. METHODS We collected task-based fMRI data with sentence completion from 19 healthy controls and 28 people with left TLE. Using graph-based analysis, we estimated how the language-related network segregated into modules and tested whether they differed between groups. We evaluated the total network integration and the integration within modules. To assess intermodular integration, we considered the number and location of connector hubs-regions with high connectivity. RESULTS The language-related network was differently segregated during language processing in the groups. While healthy controls showed a module consisting of left perisylvian regions, people with TLE exhibited a bilateral module formed by the anterior language-related areas and a module in the left temporal lobe, reflecting hyperconnectivity within the epileptic focus. As a consequence of this reorganization, there was a statistical tendency that the dominance of the intramodular integration over the total network integration was greater in TLE, which predicted language performance. The increase in the number of connector hubs in the right hemisphere, in turn, was compensatory in TLE. SIGNIFICANCE Our study provides insights into the reorganization of the language-related network in TLE, revealing specific network changes in segregation and integration. It confirms reduced global connectivity and compensation across the healthy hemisphere, commonly observed in epilepsy. These findings advance the understanding of the network-based reorganizational processes underlying language processing in TLE.
Collapse
Affiliation(s)
- Victor Karpychev
- Center for Language and Brain, HSE University, Moscow, Russian Federation.
| | - Svetlana Malyutina
- Center for Language and Brain, HSE University, Moscow, Russian Federation
| | - Anna Zhuravleva
- Center for Language and Brain, HSE University, Moscow, Russian Federation
| | - Oleg Bronov
- National Medical and Surgical Center named after N.I. Pirogov, Moscow, Russian Federation
| | - Vasiliy Kuzin
- National Medical and Surgical Center named after N.I. Pirogov, Moscow, Russian Federation
| | - Aleksei Marinets
- National Medical and Surgical Center named after N.I. Pirogov, Moscow, Russian Federation
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russian Federation; Institute of Linguistics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
10
|
Ma K, Zhang X, Song C, Han S, Li W, Wang K, Mao X, Zhang Y, Cheng J. Altered topological properties and their relationship to cognitive functions in unilateral temporal lobe epilepsy. Epilepsy Behav 2023; 144:109247. [PMID: 37267843 DOI: 10.1016/j.yebeh.2023.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To investigate abnormalities in topological properties in unilateral temporal lobe epilepsy (TLE) with hippocampal sclerosis and their correlations with cognitive functions. METHODS Thirty-eight patients with TLE and 19 age- and sex-matched healthy controls (HCs) were enrolled in this research and underwent resting-state functional magnetic resonance imaging (fMRI) examinations. Whole-brain functional networks of participants were constructed based on the fMRI data. Topological characteristics of the functional network were compared between patients with left and right TLE and HCs. Correlations between altered topological properties and cognitive measurements were explored. RESULTS Compared with the HCs, patients with left TLE showed decreased clustering coefficient, global efficiency, and local efficiency (Eloc), and patients with right TLE showed decreased Eloc. We found altered nodal centralities in six regions related to the basal ganglia (BG) network or default mode network (DMN) in patients with left TLE and those in three regions related to reward/emotion network or ventral attention network in patients with right TLE. Patients with right TLE showed higher integration (reduced nodal shortest path length) in four regions related to the DMN and lower segregation (reduced nodal local efficiency and nodal clustering coefficient) in the right middle temporal gyrus. When comparing left TLE with right TLE, no significant differences were detected in global parameters, but the nodal centralities in the left parahippocampal gyrus and the left pallidum were decreased in left TLE. The Eloc and several nodal parameters were significantly correlated with memory functions, duration, national hospital seizure severity scale (NHS3), or antiseizure medications (ASMs) in patients with TLE. CONCLUSIONS The topological properties of whole-brain functional networks were disrupted in TLE. Networks of left TLE were characterized by lower efficiency; right TLE was preserved in global efficiency but disrupted in fault tolerance. Several nodes with abnormal topological centrality in the basal ganglia network beyond the epileptogenic focus in the left TLE were not found in the right TLE. Right TLE had some nodes with reduced shortest path length in regions of the DMN as compensation. These findings provide new insights into the effect of lateralization on TLE and help us to understand the cognitive impairment of patients with TLE.
Collapse
Affiliation(s)
- Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Wenbin Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Kefan Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| |
Collapse
|
11
|
Lucas A, Cornblath EJ, Sinha N, Hadar P, Caciagli L, Keller SS, Bonilha L, Shinohara RT, Stein JM, Das S, Gleichgerrcht E, Davis KA. Resting state functional connectivity demonstrates increased segregation in bilateral temporal lobe epilepsy. Epilepsia 2023; 64:1305-1317. [PMID: 36855286 DOI: 10.1111/epi.17565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. An increasingly identified subset of patients with TLE consists of those who show bilaterally independent temporal lobe seizures. The purpose of this study was to leverage network neuroscience to better understand the interictal whole brain network of bilateral TLE (BiTLE). METHODS In this study, using a multicenter resting state functional magnetic resonance imaging (rs-fMRI) data set, we constructed whole-brain functional networks of 19 patients with BiTLE, and compared them to those of 75 patients with unilateral TLE (UTLE). We quantified resting-state, whole-brain topological properties using metrics derived from network theory, including clustering coefficient, global efficiency, participation coefficient, and modularity. For each metric, we computed an average across all brain regions, and iterated this process across network densities. Curves of network density vs each network metric were compared between groups. Finally, we derived a combined metric, which we term the "integration-segregation axis," by combining whole-brain average clustering coefficient and global efficiency curves, and applying principal component analysis (PCA)-based dimensionality reduction. RESULTS Compared to UTLE, BiTLE had decreased global efficiency (p = .031), and decreased whole brain average participation coefficient across a range of network densities (p = .019). Modularity maximization yielded a larger number of smaller communities in BiTLE than in UTLE (p = .020). Differences in network properties separate BiTLE and UTLE along the integration-segregation axis, with regions within the axis having a specificity of up to 0.87 for BiTLE. Along the integration-segregation axis, UTLE patients with poor surgical outcomes were distributed in the same regions as BiTLE, and network metrics confirmed similar patterns of increased segregation in both BiTLE and poor outcome UTLE. SIGNIFICANCE Increased interictal whole-brain network segregation, as measured by rs-fMRI, is specific to BiTLE, as well as poor surgical outcome UTLE, and may assist in non-invasively identifying this patient population prior to intracranial electroencephalography or device implantation.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eli J Cornblath
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Hadar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Russell T Shinohara
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joel M Stein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandhitsu Das
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Shahabi H, Nair DR, Leahy RM. Multilayer brain networks can identify the epileptogenic zone and seizure dynamics. eLife 2023; 12:e68531. [PMID: 36929752 PMCID: PMC10065796 DOI: 10.7554/elife.68531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200Hz) for the identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the EZ as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in the early to mid-seizure. We showed that aging and the duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but possible factors that correlate with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we demonstrate the necessity of collecting sufficient data for identifying epileptogenic networks.
Collapse
Affiliation(s)
- Hossein Shahabi
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Dileep R Nair
- Epilepsy Center, Cleveland Clinic Neurological InstituteClevelandUnited States
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
13
|
Pang L, Fan B, Chen Z, Chen Z, Lv C, Zheng J. Disruption of Cerebellar–Cerebral Functional Connectivity in Temporal Lobe Epilepsy and the Connection to Language and Cognitive Functions. Front Neurosci 2022; 16:871128. [PMID: 35837122 PMCID: PMC9273908 DOI: 10.3389/fnins.2022.871128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 01/26/2023] Open
Abstract
ObjectiveTo investigate the changes in the cerebellar-cerebral language network in temporal lobe epilepsy (TLE) patients from the cerebellar perspective, the research analyzes the changes of language and cognitive network in terms of functional connectivity (FC), as well as their efficiency of the reorganization were evaluated basing on relationship between the network metrics and neuropsychological scale scores.Methods30 TLE patients and 30 healthy controls were recruited. Brain activity was evaluated by voxel-mirrored homotopic connectivity analysis (VMHC). Two groups were analyzed and compared in terms of language FC using the following methods: Seed-to-Voxel analysis, pairwise correlations [region of interest(ROI)-to-ROI] and graph theory. Correlation analysis was performed between network properties and neuropsychological score.ResultsCompared with healthy participants, VMHC values in the Cerebellum Anterior Lobe, Frontal Lobe, Frontal_Sup_R/L, Cingulum_Ant_R/L, and Cingulum_Mid_R/L were decreased in TLE patients. Decreased FC was observed from the Cerebelum_10_R to the left inferior frontal gyrus, from the Cerebelum_6_R to the left Lingual Gyrus, from the Cerebelum_4_5_R to left Lingual Gyrus, left Cuneal Cortex and Precuneous Cortex, from the Cerebelum_3_R to Brain-Stem, and from the Cerebelum_Crus1_L to Cerebelum_6_R in TLE patients. The FC was enhanced between bilateral Cingulum_Mid and angular gyrus and frontoparietal insular cranium, between Frontal_Sup_Med L and left/right superior temporal gyrus (pSTG l/r), while it was decreased between left middle temporal gyrus and pSTG l/r. Compared with controls, the Betweenness Centrality (BC) of the right superior marginal gyrus (SMG), Temporal_Pole_Mid_R and Temporal_Mid_L as well as the Degree Centrality (DC) and Nodal Efficiency (NE) of the right SMG were lower in TLE patients. Further analysis showed that decreased VMHC in bilateral Cerebellum Anterior Lobe was positively correlated with the Boston Naming Test score in TLE patients, but it was negatively correlated with the Verbal Fluency Test score. The NE and DC of SMG_R were both negatively correlated with visual perception score in Montreal Cognitive Assessment.ConclusionOur results suggest that presence of abnormalities in the static functional connectivity and the language and cognitive network of TLE patients. Cerebellum potentially represents an intervention target for delaying or improving language and cognitive deficits in patients with TLE.
Collapse
|
14
|
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia 2022; 63:537-550. [DOI: 10.1111/epi.17171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Ezequiel Gleichgerrcht
- Department of Neurology Medical University of South Carolina Charleston South Carolina USA
| | - Bernd J. Vorderwülbecke
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
- Department of Neurology Epilepsy Center Berlin‐Brandenburg Charité–Universitätsmedizin Berlin Berlin Germany
| | - Serge Vulliémoz
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
| | | |
Collapse
|
15
|
Wang K, Zhang X, Song C, Ma K, Bai M, Zheng R, Wei Y, Chen J, Cheng J, Zhang Y, Han S. Decreased Intrinsic Neural Timescales in Mesial Temporal Lobe Epilepsy. Front Hum Neurosci 2021; 15:772365. [PMID: 34955790 PMCID: PMC8693765 DOI: 10.3389/fnhum.2021.772365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
It is well established that epilepsy is characterized by the destruction of the information capacity of brain network and the interference with information processing in regions outside the epileptogenic focus. However, the potential mechanism remains poorly understood. In the current study, we applied a recently proposed approach on the basis of resting-state fMRI data to measure altered local neural dynamics in mesial temporal lobe epilepsy (mTLE), which represents how long neural information is stored in a local brain area and reflect an ability of information integration. Using resting-state-fMRI data recorded from 36 subjects with mTLE and 36 healthy controls, we calculated the intrinsic neural timescales (INT) of neural signals by summing the positive magnitude of the autocorrelation of the resting-state brain activity. Compared to healthy controls, the INT values were significantly lower in patients in the right orbitofrontal cortices, right insula, and right posterior lobe of cerebellum. Whereas, we observed no statistically significant changes between patients with long- and short-term epilepsy duration or between left-mTLE and right-mTLE. Our study provides distinct insight into the brain abnormalities of mTLE from the perspective of the dynamics of the brain activity, highlighting the significant role of intrinsic timescale in understanding neurophysiological mechanisms. And we postulate that altered intrinsic timescales of neural signals in specific cortical brain areas may be the neurodynamic basis of cognitive impairment and emotional comorbidities in mTLE patients.
Collapse
Affiliation(s)
- Kefan Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Man Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
16
|
Slinger G, Otte WM, Braun KPJ, van Diessen E. An updated systematic review and meta-analysis of brain network organization in focal epilepsy: Looking back and forth. Neurosci Biobehav Rev 2021; 132:211-223. [PMID: 34813826 DOI: 10.1016/j.neubiorev.2021.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023]
Abstract
Abnormalities of the brain network organization in focal epilepsy have been extensively quantified. However, the extent and directionality of abnormalities are highly variable and subtype insensitive. We conducted meta-analyses to obtain a more accurate and epilepsy type-specific quantification of the interictal global brain network organization in focal epilepsy. By using random-effects models, we estimated differences in average clustering coefficient, average path length, and modularity between patients with focal epilepsy and controls, based on 45 studies with a total sample size of 1,468 patients and 1,021 controls. Structural networks had a significant lower level of integration in patients with epilepsy as compared to controls, with a standardized mean difference of -0.334 (95 % confidence interval -0.631 to -0.038; p-value 0.027). Functional networks did not differ between patients and controls, except for the beta band clustering coefficient. Our meta-analyses show that differences in the brain network organization are not as well defined as individual studies often propose. We discuss potential pitfalls and suggestions to enhance the yield and clinical value of network studies.
Collapse
Affiliation(s)
- Geertruida Slinger
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Willem M Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric van Diessen
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Hatlestad-Hall C, Bruña R, Syvertsen MR, Erichsen A, Andersson V, Vecchio F, Miraglia F, Rossini PM, Renvall H, Taubøll E, Maestú F, Haraldsen IH. Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy. Clin Neurophysiol 2021; 132:1663-1676. [PMID: 34044189 DOI: 10.1016/j.clinph.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The hypersynchronous neuronal activity associated with epilepsy causes widespread functional network disruptions extending beyond the epileptogenic zone. This altered network topology is considered a mediator for non-seizure symptoms, such as cognitive impairment. The aim of this study was to investigate functional network alterations in focal epilepsy patients with good seizure control and high quality of life. METHODS We compared twenty-two focal epilepsy patients and sixteen healthy controls on graph metrics derived from functional connectivity of source-level resting-state EEG. Graph metrics were calculated over a range of network densities in five frequency bands. RESULTS We observed a significantly increased small world index in patients relative to controls. On the local level, two left-hemisphere regions displayed a shift towards greater alpha band "hubness". The findings were not mediated by age, sex or education, nor by age of epilepsy onset, duration or focus lateralisation. CONCLUSIONS Widespread functional network alterations are evident in focal epilepsy, even in a cohort characterised by successful anti-seizure medication therapy and high quality of life. These findings might support the position that functional network analysis could hold clinical relevance for epilepsy. SIGNIFICANCE Focal epilepsy is accompanied by global and local functional network aberrancies which might be implied in the sustenance of non-seizure symptoms.
Collapse
Affiliation(s)
| | - Ricardo Bruña
- Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, Spain; Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Marte Roa Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Care Trust, Drammen, Norway.
| | - Aksel Erichsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | | | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy.
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy.
| | - Paolo M Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy.
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Fernando Maestú
- Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, Spain; Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Ira H Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Prajapati R, Emerson IA. Construction and analysis of brain networks from different neuroimaging techniques. Int J Neurosci 2020; 132:745-766. [DOI: 10.1080/00207454.2020.1837802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rutvi Prajapati
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Carboni M, De Stefano P, Vorderwülbecke BJ, Tourbier S, Mullier E, Rubega M, Momjian S, Schaller K, Hagmann P, Seeck M, Michel CM, van Mierlo P, Vulliemoz S. Abnormal directed connectivity of resting state networks in focal epilepsy. NEUROIMAGE-CLINICAL 2020; 27:102336. [PMID: 32679553 PMCID: PMC7363703 DOI: 10.1016/j.nicl.2020.102336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Epilepsy diagnosis can be difficult in the absence of interictal epileptic discharges (IED) on scalp EEG. We used high-density EEG to measure connectivity in large-scale functional networks of patients with focal epilepsy (Temporal and Extratemporal Lobe Epilepsy, TLE and ETLE) and tested for network alterations during resting wakefulness without IEDs, compared to healthy controls. We measured global efficiency as a marker of integration within networks. METHODS We analysed 49 adult patients with focal epilepsy and 16 healthy subjects who underwent high-density-EEG and structural MRI. We estimated cortical activity using electric source analysis in 82 atlas-based cortical regions based on the individual MRI. We applied directed connectivity analysis (Partial Directed Coherence) on these sources and performed graph analysis: we computed the Global Efficiency on the whole brain and on each resting state network. We tested these features in different group of patients. RESULTS Compared to controls, efficiency was increased in both TLE and ETLE (p < 0.05). The somato-motor-network, the ventral-attention-network and the default-mode-network had a significantly increased efficiency (p < 0.05) in both TLE and ETLE as well as TLE with hippocampal sclerosis. SIGNIFICANCE During interictal scalp EEG epochs without IED, patients with focal epilepsy show brain functional connectivity alterations in the whole brain and in specific resting-state-networks. This higher integration reflects a chronic effect of pathological activity within these structures and complement previous work on altered information outflow. These findings could increase the diagnostic sensitivity of scalp EEG to identify epileptic activity in the absence of IED.
Collapse
Affiliation(s)
- Margherita Carboni
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Pia De Stefano
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Bernd J Vorderwülbecke
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland; Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastien Tourbier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Emeline Mullier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maria Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Department of Neurosciences, University of Padova, Padova, Italy
| | - Shahan Momjian
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy. J Neurosci 2020; 40:5572-5588. [PMID: 32513827 PMCID: PMC7363471 DOI: 10.1523/jneurosci.0905-19.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant focal epilepsy is a large-scale brain networks disorder characterized by altered spatiotemporal patterns of functional connectivity (FC), even during interictal resting state (RS). Although RS-FC-based metrics can detect these changes, results from RS functional magnetic resonance imaging (RS-fMRI) studies are unclear and difficult to interpret, and the underlying dynamical mechanisms are still largely unknown. To better capture the RS dynamics, we phenomenologically extended the neural mass model of partial seizures, the Epileptor, by including two neuron subpopulations of epileptogenic and nonepileptogenic type, making it capable of producing physiological oscillations in addition to the epileptiform activity. Using the neuroinformatics platform The Virtual Brain, we reconstructed 14 epileptic and 5 healthy human (of either sex) brain network models (BNMs), based on individual anatomical connectivity and clinically defined epileptogenic heatmaps. Through systematic parameter exploration and fitting to neuroimaging data, we demonstrated that epileptic brains during interictal RS are associated with lower global excitability induced by a shift in the working point of the model, indicating that epileptic brains operate closer to a stable equilibrium point than healthy brains. Moreover, we showed that functional networks are unaffected by interictal spikes, corroborating previous experimental findings; additionally, we observed higher excitability in epileptogenic regions, in agreement with the data. We shed light on new dynamical mechanisms responsible for altered RS-FC in epilepsy, involving the following two key factors: (1) a shift of excitability of the whole brain leading to increased stability; and (2) a locally increased excitability in the epileptogenic regions supporting the mixture of hyperconnectivity and hypoconnectivity in these areas. SIGNIFICANCE STATEMENT Advances in functional neuroimaging provide compelling evidence for epilepsy-related brain network alterations, even during the interictal resting state (RS). However, the dynamical mechanisms underlying these changes are still elusive. To identify local and network processes behind the RS-functional connectivity (FC) spatiotemporal patterns, we systematically manipulated the local excitability and the global coupling in the virtual human epileptic patient brain network models (BNMs), complemented by the analysis of the impact of interictal spikes and fitting to the neuroimaging data. Our results suggest that a global shift of the dynamic working point of the brain model, coupled with locally hyperexcitable node dynamics of the epileptogenic networks, provides a mechanistic explanation of the epileptic processes during the interictal RS period. These, in turn, are associated with the changes in FC.
Collapse
|
21
|
Roger E, Pichat C, Torlay L, David O, Renard F, Banjac S, Attyé A, Minotti L, Lamalle L, Kahane P, Baciu M. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum Brain Mapp 2019; 41:779-796. [PMID: 31721361 PMCID: PMC7268007 DOI: 10.1002/hbm.24839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) affects the brain networks at several levels and patients suffering from mTLE experience cognitive impairment for language and memory. Considering the importance of language and memory reorganization in this condition, the present study explores changes of the embedded language‐and‐memory network (LMN) in terms of functional connectivity (FC) at rest, as measured with functional MRI. We also evaluate the cognitive efficiency of the reorganization, that is, whether or not the reorganizations support or allow the maintenance of optimal cognitive functioning despite the seizure‐related damage. Data from 37 patients presenting unifocal mTLE were analyzed and compared to 48 healthy volunteers in terms of LMN‐FC using two methods: pairwise correlations (region of interest [ROI]‐to‐ROI) and graph theory. The cognitive efficiency of the LMN‐FC reorganization was measured using correlations between FC parameters and language and memory scores. Our findings revealed a large perturbation of the LMN hubs in patients. We observed a hyperconnectivity of limbic areas near the dysfunctional hippocampus and mainly a hypoconnectivity for several cortical regions remote from the dysfunctional hippocampus. The loss of FC was more important in left mTLE (L‐mTLE) than in right (R‐mTLE) patients. The LMN‐FC reorganization may not be always compensatory and not always useful for patients as it may be associated with lower cognitive performance. We discuss the different connectivity patterns obtained and conclude that interpretation of FC changes in relation to neuropsychological scores is important to determine cognitive efficiency, suggesting the concept of “connectome” would gain to be associated with a “cognitome” concept.
Collapse
Affiliation(s)
- Elise Roger
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Cedric Pichat
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Laurent Torlay
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neuroscience, INSERM, Brain Stimulation and System Neuroscience, University Grenoble Alpes, Grenoble, France
| | | | - Sonja Banjac
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | | | - Lorella Minotti
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | | | - Philippe Kahane
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
22
|
Fortanier E, Grapperon AM, Le Troter A, Verschueren A, Ridley B, Guye M, Attarian S, Ranjeva JP, Zaaraoui W. Structural Connectivity Alterations in Amyotrophic Lateral Sclerosis: A Graph Theory Based Imaging Study. Front Neurosci 2019; 13:1044. [PMID: 31632235 PMCID: PMC6783612 DOI: 10.3389/fnins.2019.01044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder. Diffusion magnetic resonance imagining (MRI) studies have consistently showed widespread alterations in both motor and non-motor brain regions. However, connectomics and graph theory based approaches have shown inconsistent results. Hub-centered lesion patterns and their impact on local and large-scale brain networks remain to be established. The objective of this work is to characterize topological properties of structural brain connectivity in ALS using an array of local, global and hub-based network metrics. Materials and Methods Magnetic resonance imagining data were acquired from 25 patients with ALS and 26 age-matched healthy controls. Structural network graphs were constructed from diffusion tensor MRI. Network-based statistics (NBS) and graph theory metrics were used to compare structural networks without a priori regions of interest. Results Patients with ALS exhibited global network alterations with decreased global efficiency (Eglob) (p = 0.03) and a trend of reduced whole brain mean degree (p = 0.05) compared to controls. Six nodes showed significantly decreased mean degree in ALS: left postcentral gyrus, left interparietal and transverse parietal sulcus, left calcarine sulcus, left occipital temporal medial and lingual sulcus, right precentral gyrus and right frontal inferior sulcus (p < 0.01). Hub distribution was comparable between the two groups. There was no selective hub vulnerability or topological reorganization centered on these regions as the hub disruption index (κ) was not significant for the relevant metrics (degree, local efficiency and betweenness centrality). Using NBS, we identified an impaired motor subnetwork of 11 nodes and 10 edges centered on the precentral and the paracentral nodes (p < 0.01). Significant clinical correlations were identified between degree in the frontal area and the disease progression rate of ALS patients (p < 0.01). Conclusion Our study provides evidence that alterations of structural connectivity in ALS are primarily driven by node degree and white matter tract degeneration within an extended network around the precentral and the paracentral areas without hub-centered reorganization.
Collapse
Affiliation(s)
- Etienne Fortanier
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Aude-Marie Grapperon
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Annie Verschueren
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France.,Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
23
|
Suprano I, Delon-Martin C, Kocevar G, Stamile C, Hannoun S, Achard S, Badhwar A, Fourneret P, Revol O, Nusbaum F, Sappey-Marinier D. Topological Modification of Brain Networks Organization in Children With High Intelligence Quotient: A Resting-State fMRI Study. Front Hum Neurosci 2019; 13:241. [PMID: 31354458 PMCID: PMC6639736 DOI: 10.3389/fnhum.2019.00241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 11/13/2022] Open
Abstract
The idea that intelligence is embedded not only in a single brain network, but instead in a complex, well-optimized system of complementary networks, has led to the development of whole brain network analysis. Using graph theory to analyze resting-state functional MRI data, we investigated the brain graph networks (or brain networks) of high intelligence quotient (HIQ) children. To this end, we computed the "hub disruption index κ," an index sensitive to graph network modifications. We found significant topological differences in the integration and segregation properties of brain networks in HIQ compared to standard IQ children, not only for the whole brain graph, but also for each hemispheric graph, and for the homotopic connectivity. Moreover, two profiles of HIQ children, homogenous and heterogeneous, based on the differences between the two main IQ subscales [verbal comprehension index (VCI) and perceptual reasoning index (PRI)], were compared. Brain network changes were more pronounced in the heterogeneous than in the homogeneous HIQ subgroups. Finally, we found significant correlations between the graph networks' changes and the full-scale IQ (FSIQ), as well as the subscales VCI and PRI. Specifically, the higher the FSIQ the greater was the brain organization modification in the whole brain, the left hemisphere, and the homotopic connectivity. These results shed new light on the relation between functional connectivity topology and high intelligence, as well as on different intelligence profiles.
Collapse
Affiliation(s)
- Ilaria Suprano
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Chantal Delon-Martin
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Gabriel Kocevar
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Claudio Stamile
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sophie Achard
- GIPSA-Lab, UMR CNRS 5216, Université Grenoble Alpes, Grenoble, France
| | - Amanpreet Badhwar
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Pierre Fourneret
- Service de Psychopathologie du Développement de l’Enfant et de l’Adolescent, Hospices Civils de Lyon, Lyon, France
| | - Olivier Revol
- Service de Psychopathologie du Développement de l’Enfant et de l’Adolescent, Hospices Civils de Lyon, Lyon, France
| | - Fanny Nusbaum
- Laboratoire Parcours Santé Systémique (Equipe d’Accueil 4129), Université de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
- Centre PSYRENE, Lyon, France
| | - Dominique Sappey-Marinier
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
- CERMEP – Imagerie du Vivant, Université de Lyon, Lyon, France
| |
Collapse
|
24
|
Farahani FV, Karwowski W, Lighthall NR. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front Neurosci 2019; 13:585. [PMID: 31249501 PMCID: PMC6582769 DOI: 10.3389/fnins.2019.00585] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture. Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of the current paper is to systematically review how brain properties can emerge through the interactions of distinct neuronal units in various cognitive and neurological applications using fMRI. Moreover, this article provides an overview of the existing functional and effective connectivity methods used to construct the brain network, along with their advantages and pitfalls. Methods: In this systematic review, the databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for exploring the evolution of computational methods in human brain connectivity from 1990 to the present, focusing on graph theory. The Cochrane Collaboration's tool was used to assess the risk of bias in individual studies. Results: Our results show that graph theory and its implications in cognitive neuroscience have attracted the attention of researchers since 2009 (as the Human Connectome Project launched), because of their prominent capability in characterizing the behavior of complex brain systems. Although graph theoretical approach can be generally applied to either functional or effective connectivity patterns during rest or task performance, to date, most articles have focused on the resting-state functional connectivity. Conclusions: This review provides an insight into how to utilize graph theoretical measures to make neurobiological inferences regarding the mechanisms underlying human cognition and behavior as well as different brain disorders.
Collapse
Affiliation(s)
- Farzad V Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Nichole R Lighthall
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
25
|
Bigaut K, Achard S, Hemmert C, Baloglu S, Kremer L, Collongues N, De Sèze J, Kremer S. Resting-state functional MRI demonstrates brain network reorganization in neuromyelitis optica spectrum disorder (NMOSD). PLoS One 2019; 14:e0211465. [PMID: 30695058 PMCID: PMC6351056 DOI: 10.1371/journal.pone.0211465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The relation between brain functional connectivity of patients with neuromyelitis optica spectrum disorder (NMOSD) and the degree of disability remains unclear. OBJECTIVE Compare brain functional connectivity of patients with NMOSD to healthy subjects in resting-state functional MRI (rs-fMRI). METHODS We compared the rs-fMRI connectivity in 12 NMOSD patients with 20 healthy subjects matched for age and sex. Graph theory analysis was used to quantify the role of each node using a set of metrics: degree, global efficiency, clustering and modularity. To summarize the abnormal connectivity profile of brain regions in patients compared to healthy subjects, we defined a hub disruption index κ. RESULTS Concerning the global organization of networks in NMOSD, a small-world topology was preserved without significant modification concerning all average metrics. However, visual networks and the sensorimotor network showed decreased connectivity with high interindividual variability. The hub disruption index κ was correlated to the Expanded Disability Status Scale (EDSS). CONCLUSION These results demonstrate a correlation between disability according to the EDSS and neuronal reorganization using the rs-fMRI graph methodology. The conservation of a normal global topological structure despite local modifications in functional connectivity seems to show brain plasticity in response to the disability.
Collapse
Affiliation(s)
- Kévin Bigaut
- Department of neurology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Achard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, Grenoble, France
| | - Céline Hemmert
- Department of radiology, Groupe Hospitalier Régional Mulhouse Sud-Alsace, Mulhouse, France
| | - Seyyid Baloglu
- Department of radiology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Kremer
- Department of neurology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicolas Collongues
- Department of neurology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jérôme De Sèze
- Department of neurology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Stéphane Kremer
- Department of radiology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
26
|
Farahani FV, Karwowski W, Lighthall NR. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front Neurosci 2019. [PMID: 31249501 DOI: 10.3389/fnins.2019.00585/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Background: Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture. Objectives: Thanks to the emergence of graph theoretical analysis, the main purpose of the current paper is to systematically review how brain properties can emerge through the interactions of distinct neuronal units in various cognitive and neurological applications using fMRI. Moreover, this article provides an overview of the existing functional and effective connectivity methods used to construct the brain network, along with their advantages and pitfalls. Methods: In this systematic review, the databases Science Direct, Scopus, arXiv, Google Scholar, IEEE Xplore, PsycINFO, PubMed, and SpringerLink are employed for exploring the evolution of computational methods in human brain connectivity from 1990 to the present, focusing on graph theory. The Cochrane Collaboration's tool was used to assess the risk of bias in individual studies. Results: Our results show that graph theory and its implications in cognitive neuroscience have attracted the attention of researchers since 2009 (as the Human Connectome Project launched), because of their prominent capability in characterizing the behavior of complex brain systems. Although graph theoretical approach can be generally applied to either functional or effective connectivity patterns during rest or task performance, to date, most articles have focused on the resting-state functional connectivity. Conclusions: This review provides an insight into how to utilize graph theoretical measures to make neurobiological inferences regarding the mechanisms underlying human cognition and behavior as well as different brain disorders.
Collapse
Affiliation(s)
- Farzad V Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Nichole R Lighthall
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
27
|
Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C. Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2018; 20:71-84. [PMID: 30094158 PMCID: PMC6070692 DOI: 10.1016/j.nicl.2018.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/26/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023]
Abstract
Hubs of brain networks are brain regions exhibiting denser connections than others, promoting long-range communication. Studies suggested the reorganization of hubs in epilepsy. The patterns of connector hub abnormalities specific to mesial temporal lobe epilepsy (mTLE) are unclear. We wish to quantify connector hub abnormalities in mTLE and identify epilepsy-related resting state networks involving abnormal connector hubs. A recently developed sparsity-based analysis of reliable k-hubness (SPARK) allowed us to address this question by using resting state functional MRI in 20 mTLE patients and 17 healthy controls. Handling the multicollinearity of functional networks, SPARK measures a new metric of hubness by counting the number (k) of networks involved in each voxel, and identifies which networks are actually associated to each connector hub. This measure provides new information about the network architecture involving connector hubs and a realistic range of k-hubness. We quantified the disruption and emergence of connector hubs in individual epileptic subjects and assessed the lateralization of networks involving connector hubs. In mTLE, we found pathological disruptions of normal connector hubs in the mTL and within the default mode network. Right mTLE had remarkably higher emergence of new connector hubs in the mTL than left mTLE. Different patterns of lateralization of the salience network involving the abnormal hippocampus were found in right versus left mTLE. The temporal, cerebellar, default mode, subcortical and motor networks also contributed to the lateralization of hippocampal networks. We finally observed an asymmetrical connector hub reorganization and overall regularization of epilepsy-related resting state networks in mTLE, characterized by the disruption of distant connections and the emergence of local connections. Individually reproducible brain network hubs in mesial Temporal Lobe Epilepsy (mTLE). We observed asymmetrical connector hub reorganization and network regularization in mTLE. We found connector hub disruptions within the mTL and default mode network. Emergence of new connector hubs in the mTL was prominent in right but not in left mTLE. Lateralization of hippocampal connectivity was associated with the salience network.
Collapse
Affiliation(s)
- Kangjoo Lee
- Multimodal Functional Imaging Lab, Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada.
| | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada; Department of Neurosurgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka Prefecture, 565-0871, Japan
| | - Jean-Marc Lina
- École de Technologie Supérieure, 1100 Rue Notre-Dame O, Montreal, QC H3C 1K3, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Montreal, QC H3T 1J4, Canada
| | - François Dubeau
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Montreal, QC H3T 1J4, Canada; Department of Physics and PERFORM Centre, Concordia University, 7200 Rue Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
28
|
Babajani-Feremi A, Noorizadeh N, Mudigoudar B, Wheless JW. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. NEUROIMAGE-CLINICAL 2018; 19:990-999. [PMID: 30003036 PMCID: PMC6039837 DOI: 10.1016/j.nicl.2018.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Vagus nerve stimulation (VNS) is a low-risk surgical option for patients with drug resistant epilepsy, although it is impossible to predict which patients may respond to VNS treatment. Resting-state magnetoencephalography (rs-MEG) connectivity analysis has been increasingly utilized to investigate the impact of epilepsy on brain networks and identify alteration of these networks after different treatments; however, there is no study to date utilizing this modality to predict the efficacy of VNS treatment. We investigated whether the rs-MEG network topology before VNS implantation can be used to predict efficacy of VNS treatment. Twenty-three patients with epilepsy who had MEG before VNS implantation were included in this study. We also included 89 healthy control subjects from the Human Connectome Project. Using the phase-locking value in the theta, alpha, and beta frequency bands as a measure of rs-MEG functional connectivity, we calculated three global graph measures: modularity, transitivity, and characteristic path length (CPL). Our results revealed that the rs-MEG graph measures were significantly heritable and had an overall good test-retest reliability, and thus these measures may be used as potential biomarkers of the network topology. We found that the modularity and transitivity in VNS responders were significantly larger and smaller, respectively, than those observed in VNS non-responders. We also observed that the modularity and transitivity in three frequency bands and CPL in delta and beta bands were significantly different in controls than those found in responders or non-responders, although the values of the graph measures in controls were closer to those of responders than non-responders. We used the modularity and transitivity as input features of a naïve Bayes classifier, and achieved an accuracy of 87% in classification of non-responders, responders, and controls. The results of this study revealed that MEG-based graph measures are reliable biomarkers, and that these measures may be used to predict seizure outcome of VNS treatment.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Negar Noorizadeh
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Basanagoud Mudigoudar
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - James W Wheless
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| |
Collapse
|
29
|
Evangelisti S, Testa C, Ferri L, Gramegna LL, Manners DN, Rizzo G, Remondini D, Castellani G, Naldi I, Bisulli F, Tonon C, Tinuper P, Lodi R. Brain functional connectivity in sleep-related hypermotor epilepsy. NEUROIMAGE-CLINICAL 2017. [PMID: 29527492 PMCID: PMC5842749 DOI: 10.1016/j.nicl.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objectives To evaluate functional connectivity (FC) in patients with sleep-related hypermotor epilepsy (SHE) compared to healthy controls. Methods Resting state fMRI was performed in 13 patients with a clinical diagnosis of SHE (age = 38.3 ± 11.8 years, 6 M) and 13 matched healthy controls (age = 38.5 ± 10.8 years, 6 M). Data were first analysed using probabilistic independent component analysis (ICA), then a graph theoretical approach was applied to assess topological and organizational properties at the whole brain level. We evaluated node degree (ND), betweenness centrality (BC), clustering coefficient (CC), local efficiency (LE) and global efficiency (GE). The differences between the two groups were evaluated non-parametrically. Results At the group level, we distinguished 16 RSNs (Resting State Networks). Patients showed a significantly higher FC in sensorimotor and thalamic regions (p < 0.05 corrected). Compared to controls, SHE patients showed no significant differences in network global efficiency, while ND and BC were higher in regions of the limbic system and lower in the occipital cortex, while CC and LE were higher in regions of basal ganglia and lower in limbic areas (p < 0.05 uncorrected). Discussion and conclusions The higher FC of the sensorimotor cortex and thalamus might be in agreement with the hypothesis of a peculiar excitability of the motor cortex during thalamic K-complexes. This sensorimotor-thalamic hyperconnection might be regarded as a consequence of an alteration of the arousal regulatory system in SHE. An altered topology has been found in structures like basal ganglia and limbic system, hypothesized to be involved in the pathophysiology of the disease as suggested by the dystonic-dyskinetic features and primitive behaviours observed during the seizures. Resting state functional connectivity was studied for the first time in SHE. SHE patients showed higher connectivity in thalamic and motor regions. Motor cortex might show a higher excitability in response to thalamic projections. Brain network topology was altered mainly in basal ganglia and limbic system.
Collapse
Affiliation(s)
- Stefania Evangelisti
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy
| | - Claudia Testa
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; INFN- National Institute of Nuclear Physics, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Laura Ludovica Gramegna
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy
| | - David Neil Manners
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy
| | - Giovanni Rizzo
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Daniel Remondini
- INFN- National Institute of Nuclear Physics, Bologna, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- INFN- National Institute of Nuclear Physics, Bologna, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Ilaria Naldi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Caterina Tonon
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Raffaele Lodi
- Functional MR Unit, Policlinico S.Orsola - Malpighi, via Massarenti 9, 40138, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via U. Foscolo 7, 40123, Bologna, Italy.
| |
Collapse
|
30
|
Allen LA, Harper RM, Kumar R, Guye M, Ogren JA, Lhatoo SD, Lemieux L, Scott CA, Vos SB, Rani S, Diehl B. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy. Front Neurol 2017; 8:544. [PMID: 29085330 PMCID: PMC5650686 DOI: 10.3389/fneur.2017.00544] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sudden unexpected death in epilepsy (SUDEP) is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC) alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE) patients at high risk of SUDEP. METHODS 32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic-clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI) signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis). RESULTS High-risk TLE patients showed a subnetwork with significantly reduced FC (t = 2.5, p = 0.029) involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC (t = 2.1, p = 0.031), which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen. CONCLUSION TLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional correlates of autonomic disturbances in epilepsy and mechanisms involved in SUDEP. Furthermore, these findings represent possible objective biomarkers which could help to identify high-risk patients and enhance SUDEP risk stratification via the use of non-invasive neuroimaging, which would require validation in larger cohorts, with extension to patients with other epilepsies and subjects who succumb to SUDEP.
Collapse
Affiliation(s)
- Luke A Allen
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States
| | - Rajesh Kumar
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States.,Department of Anaesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Samden D Lhatoo
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Centre, Neurological Institute, University Hospitals Case Medical Centre, Cleveland, OH, United States
| | - Louis Lemieux
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom
| | - Catherine A Scott
- Institute of Neurology, University College London, London, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Sjoerd B Vos
- Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Translational Imaging Group, University College London, London, United Kingdom
| | - Sandhya Rani
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Centre, Neurological Institute, University Hospitals Case Medical Centre, Cleveland, OH, United States
| | - Beate Diehl
- Institute of Neurology, University College London, London, United Kingdom.,Epilepsy Society, Chalfont St. Peter, United Kingdom.,The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
31
|
Besson P, Bandt SK, Proix T, Lagarde S, Jirsa VK, Ranjeva JP, Bartolomei F, Guye M. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain 2017; 140:2639-2652. [DOI: 10.1093/brain/awx181] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
|
32
|
Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain 2017; 140:641-654. [PMID: 28364550 PMCID: PMC5837328 DOI: 10.1093/brain/awx004] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023] Open
Abstract
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions.
Collapse
Affiliation(s)
- Timothée Proix
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, UMR CNRS-AMU 7339), Medical School of Marseille, 13005, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Viktor K Jirsa
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
33
|
Simultaneous Intracranial EEG-fMRI Shows Inter-Modality Correlation in Time-Resolved Connectivity Within Normal Areas but Not Within Epileptic Regions. Brain Topogr 2017; 30:639-655. [DOI: 10.1007/s10548-017-0551-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
|
34
|
Li YH, Ye XL, Liu QQ, Mao JW, Liang PJ, Xu JW, Zhang PM. Localization of epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res 2016; 128:149-157. [DOI: 10.1016/j.eplepsyres.2016.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
|
35
|
Termenon M, Achard S, Jaillard A, Delon-Martin C. The "Hub Disruption Index," a Reliable Index Sensitive to the Brain Networks Reorganization. A Study of the Contralesional Hemisphere in Stroke. Front Comput Neurosci 2016; 10:84. [PMID: 27582702 PMCID: PMC4987351 DOI: 10.3389/fncom.2016.00084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Stroke, resulting in focal structural damage, induces changes in brain function at both local and global levels. Following stroke, cerebral networks present structural, and functional reorganization to compensate for the dysfunctioning provoked by the lesion itself and its remote effects. As some recent studies underlined the role of the contralesional hemisphere during recovery, we studied its role in the reorganization of brain function of stroke patients using resting state fMRI and graph theory. We explored this reorganization using the "hub disruption index" (κ), a global index sensitive to the reorganization of nodes within the graph. For a given graph metric, κ of a subject corresponds to the slope of the linear regression model between the mean local network measures of a reference group, and the difference between that reference and the subject under study. In order to translate the use of κ in clinical context, a prerequisite to achieve meaningful results is to investigate the reliability of this index. In a preliminary part, we studied the reliability of κ by computing the intraclass correlation coefficient in a cohort of 100 subjects from the Human Connectome Project. Then, we measured intra-hemispheric κ index in the contralesional hemisphere of 20 subacute stroke patients compared to 20 age-matched healthy controls. Finally, due to the small number of patients, we tested the robustness of our results repeating the experiment 1000 times by bootstrapping on the Human Connectome Project database. Statistical analysis showed a significant reduction of κ for the contralesional hemisphere of right stroke patients compared to healthy controls. Similar results were observed for the right contralesional hemisphere of left stroke patients. We showed that κ, is more reliable than global graph metrics and more sensitive to detect differences between groups of patients as compared to healthy controls. Using new graph metrics as κ allows us to show that stroke induces a network-wide pattern of reorganization in the contralesional hemisphere whatever the side of the lesion. Graph modeling combined with measure of reorganization at the level of large-scale networks can become a useful tool in clinic.
Collapse
Affiliation(s)
- Maite Termenon
- Grenoble Institut des Neurosciences, Université Grenoble AlpesGrenoble, France; Institut National de la Santé et de la Recherche Médicale, U1216Grenoble, France
| | - Sophie Achard
- GIPSA-Lab, Université Grenoble AlpesGrenoble, France; GIPSA-Lab, Centre National de la Recherche ScientifiqueGrenoble, France
| | - Assia Jaillard
- Centre Hospitalier Universitaire (CHU) de GrenobleGrenoble, France; Pole Recherche, Centre Hospitalier Universitaire (CHU) GrenobleGrenoble, France; IRMaGe, Institut National de la Santé et de la Recherche Médicale US17 Centre National de la Recherche Scientifique UMS 3552Grenoble, France
| | - Chantal Delon-Martin
- Grenoble Institut des Neurosciences, Université Grenoble AlpesGrenoble, France; Institut National de la Santé et de la Recherche Médicale, U1216Grenoble, France
| |
Collapse
|
36
|
Ridley B, Beltramone M, Wirsich J, Le Troter A, Tramoni E, Aubert S, Achard S, Ranjeva JP, Guye M, Felician O. Alien Hand, Restless Brain: Salience Network and Interhemispheric Connectivity Disruption Parallel Emergence and Extinction of Diagonistic Dyspraxia. Front Hum Neurosci 2016; 10:307. [PMID: 27378896 PMCID: PMC4913492 DOI: 10.3389/fnhum.2016.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023] Open
Abstract
Diagonistic dyspraxia (DD) is by far the most spectacular manifestation reported by sufferers of acute corpus callosum (CC) injury (so-called “split-brain”). In this form of alien hand syndrome, one hand acts at cross purposes with the other “against the patient’s will”. Although recent models view DD as a disorder of motor control, there is still little information regarding its neural underpinnings, due to widespread connectivity changes produced by CC insult, and the obstacle that non-volitional movements represent for task-based functional neuroimaging studies. Here, we studied patient AM, the first report of DD in patient with complete developmental CC agenesis. This unique case also offers the opportunity to study the resting-state connectomics of DD in the absence of diffuse changes subsequent to CC injury or surgery. AM developed DD following status epilepticus (SE) which resolved over a 2-year period. Whole brain functional connectivity (FC) was compared (Crawford-Howell [CH]) to 16 controls during the period of acute DD symptoms (Time 1) and after remission (Time 2). Whole brain graph theoretical models were also constructed and topological efficiency examined. At Time 1, disrupted FC was observed in inter-hemispheric and intra-hemispheric right edges, involving frontal superior and midline structures. Graph analysis indicated disruption of the efficiency of salience and right frontoparietal (FP) networks. At Time 2, after remission of diagnostic dyspraxia symptoms, FC and salience network changes had resolved. In sum, longitudinal analysis of connectivity in AM indicates that DD behaviors could result from disruption of systems that support the experience and control of volitional movements and the ability to generate appropriate behavioral responses to salient stimuli. This also raises the possibility that changes to large-scale functional architecture revealed by resting-state functional magnetic resonance imaging (fMRI) (rs-fMRI) may provide relevant information on the evolution of behavioral syndromes in addition to that provided by structural and task-based functional imaging.
Collapse
Affiliation(s)
- Ben Ridley
- Aix-Marseille Université, CNRS, CRMBM UMR 7339Marseille, France; APHM, Hôpitaux de la Timone, CEMEREMMarseille, France
| | - Marion Beltramone
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie Marseille, France
| | - Jonathan Wirsich
- Aix-Marseille Université, CNRS, CRMBM UMR 7339Marseille, France; APHM, Hôpitaux de la Timone, CEMEREMMarseille, France; Aix Marseille Université, Inserm, INS, Institut de Neurosciences des SystèmesMarseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, CRMBM UMR 7339Marseille, France; APHM, Hôpitaux de la Timone, CEMEREMMarseille, France
| | - Eve Tramoni
- APHM, Hôpitaux de la Timone, Service de Neurologie et NeuropsychologieMarseille, France; Aix Marseille Université, Inserm, INS, Institut de Neurosciences des SystèmesMarseille, France
| | - Sandrine Aubert
- AP-HM, Hôpitaux de la Timone & Hôpital Henri-Gastaut, Service de Neurophysiologie Clinique Marseille, France
| | - Sophie Achard
- GIPSA-Lab F-38000, University Grenoble AlpesGrenoble, France; GIPSA-Lab, F-38000, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, CRMBM UMR 7339Marseille, France; APHM, Hôpitaux de la Timone, CEMEREMMarseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339Marseille, France; APHM, Hôpitaux de la Timone, CEMEREMMarseille, France
| | - Olivier Felician
- APHM, Hôpitaux de la Timone, Service de Neurologie et NeuropsychologieMarseille, France; Aix Marseille Université, Inserm, INS, Institut de Neurosciences des SystèmesMarseille, France
| |
Collapse
|
37
|
Wirsich J, Perry A, Ridley B, Proix T, Golos M, Bénar C, Ranjeva JP, Bartolomei F, Breakspear M, Jirsa V, Guye M. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2016; 11:707-718. [PMID: 27330970 PMCID: PMC4909094 DOI: 10.1016/j.nicl.2016.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/15/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Collapse
Key Words
- CSD, constrained spherical deconvolution
- CSF, cerebrospinal fluid
- FA, fractional anisotropy
- FCA, analytic functional connectivity
- FCD, functional connectivity dynamics
- FOD, fiber orientation distribution
- Functional connectivity
- NBS, network based statistics
- Network based statistics
- Network communication
- Rich club
- Structural connectivity
- Temporal lobe epilepsy
- dMRI, diffusion magnetic resonance imaging
- rTLE, right temporal lobe epilepsy
- rsfMRI, resting state functional magnetic resonance imaging
Collapse
Affiliation(s)
- Jonathan Wirsich
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Alistair Perry
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia.
| | - Ben Ridley
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Timothée Proix
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Mathieu Golos
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Christian Bénar
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle de Neurosciences Cliniques, Service de Neurophysiologie Clinique, 13005 Marseille, France.
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Metro North Mental Health Services, Brisbane, QLD 4006, Australia.
| | - Viktor Jirsa
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106, 13385 Marseille, France.
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385 Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie Médicale, CEMEREM, 13005 Marseille, France.
| |
Collapse
|