1
|
Abstract
The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.
Collapse
Affiliation(s)
- Hongtu Zhu
- Department of Biostatistics, Department of Statistics, Department of Genetics, and Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA;
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tengfei Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhou F, Zhou H, Li T, Zhu H. Analysis of secondary phenotypes in multigroup association studies. Biometrics 2020; 76:606-618. [PMID: 31544963 PMCID: PMC7085961 DOI: 10.1111/biom.13157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/30/2019] [Indexed: 11/28/2022]
Abstract
Although case-control association studies have been widely used, they are insufficient for many complex diseases, such as Alzheimer's disease and breast cancer, since these diseases may have multiple subtypes with distinct morphologies and clinical implications. Many multigroup studies, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), have been undertaken by recruiting subjects based on their multiclass primary disease status, while extensive secondary outcomes have been collected. The aim of this paper is to develop a general regression framework for the analysis of secondary phenotypes collected in multigroup association studies. Our regression framework is built on a conditional model for the secondary outcome given the multigroup status and covariates and its relationship with the population regression of interest of the secondary outcome given the covariates. Then, we develop generalized estimation equations to estimate the parameters of interest. We use both simulations and a large-scale imaging genetic data analysis from the ADNI to evaluate the effect of the multigroup sampling scheme on standard genome-wide association analyses based on linear regression methods, while comparing it with our statistical methods that appropriately adjust for the multigroup sampling scheme. Data used in preparation of this article were obtained from the ADNI database.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
4
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimers Dement 2017; 13:e1-e85. [PMID: 28342697 DOI: 10.1016/j.jalz.2016.11.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS We used standard searches to find publications using ADNI data. RESULTS (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial design.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Zhu W, Yuan Y, Zhang J, Zhou F, Knickmeyer RC, Zhu H. Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study. Neuroimage 2016; 146:983-1002. [PMID: 27717770 DOI: 10.1016/j.neuroimage.2016.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme.
Collapse
Affiliation(s)
- Wensheng Zhu
- School of Mathematics & Statistics and KLAS, Northeast Normal University, Changchun 130024, China; Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ying Yuan
- Takeda Pharmaceuticals U.S.A., Inc., 300 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jingwen Zhang
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fan Zhou
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Knickmeyer
- Departments of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|