1
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00206-4. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Harrington RM, Krishnamurthy LC, Ossowski A, Jeter M, Davis A, Bledniak E, Ware AL, Morris R, Arrington CN. Preliminary evidence of prolonged timing effects of theta-burst stimulation in the reading system. Front Hum Neurosci 2023; 17:1227194. [PMID: 37706172 PMCID: PMC10496289 DOI: 10.3389/fnhum.2023.1227194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Theta-burst stimulation (TBS) is a repetitive transcranial magnetic stimulation technique that can be used to upregulate or downregulate different brain regions. However, the timing of its effects and the differing effects of continuous TBS (cTBS) versus intermittent TBS (iTBS) in the reading system have not been explored. This study assessed how stimulation type and post-stimulation timing affected change in performance during a phonological discrimination and sight word recognition task after stimulation of supramarginal gyrus (SMG). Fourteen right-handed young adults (age 18-27 years; 44% male) were block-randomized to receive either iTBS or cTBS to the supramarginal gyrus. Participants then performed a pseudoword discrimination task and an orthographic awareness task (behavioral control) at four different time points and change in reaction time compared to baseline was measured from each time point. There was no effect of stimulation type on change in reaction time [t(16) = -0.2, p = 0.9], suggesting that both types of TBS caused similar effects. Percent change in reaction time decreased over time in the pseudoword task [t(50) = -5.9, p < 0.001], indicating faster pseudoword processing speed with better performance 60-70 min after stimulation. In contrast, no change was demonstrated over time for the behavioral control task [t(43) = -0.6, p = 0.6], suggesting that the change over time seen in the test condition was not a learning effect. These findings provide insight into the effects of TBS on the reading system and can guide future study designs.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Department of Communication Sciences and Disorders, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Alexandra Ossowski
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Mykayla Jeter
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Adriane Davis
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Ewelina Bledniak
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Ashley L. Ware
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Robin Morris
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - C. Nikki Arrington
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
3
|
Adam KCS, Chang L, Rangan N, Serences JT. Steady-State Visually Evoked Potentials and Feature-based Attention: Preregistered Null Results and a Focused Review of Methodological Considerations. J Cogn Neurosci 2021; 33:695-724. [PMID: 33416444 PMCID: PMC8354379 DOI: 10.1162/jocn_a_01665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Feature-based attention is the ability to selectively attend to a particular feature (e.g., attend to red but not green items while looking for the ketchup bottle in your refrigerator), and steady-state visually evoked potentials (SSVEPs) measured from the human EEG signal have been used to track the neural deployment of feature-based attention. Although many published studies suggest that we can use trial-by-trial cues to enhance relevant feature information (i.e., greater SSVEP response to the cued color), there is ongoing debate about whether participants may likewise use trial-by-trial cues to voluntarily ignore a particular feature. Here, we report the results of a preregistered study in which participants either were cued to attend or to ignore a color. Counter to prior work, we found no attention-related modulation of the SSVEP response in either cue condition. However, positive control analyses revealed that participants paid some degree of attention to the cued color (i.e., we observed a greater P300 component to targets in the attended vs. the unattended color). In light of these unexpected null results, we conducted a focused review of methodological considerations for studies of feature-based attention using SSVEPs. In the review, we quantify potentially important stimulus parameters that have been used in the past (e.g., stimulation frequency, trial counts) and we discuss the potential importance of these and other task factors (e.g., feature-based priming) for SSVEP studies.
Collapse
|
4
|
Abstract
OBJECTIVE Feature-based attention (FBA) helps one detect objects with a particular color, motion, or orientation. FBA works globally; the attended feature is enhanced at all positions in the visual field. This global property of FBA lets one use stimuli presented in the peripheral visual field to track attention in a task presented centrally. The present study explores the use of SSVEPs, generated by flicker presented peripherally, to track attention in a visual search task presented centrally. We evaluate whether this use of EEG to track FBA is robust enough to track attention when performing visual search within a dynamic 3D environment presented with a head-mounted display (HMD). APPROACH Observers first performed a visual search task presented in the central visual field within a stationary virtual environment. The purpose of this first experiment was to establish whether flicker presented peripherally can produce SSVEPs during HMD use. The second experiment placed observers in a dynamic virtual environment in which observers moved around a racetrack. Peripheral flicker was again used to track attention to the color of the target in the visual search task. MAIN RESULTS SSVEPs produced by flicker in the peripheral visual field are influenced strongly by attention in observers with stationary or moving viewpoints. Offline classification results show that one can track an observer's attended color, which suggests that these methods may provide a viable means for tracking FBA in a real-time task. SIGNIFICANCE Current FBA and brain-computer interface (BCI) studies primarily use foveal flicker to produce SSVEP responses. The present study's finding that one can use peripherally-presented flicker to track attention in dynamic virtual environments promises a more flexible and practical approach to BCIs based on FBA.
Collapse
Affiliation(s)
- Veronica C Chu
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92627, United States of America
| | | |
Collapse
|