1
|
Li P, Gao X, Li C, Yi C, Huang W, Si Y, Li F, Cao Z, Tian Y, Xu P. Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:16181-16195. [PMID: 37463076 DOI: 10.1109/tnnls.2023.3292179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
Collapse
|
2
|
Wang J, Yang Z, Klugah-Brown B, Zhang T, Yang J, Yuan J, Biswal BB. The critical mediating roles of the middle temporal gyrus and ventrolateral prefrontal cortex in the dynamic processing of interpersonal emotion regulation. Neuroimage 2024; 300:120789. [PMID: 39159702 DOI: 10.1016/j.neuroimage.2024.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Interpersonal emotion regulation (IER) is a crucial ability for effectively recovering from negative emotions through social interaction. It has been emphasized that the empathy network, cognitive control network, and affective generation network sustain the deployment of IER. However, the temporal dynamics of functional connectivity among these networks of IER remains unclear. This study utilized IER task-fMRI and sliding window approach to examine both the stationary and dynamic functional connectivity (dFC) of IER. Fifty-five healthy participants were recruited for the present study. Through clustering analysis, four distinct brain states were identified in dFC. State 1 demonstrated situation modification stage of IER, with strong connectivity between affective generation and visual networks. State 2 exhibited pronounced connectivity between empathy network and both cognitive control and affective generation networks, reflecting the empathy stage of IER. Next, a 'top-down' pattern is observed between the connectivity of cognitive control and affective generation networks during the cognitive control stage of state 3. The affective response modulation stage of state 4 mainly involved connections between empathy and affective generation networks. Specifically, the degree centrality of the left middle temporal gyrus (MTG) mediated the association between one's IER tendency and the regulatory effects in state 2. The betweenness centrality of the left ventrolateral prefrontal cortex (VLPFC) mediated the association between one's IER efficiency and the regulatory effects in state 3. Altogether, these findings revealed that dynamic connectivity transitions among empathy, cognitive control, and affective generation networks, with the left VLPFC and MTG playing dominant roles, evident across the IER processing.
Collapse
Affiliation(s)
- Jiazheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenzhen Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Mental Health Education Center, Xihua University, Chengdu, China, 610039
| | - Jiemin Yang
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610041, China
| | - JiaJin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610041, China.
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
3
|
Liu Y, Yu S, Li J, Ma J, Wang F, Sun S, Yao D, Xu P, Zhang T. Brain state and dynamic transition patterns of motor imagery revealed by the bayes hidden markov model. Cogn Neurodyn 2024; 18:2455-2470. [PMID: 39555271 PMCID: PMC11564432 DOI: 10.1007/s11571-024-10099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 11/19/2024] Open
Abstract
Motor imagery (MI) is a high-level cognitive process that has been widely applied to brain-computer inference (BCI) and motor recovery. In practical applications, however, huge individual differences and unclear neural mechanisms have seriously hindered the application of MI and BCI systems. Thus, it is urgently needed to explore MI from a new perspective. Here, we applied a hidden Markov model (HMM) to explore the dynamic organization patterns of left- and right-hand MI tasks. Eleven distinct HMM states were identified based on MI-related EEG data. We found that these states can be divided into three metastates by clustering analysis, showing a highly organized structure. We also assessed the probability activation of each HMM state across time. The results showed that the state probability activation of task-evoked have similar trends to that of event-related desynchronization/synchronization (ERD/ERS). By comparing the differences in temporal features of HMM states between left- and right-hand MI, we found notable variations in fractional occupancy, mean life time, mean interval time, and transition probability matrix across stages and states. Interestingly, we found that HMM states activated in the left occipital lobe had higher occupancy during the left-hand MI task, and conversely, during the right-hand MI task, HMM states activated in the right occipital lobe had higher occupancy. Moreover, significant correlations were observed between BCI performance and features of HMM states. Taken together, our findings explored dynamic networks underlying the MI-related process and provided a complementary understanding of different MI tasks, which may contribute to improving the MI-BCI systems. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10099-9.
Collapse
Affiliation(s)
- Yunhong Liu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Shiqi Yu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Jia Li
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Jiwang Ma
- The Artificial Intelligence Group, Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Fei Wang
- School of Computer and Software, Chengdu Jincheng College, Chengdu, 610097 China
| | - Shan Sun
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Peng Xu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
- The Artificial Intelligence Group, Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
4
|
Park H, Jun SC. Connectivity study on resting-state EEG between motor imagery BCI-literate and BCI-illiterate groups. J Neural Eng 2024; 21:046042. [PMID: 38986469 DOI: 10.1088/1741-2552/ad6187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.Although motor imagery-based brain-computer interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity's significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state electroencephalography (EEG) network differs between BCI-literacy and -illiteracy.Approach.To address the issues above, we analyzed three large public EEG datasets using three functional connectivity and three effective connectivity metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for multivariate Granger causality. The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found.Significance.Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction's accuracy.
Collapse
Affiliation(s)
- Hanjin Park
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sung Chan Jun
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Li F, Zhang S, Jiang L, Duan K, Feng R, Zhang Y, Zhang G, Zhang Y, Li P, Yao D, Xie J, Xu W, Xu P. Recognition of autism spectrum disorder in children based on electroencephalogram network topology. Cogn Neurodyn 2024; 18:1033-1045. [PMID: 38826670 PMCID: PMC11143134 DOI: 10.1007/s11571-023-09962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/04/2024] Open
Abstract
Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.
Collapse
Affiliation(s)
- Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shu Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Lin Jiang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Keyi Duan
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Rui Feng
- Rainbow Biotechnology Co., Ltd., Chengdu, 610041 China
| | - Yingli Zhang
- Rainbow Biotechnology Co., Ltd., Chengdu, 610041 China
| | - Gao Zhang
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Department of Pathology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Yangsong Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, 621010 China
| | - Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, 610031 China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041 China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
- Research Unit of NeuroInformation, 2019RU035, Chinese Academy of Medical Sciences, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610042 China
| |
Collapse
|
6
|
Yu S, Wang Z, Wang F, Chen K, Yao D, Xu P, Zhang Y, Wang H, Zhang T. Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model. Cereb Cortex 2024; 34:bhad511. [PMID: 38183186 DOI: 10.1093/cercor/bhad511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Motor imagery (MI) is a cognitive process wherein an individual mentally rehearses a specific movement without physically executing it. Recently, MI-based brain-computer interface (BCI) has attracted widespread attention. However, accurate decoding of MI and understanding of neural mechanisms still face huge challenges. These seriously hinder the clinical application and development of BCI systems based on MI. Thus, it is very necessary to develop new methods to decode MI tasks. In this work, we propose a multi-branch convolutional neural network (MBCNN) with a temporal convolutional network (TCN), an end-to-end deep learning framework to decode multi-class MI tasks. We first used MBCNN to capture the MI electroencephalography signals information on temporal and spectral domains through different convolutional kernels. Then, we introduce TCN to extract more discriminative features. The within-subject cross-session strategy is used to validate the classification performance on the dataset of BCI Competition IV-2a. The results showed that we achieved 75.08% average accuracy for 4-class MI task classification, outperforming several state-of-the-art approaches. The proposed MBCNN-TCN-Net framework successfully captures discriminative features and decodes MI tasks effectively, improving the performance of MI-BCIs. Our findings could provide significant potential for improving the clinical application and development of MI-based BCI systems.
Collapse
Affiliation(s)
- Shiqi Yu
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Mental Health Education Center and School of Science, Xihua University, Chengdu 610039, China
| | - Zedong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- School of Computer and Software, Chengdu Jincheng College, Chengdu 610097, China
| | - Kai Chen
- Mental Health Education Center and School of Science, Xihua University, Chengdu 610039, China
| | - Dezhong Yao
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hesong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Mental Health Education Center and School of Science, Xihua University, Chengdu 610039, China
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
7
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
8
|
Li F, Wang G, Jiang L, Yao D, Xu P, Ma X, Dong D, He B. Disease-specific resting-state EEG network variations in schizophrenia revealed by the contrastive machine learning. Brain Res Bull 2023; 202:110744. [PMID: 37591404 DOI: 10.1016/j.brainresbull.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demonstrated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while the original ones illustrated no differences. And only the classification by adopting the reconstructed network metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings consistently verified the validity of the newly proposed framework for the contrasts among the three groups and provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain deficits in SCZ, as well as facilitating the diagnosis of SCZ.
Collapse
Affiliation(s)
- Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Guangying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China; Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Xuntai Ma
- Clinical Medical College of Chengdu Medical College, Chengdu 610500, China; The First Affiliated Hospital of Chengdu Medical College, Chengdu 610599, China.
| | - Debo Dong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany.
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
9
|
Li Y, Yang Q, Liu Y, Wang R, Zheng Y, Zhang Y, Si Y, Jiang L, Chen B, Peng Y, Wan F, Yu J, Yao D, Li F, He B, Xu P. Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game. J Neural Eng 2023; 20:056003. [PMID: 37659391 DOI: 10.1088/1741-2552/acf61e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Objective. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer's decision-making is a crucial issue. Yet the neural substrate of the proposer's decision behavior, especially from the resting-state network perspective, remains unclear.Approach. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers' unfair offer rates in the ultimatum game.Main results.The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.Significance. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.
Collapse
Affiliation(s)
- Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Qian Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yuxin Liu
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Rui Wang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yutong Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yubo Zhang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yajing Si
- School of Psychology, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Baodan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, People's Republic of China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing 400715, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, People's Republic of China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, People's Republic of China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, People's Republic of China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, People's Republic of China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, People's Republic of China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, People's Republic of China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
10
|
Zhang X, Lu B, Chen C, Yang L, Chen W, Yao D, Hou J, Qiu J, Li F, Xu P. The correlation between upper body grip strength and resting-state EEG network. Med Biol Eng Comput 2023:10.1007/s11517-023-02865-4. [PMID: 37338738 DOI: 10.1007/s11517-023-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Current research in the field of neuroscience primarily focuses on the analysis of electroencephalogram (EEG) activities associated with movement within the central nervous system. However, there is a dearth of studies investigating the impact of prolonged individual strength training on the resting state of the brain. Therefore, it is crucial to examine the correlation between upper body grip strength and resting-state EEG networks. In this study, coherence analysis was utilized to construct resting-state EEG networks using the available datasets. A multiple linear regression model was established to examine the correlation between the brain network properties of individuals and their maximum voluntary contraction (MVC) during gripping tasks. The model was used to predict individual MVC. The beta and gamma frequency bands showed significant correlation between RSN connectivity and MVC (p < 0.05), particularly in left hemisphere frontoparietal and fronto-occipital connectivity. RSN properties were consistently correlated with MVC in both bands, with correlation coefficients greater than 0.60 (p < 0.01). Additionally, predicted MVC positively correlated with actual MVC, with a coefficient of 0.70 and root mean square error of 5.67 (p < 0.01). The results show that the resting-state EEG network is closely related to upper body grip strength, which can indirectly reflect an individual's muscle strength through the resting brain network.
Collapse
Affiliation(s)
- Xiabing Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunli Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wanjun Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 611731, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing Qiu
- Robotics Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China.
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 611731, China.
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, Sichuan, China.
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 611731, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
11
|
Wang J, Dong W, Li Y, Wydell TN, Quan W, Tian J, Song Y, Jiang L, Li F, Yi C, Zhang Y, Yao D, Xu P. Discrimination of auditory verbal hallucination in schizophrenia based on EEG brain networks. Psychiatry Res Neuroimaging 2023; 331:111632. [PMID: 36958075 DOI: 10.1016/j.pscychresns.2023.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Auditory verbal hallucinations (AVH) are a core positive symptom of schizophrenia and are regarded as a consequence of the functional breakdown in the related sensory process. Yet, the potential mechanism of AVH is still lacking. In the present study, we explored the difference between AVHs (n = 23) and non-AVHs (n = 19) in schizophrenia and healthy controls (n = 29) by using multidimensional electroencephalograms data during an auditory oddball task. Compared to healthy controls, both AVH and non-AVH groups showed reduced P300 amplitudes. Additionally, the results from brain networks analysis revealed that AVH patients showed reduced left frontal to posterior parietal/temporal connectivity compared to non-AVH patients. Moreover, using the fused network properties of both delta and theta bands as features for in-depth learning made it possible to identify the AVH from non-AVH patients at an accuracy of 80.95%. The left frontal-parietal/temporal networks seen in the auditory oddball paradigm might be underlying biomarkers of AVH in schizophrenia. This study demonstrated for the first time the functional breakdown of the auditory processing pathway in the AVH patients, leading to a better understanding of the atypical brain network of the AVH patients.
Collapse
Affiliation(s)
- Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Taeko N Wydell
- Centre for Cognitive Neuroscience, Brunel University London, Uxbridge, UK
| | - Wenxiang Quan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ju Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanping Song
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| |
Collapse
|
12
|
Kurkin S, Gordleeva S, Savosenkov A, Grigorev N, Smirnov N, Grubov VV, Udoratina A, Maksimenko V, Kazantsev V, Hramov AE. Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Increases Posterior Theta Rhythm and Reduces Latency of Motor Imagery. SENSORS (BASEL, SWITZERLAND) 2023; 23:4661. [PMID: 37430576 DOI: 10.3390/s23104661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023]
Abstract
Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.
Collapse
Affiliation(s)
- Semen Kurkin
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Susanna Gordleeva
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Andrey Savosenkov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Grigorev
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Smirnov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Vadim V Grubov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Anna Udoratina
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Vladimir Maksimenko
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Victor Kazantsev
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Alexander E Hramov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| |
Collapse
|
13
|
Liu X, Zhang W, Li W, Zhang S, Lv P, Yin Y. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial. BMC Neurol 2023; 23:136. [PMID: 37003976 PMCID: PMC10064693 DOI: 10.1186/s12883-023-03150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Seeking positive and comprehensive rehabilitation methods after stroke is an urgent problem to be solved, which is very important to improve the dysfunction of stroke. The aim of this study was to investigate the effects of motor imagery-based brain-computer interface training (MI-BCI) on upper limb function and attention in stroke patients with hemiplegia. METHODS Sixty stroke patients with impairment of upper extremity function and decreased attention were randomly assigned to the control group (CR group) or the experimental group (BCI group) in a 1:1 ratio. Patients in the CR group received conventional rehabilitation. Patients in the BCI group received 20 min of MI-BCI training five times a week for 3 weeks (15 sessions) in addition to conventional rehabilitation. The primary outcome measures were the changes in Fugl-Meyer Motor Function Assessment of Upper Extremities (FMA-UE) and Attention Network Test (ANT) from baseline to 3 weeks. RESULTS About 93% of the patients completed the allocated training. Compared with the CR group, among those in the BCI group, FMA-UE was increased by 8.0 points (95%CI, 5.0 to 10.0; P < 0.001). Alert network response time (32.4ms; 95%CI, 58.4 to 85.6; P < 0.001), orienting network response (5.6ms; 95%CI, 29.8 to 55.8; P = 0.010), and corrects number (8.0; 95%CI, 17.0 to 28.0; P < 0.001) also increased in the BCI group compared with the CR group. Additionally, the executive control network response time (- 105.9ms; 95%CI, - 68.3 to - 23.6; P = 0.002), the total average response time (- 244.8ms; 95%CI, - 155.8 to - 66.2; P = 0.002), and total time (- 122.0ms; 95%CI, - 80.0 to - 35.0; P = 0.001) were reduced in the BCI group compared with the CR group. CONCLUSION MI-BCI combined with conventional rehabilitation training could better enhance upper limb motor function and attention in stroke patients. This training method may be feasible and suitable for individuals with stroke. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry with Portal Number ChiCTR2100050430(27/08/2021).
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Wendong Zhang
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Shaohua Zhang
- Department of Medical, The Eighth People's Hospital of Hebei Province, Shijiazhuang, 050000, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050000, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Yu Yin
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050000, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China.
| |
Collapse
|
14
|
Ma HL, Zeng TA, Jiang L, Zhang M, Li H, Su R, Wang ZX, Chen DM, Xu M, Xie WT, Dang P, Bu XO, Zhang T, Wang TZ. Altered resting-state network connectivity patterns for predicting attentional function in deaf individuals: An EEG study. Hear Res 2023; 429:108696. [PMID: 36669260 DOI: 10.1016/j.heares.2023.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
Multiple aspects of brain development are influenced by early sensory loss such as deafness. Despite growing evidence of changes in attentional functions for prelingual profoundly deaf, the brain mechanisms underlying these attentional changes remain unclear. This study investigated the relationships between differential attention and the resting-state brain network difference in deaf individuals from the perspective of brain network connectivity. We recruited 36 deaf individuals and 34 healthy controls (HC). We recorded each participant's resting-state electroencephalogram (EEG) and the event-related potential (ERP) data from the Attention Network Test (ANT). The coherence (COH) method and graph theory were used to build brain networks and analyze network connectivity. First, the ERPs of analysis in task states were investigated. Then, we correlated the topological properties of the network functional connectivity with the ERPs. The results revealed a significant correlation between frontal-occipital connection in the resting state and the amplitude of alert N1 amplitude in the alpha band. Specifically, clustering coefficients and global and local efficiency correlate negatively with alert N1 amplitude, whereas the characteristic path length positively correlates with alert N1 amplitude. In addition, deaf individuals exhibited weaker frontal-occipital connections compared to the HC group. In executive control, the deaf group had longer reaction times and larger P3 amplitudes. However, the orienting function did not significantly differ from the HC group. Finally, the alert N1 amplitude in the ANT task for deaf individuals was predicted using a multiple linear regression model based on resting-state EEG network properties. Our results suggest that deafness affects the performance of alerting and executive control while orienting functions develop similarly to hearing individuals. Furthermore, weakened frontal-occipital connections in the deaf brain are a fundamental cause of altered alerting functions in the deaf. These results reveal important effects of brain networks on attentional function from the perspective of brain connections and provide potential physiological biomarkers to predicting attention.
Collapse
Affiliation(s)
- Hai-Lin Ma
- Faculty of Education, Shaanxi Normal University, No.199, Chang'an Road, Yanta District, Xi 'an, Shaanxi 710062, China; Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Tong-Ao Zeng
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Lin Jiang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mei Zhang
- College of Special Education, Leshan Normal University, Leshan 614000, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Zhi-Xin Wang
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China; Department of Psychology, Shandong Normal University, No. 88East Wenhua Road, Jinan, Shandong 250014, China
| | - Dong-Mei Chen
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Meng Xu
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Wen-Ting Xie
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Peng Dang
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Xiao-Ou Bu
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China; Faculty of Education, East China Normal University, Shanghai 200062, China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu 610039, China,.
| | - Ting-Zhao Wang
- Faculty of Education, Shaanxi Normal University, No.199, Chang'an Road, Yanta District, Xi 'an, Shaanxi 710062, China.
| |
Collapse
|
15
|
Martel M, Glover S. TMS over dorsolateral prefrontal cortex affects the timing of motor imagery but not overt action: Further support for the motor-cognitive model. Behav Brain Res 2023; 437:114125. [PMID: 36167217 DOI: 10.1016/j.bbr.2022.114125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
The Motor-Cognitive model suggests a functional dissociation between motor imagery and overt action, in contrast to the Functional Equivalence view of common processes between the two behaviours. According to the Motor-Cognitive model, motor imagery differs from overt action primarily through the use of executive resources to monitor and elaborate a motor image during execution, which can result in a lack of correspondence between motor imagery and its overt action counterpart. The present study examined the importance of executive resources in motor imagery by using TMS to impair the function of the dorsolateral prefrontal cortex while measuring the time to complete imagined versus overt actions. In two experiments, TMS over the dorsolateral prefrontal cortex slowed motor imagery but did not affect overt actions. TMS over the same region also interfered with performance of a mental calculation task, though it did not reliably affect less demanding cognitive tasks also thought to rely on executive functions. Taken together, these results were consistent with the Motor-Cognitive model but not with the idea of functional equivalence. The implications of these results for the theoretical understanding of motor imagery, and potential applications of the Motor-Cognitive model to the use of motor imagery in training and rehabilitation, are discussed.
Collapse
Affiliation(s)
- Marie Martel
- Department of Psychology, Royal Holloway University of London, UK.
| | - Scott Glover
- Department of Psychology, Royal Holloway University of London, UK
| |
Collapse
|
16
|
Global Functional Connectivity at Rest Is Associated with Attention: An Arterial Spin Labeling Study. Brain Sci 2023; 13:brainsci13020228. [PMID: 36831771 PMCID: PMC9954008 DOI: 10.3390/brainsci13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Neural markers of attention, including those frequently linked to the event-related potential P3 (P300) or P3b component, vary widely within and across participants. Understanding the neural mechanisms of attention that contribute to the P3 is crucial for better understanding attention-related brain disorders. All ten participants were scanned twice with a resting-state PCASL perfusion MRI and an ERP with a visual oddball task to measure brain resting-state functional connectivity (rsFC) and P3 parameters (P3 amplitudes and P3 latencies). Global rsFC (average rsFC across the entire brain) was associated with both P3 amplitudes (r = 0.57, p = 0.011) and P3 onset latencies (r = -0.56, p = 0.012). The observed P3 parameters were correlated with predicted P3 amplitude from the global rsFC (amplitude: r = +0.48, p = 0.037; latency: r = +0.40, p = 0.088) but not correlated with the rsFC over the most significant individual edge. P3 onset latency was primarily related to long-range connections between the prefrontal and parietal/limbic regions, while P3 amplitudes were related to connections between prefrontal and parietal/occipital, between sensorimotor and subcortical, and between limbic/subcortical and parietal/occipital regions. These results demonstrated the power of resting-state PCASL and P3 correlation with brain global functional connectivity.
Collapse
|
17
|
Sawai S, Fujikawa S, Ushio R, Tamura K, Ohsumi C, Yamamoto R, Murata S, Nakano H. Repetitive Peripheral Magnetic Stimulation Combined with Motor Imagery Changes Resting-State EEG Activity: A Randomized Controlled Trial. Brain Sci 2022; 12:1548. [PMID: 36421872 PMCID: PMC9688706 DOI: 10.3390/brainsci12111548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 01/03/2025] Open
Abstract
Repetitive peripheral magnetic stimulation is a novel non-invasive technique for applying repetitive magnetic stimulation to the peripheral nerves and muscles. Contrarily, a person imagines that he/she is exercising during motor imagery. Resting-state electroencephalography can evaluate the ability of motor imagery; however, the effects of motor imagery and repetitive peripheral magnetic stimulation on resting-state electroencephalography are unknown. We examined the effects of motor imagery and repetitive peripheral magnetic stimulation on the vividness of motor imagery and resting-state electroencephalography. The participants were divided into a motor imagery group and motor imagery and repetitive peripheral magnetic stimulation group. They performed 60 motor imagery tasks involving wrist dorsiflexion movement. In the motor imagery and repetitive peripheral magnetic stimulation group, we applied repetitive peripheral magnetic stimulation to the extensor carpi radialis longus muscle during motor imagery. We measured the vividness of motor imagery and resting-state electroencephalography before and after the task. Both groups displayed a significant increase in the vividness of motor imagery. The motor imagery and repetitive peripheral magnetic stimulation group exhibited increased β activity in the anterior cingulate cortex by source localization for electroencephalography. Hence, combined motor imagery and repetitive peripheral magnetic stimulation changes the resting-state electroencephalography activity and may promote motor imagery.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 605-0981, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Ryu Ushio
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Kosuke Tamura
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Chihiro Ohsumi
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Ryosuke Yamamoto
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Osaka 575-8511, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| |
Collapse
|
18
|
Peng Y, Huang Y, Chen B, He M, Jiang L, Li Y, Huang X, Pei C, Zhang S, Li C, Zhang X, Zhang T, Zheng Y, Yao D, Li F, Xu P. Electroencephalographic Network Topologies Predict Antidepressant Responses in Patients with Major Depressive Disorder. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2577-2588. [PMID: 36044502 DOI: 10.1109/tnsre.2022.3203073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Medication therapy seems to be an effective treatment for major depressive disorder (MDD). However, although the efficacies of various medicines are equal or similar on average, they vary widely among individuals. Therefore, an understanding of methods for the timely evaluation of short-term therapeutic response and prediction of symptom improvement after a specific course of medication at the individual level at the initial stage of treatment is very important. In our present study, we sought to identify a neurobiological signature of the response to short-term antidepressant treatment. Related brain network analysis was applied in resting-state electroencephalogram (EEG) datasets from patients with MDD. The corresponding EEG networks were constructed accordingly and then quantitatively measured to predict the efficacy after eight weeks of medication, as well as to distinguish the therapeutic responders from non-responders. The results of our present study revealed that the corresponding resting-state EEG networks became significantly weaker after one week of treatment, and the eventual medication efficacy was reliably predicted using the changes in those network properties within the one-week medication regimen. Moreover, the corresponding resting-state networks at baseline were also proven to precisely distinguish those responders from other individuals with an accuracy of 96.67% when using the spatial network topologies as the discriminative features. These findings consistently provide a deeper neurobiological understanding of antidepressant treatment and a reliable and quantitative approach for personalized treatment of MDD.
Collapse
|
19
|
Kasahara K, DaSalla CS, Honda M, Hanakawa T. Basal ganglia-cortical connectivity underlies self-regulation of brain oscillations in humans. Commun Biol 2022; 5:712. [PMID: 35842523 PMCID: PMC9288463 DOI: 10.1038/s42003-022-03665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-computer interfaces provide an artificial link by which the brain can directly interact with the environment. To achieve fine brain-computer interface control, participants must modulate the patterns of the cortical oscillations generated from the motor and somatosensory cortices. However, it remains unclear how humans regulate cortical oscillations, the controllability of which substantially varies across individuals. Here, we performed simultaneous electroencephalography (to assess brain-computer interface control) and functional magnetic resonance imaging (to measure brain activity) in healthy participants. Self-regulation of cortical oscillations induced activity in the basal ganglia-cortical network and the neurofeedback control network. Successful self-regulation correlated with striatal activity in the basal ganglia-cortical network, through which patterns of cortical oscillations were likely modulated. Moreover, basal ganglia-cortical network and neurofeedback control network connectivity correlated with strong and weak self-regulation, respectively. The findings indicate that the basal ganglia-cortical network is important for self-regulation, the understanding of which should help advance brain-computer interface technology. Simultaneous fMRI-EEG in 26 healthy participants indicate that the basal ganglia cortical network and the neurofeedback control network play different roles in self-regulation, providing further insight into the neural correlates for brain-machine interface control and feedback.
Collapse
Affiliation(s)
- Kazumi Kasahara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8566, Japan
| | - Charles S DaSalla
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Manabu Honda
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan. .,Department of Functional Brain Research, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan. .,Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Xu F, Wang Y, Li H, Yu X, Wang C, Liu M, Jiang L, Feng C, Li J, Wang D, Yan Z, Zhang Y, Leng J. Time-Varying Effective Connectivity for Describing the Dynamic Brain Networks of Post-stroke Rehabilitation. Front Aging Neurosci 2022; 14:911513. [PMID: 35686023 PMCID: PMC9171495 DOI: 10.3389/fnagi.2022.911513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hemiplegia is a common motor dysfunction caused by a stroke. However, the dynamic network mechanism of brain processing information in post-stroke hemiplegic patients has not been revealed when performing motor imagery (MI) tasks. We acquire electroencephalography (EEG) data from healthy subjects and post-stroke hemiplegic patients and use the Fugl-Meyer assessment (FMA) to assess the degree of motor function damage in stroke patients. Time-varying MI networks are constructed using the adaptive directed transfer function (ADTF) method to explore the dynamic network mechanism of MI in post-stroke hemiplegic patients. Finally, correlation analysis has been conducted to study potential relationships between global efficiency and FMA scores. The performance of our proposed method has shown that the brain network pattern of stroke patients does not significantly change from laterality to bilateral symmetry when performing MI recognition. The main change is that the contralateral motor areas of the brain damage and the effective connection between the frontal lobe and the non-motor areas are enhanced, to compensate for motor dysfunction in stroke patients. We also find that there is a correlation between FMA scores and global efficiency. These findings help us better understand the dynamic brain network of patients with post-stroke when processing MI information. The network properties may provide a reliable biomarker for the objective evaluation of the functional rehabilitation diagnosis of stroke patients.
Collapse
Affiliation(s)
- Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuandong Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Han Li
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Yu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chongfeng Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Feng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianfei Li
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dezheng Wang
- The Department of Physical Medicine and Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiguo Yan
- School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Zhang
- The Department of Physical Medicine and Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
21
|
Li M, Zhang N. A dynamic directed transfer function for brain functional network-based feature extraction. Brain Inform 2022; 9:7. [PMID: 35304652 PMCID: PMC8933605 DOI: 10.1186/s40708-022-00154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/19/2022] [Indexed: 11/29/2024] Open
Abstract
Directed transfer function (DTF) is good at characterizing the pairwise interactions from whole brain network and has been applied in discrimination of motor imagery (MI) tasks. Considering the fact that MI electroencephalogram signals are more non-stationary in frequency domain than in time domain, and the activated intensities of α band (8–13 Hz) and β band [13–30 Hz, with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{1}$$\end{document}β1(13–21 Hz) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{2}$$\end{document}β2(21–30 Hz) included] have considerable differences for different subjects, a dynamic DTF (DDTF) with variable model order and frequency band is proposed to construct the brain functional networks (BFNs), whose information flows and outflows are further calculated as network features and evaluated by support vector machine. Extensive experiments are conducted based on a public BCI competition dataset and a real-world dataset, the highest recognition rate achieve 100% and 86%, respectively. The experimental results suggest that DDTF can reflect the dynamic evolution of BFN, the best subject-based DDTF appears in one of four frequency sub-bands (α, β, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta_{1} ,$$\end{document}β1,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${ }\beta_{2}$$\end{document}β2) for discrimination of MI tasks and is much more related to the current and previous states. Besides, DDTF is superior compared to granger causality-based and traditional feature extraction methods, the t-test and Kappa values show its statistical significance and high consistency as well.
Collapse
Affiliation(s)
- Mingai Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China.,Engineering Research Center of Digital Community, Ministry of Education, Beijing, 100124, China
| | - Na Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
22
|
Li P, Li C, Bore JC, Si Y, Li F, Cao Z, Zhang Y, Wang G, Zhang Z, Yao D, Xu P. L1-norm based time-varying brain neural network and its application to dynamic analysis for motor imagery. J Neural Eng 2022; 19. [PMID: 35234668 DOI: 10.1088/1741-2552/ac59a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE EEG-based motor imagery (MI) brain-computer interface offers a promising way to improve the efficiency of motor rehabilitation and motor skill learning. In recent years, the power of dynamic network analysis for MI classification has been proved. In fact, its usability mainly depends on the accurate estimation of brain connection. However, traditional dynamic network estimation strategies such as adaptive directed transfer function (ADTF) are designed in the L2-norm. Usually, they estimate a series of pseudo connections caused by outliers, which results in biased features and further limits its online application. Thus, how to accurately infer dynamic causal relationship under outlier influence is urgent. APPROACH In this work, we proposed a novel ADTF, which solves the dynamic system in the L1-norm space (L1-ADTF), so as to restrict the outlier influence. To enhance its convergence, we designed an iteration strategy with the alternating direction method of multipliers (ADMM), which could be used for the solution of the dynamic state-space model restricted in the L1-norm space. Furthermore, we compared L1-ADTF to traditional ADTF and its dual extension across both simulation and real EEG experiments. MAIN RESULTS A quantitative comparison between L1-ADTF and other ADTFs in simulation studies demonstrates that fewer bias errors and more desirable dynamic state transformation patterns can be captured by the L1-ADTF. Application to real MI EEG datasets seriously noised by ocular artifacts also reveals the efficiency of the proposed L1-ADTF approach to extract the time-varying brain neural network patterns, even when more complex noises are involved. SIGNIFICANCE The L1-ADTF may not only be capable of tracking time-varying brain network state drifts robustly but may also be useful in solving a wide range of dynamic systems such as trajectory tracking problems and dynamic neural networks.
Collapse
Affiliation(s)
- Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, NO.2,Chongwen Road,Nan'an District, Chongqing, China, Chongqing, 400065, CHINA
| | - Cunbo Li
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Joyce Chelangat Bore
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, No. 601, Jinsui Avenue, Hongqi District, Xinxiang, Henan, 453003, CHINA
| | - Fali Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zehong Cao
- University of South Australia, Adelaide, SA 5095, Australia, Adelaide, South Australia, 5001, AUSTRALIA
| | - Yangsong Zhang
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang,Sichuan, P.R.China, Mianyang, 621010, CHINA
| | - Gang Wang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zhijun Zhang
- South China University of Technology, 777 Xingye Avenue East, Panyu District, Guangzhou, Guangzhou, 510640, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| |
Collapse
|
23
|
Poststroke Cognitive Impairment Research Progress on Application of Brain-Computer Interface. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9935192. [PMID: 35252458 PMCID: PMC8896931 DOI: 10.1155/2022/9935192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Brain-computer interfaces (BCIs), a new type of rehabilitation technology, pick up nerve cell signals, identify and classify their activities, and convert them into computer-recognized instructions. This technique has been widely used in the rehabilitation of stroke patients in recent years and appears to promote motor function recovery after stroke. At present, the application of BCI in poststroke cognitive impairment is increasing, which is a common complication that also affects the rehabilitation process. This paper reviews the promise and potential drawbacks of using BCI to treat poststroke cognitive impairment, providing a solid theoretical basis for the application of BCI in this area.
Collapse
|
24
|
A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 2022; 16:17-41. [PMID: 35126769 PMCID: PMC8807775 DOI: 10.1007/s11571-021-09689-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 02/03/2023] Open
Abstract
Brain network analysis is one efficient tool in exploring human brain diseases and can differentiate the alterations from comparative networks. The alterations account for time, mental states, tasks, individuals, and so forth. Furthermore, the changes determine the segregation and integration of functional networks that lead to network reorganization (or reconfiguration) to extend the neuroplasticity of the brain. Exploring related brain networks should be of interest that may provide roadmaps for brain research and clinical diagnosis. Recent electroencephalogram (EEG) studies have revealed the secrets of the brain networks and diseases (or disorders) within and between subjects and have provided instructive and promising suggestions and methods. This review summarized the corresponding algorithms that had been used to construct functional or effective networks on the scalp and cerebral cortex. We reviewed EEG network analysis that unveils more cognitive functions and neural disorders of the human and then explored the relationship between brain science and artificial intelligence which may fuel each other to accelerate their advances, and also discussed some innovations and future challenges in the end.
Collapse
|
25
|
Maya-Piedrahita MC, Herrera-Gomez PM, Berrío-Mesa L, Cárdenas-Peña DA, Orozco-Gutierrez AA. Supported Diagnosis of Attention Deficit and Hyperactivity Disorder from EEG Based on Interpretable Kernels for Hidden Markov Models. Int J Neural Syst 2022; 32:2250008. [PMID: 34996341 DOI: 10.1142/s0129065722500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As a neurodevelopmental pathology, Attention Deficit Hyperactivity Disorder (ADHD) mainly arises during childhood. Persistent patterns of generalized inattention, impulsivity, or hyperactivity characterize ADHD that may persist into adulthood. The conventional diagnosis relies on clinical observational processes yielding high rates of overdiagnosis due to varying interpretations among specialists or missing information. Although several studies have designed objective behavioral features to overcome such an issue, they lack significance. Despite electroencephalography (EEG) analyses extracting alternative biomarkers using signal processing techniques, the nonlinearity and nonstationarity of EEG signals restrain performance and generalization of hand-crafted features. This work proposes a methodology to support ADHD diagnosis by characterizing EEG signals from hidden Markov models (HMM), classifying subjects based on similarity measures for probability functions, and spatially interpreting the results using graphic embeddings of stochastic dynamic models. The methodology learns a single HMM for EEG signal from each patient, so favoring the inter-subject variability. Then, the Probability Product Kernel, specifically developed for assessing the similarity between HMMs, fed a support vector machine that classifies subjects according to their stochastic dynamics. Lastly, the kernel variant of Principal Component Analysis provided a means to visualize the EEG transitions in a two-dimensional space, evidencing dynamic differences between ADHD and Healthy Control children. From the electrophysiological perspective, we recorded EEG under the Stop Signal Task modified with reward levels, which considers cognitive features of interest as insufficient motivational circuits recruitment. The methodology compares the supported diagnosis in two EEG channel setups (whole channel set and channels of interest in frontocentral area) and four frequency bands (Theta, Alpha, Beta rhythms, and a wideband). Results evidence an accuracy rate of 97.0% in the Beta band and in the channels where previous works found error-related negativity events. Such accuracy rate strongly supports the dual pathway hypothesis and motivational deficit concerning the pathophysiology of ADHD. It also demonstrates the utility of joining inhibitory and motivational paradigms with dynamic EEG analysis into a noninvasive and affordable diagnostic tool for ADHD patients.
Collapse
Affiliation(s)
- M C Maya-Piedrahita
- Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| | - P M Herrera-Gomez
- Research Group Psiquiatría Neurociencias y Comunidad, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| | - L Berrío-Mesa
- Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| | - D A Cárdenas-Peña
- Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| | - A A Orozco-Gutierrez
- Automatics Research Group, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
26
|
Chang Y, He C, Tsai BY, Ko LW. Multi-Parameter Physiological State Monitoring in Target Detection Under Real-World Settings. Front Hum Neurosci 2021; 15:785562. [PMID: 35002658 PMCID: PMC8727696 DOI: 10.3389/fnhum.2021.785562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Mental state changes induced by stimuli under experimental settings or by daily events in real life affect task performance and are entwined with physical and mental health. In this study, we developed a physiological state indicator with five parameters that reflect the subject's real-time physiological states based on online EEG signal processing. These five parameters are attention, fatigue, stress, and the brain activity shifts of the left and right hemispheres. We designed a target detection experiment modified by a cognitive attention network test for validating the effectiveness of the proposed indicator, as such conditions would better approximate a real chaotic environment. Results demonstrated that attention levels while performing the target detection task were significantly higher than during rest periods, but also exhibited a decay over time. In contrast, the fatigue level increased gradually and plateaued by the third rest period. Similar to attention levels, the stress level decreased as the experiment proceeded. These parameters are therefore shown to be highly correlated to different stages of the experiment, suggesting their usage as primary factors in passive brain-computer interfaces (BCI). In addition, the left and right brain activity indexes reveal the EEG neural modulations of the corresponding hemispheres, which set a feasible reference of activation for an active BCI control system, such as one executing motor imagery tasks. The proposed indicator is applicable to potential passive and active BCI applications for monitoring the subject's physiological state change in real-time, along with providing a means of evaluating the associated signal quality to enhance the BCI performance.
Collapse
Affiliation(s)
- Yang Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Congying He
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Bo-Yu Tsai
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Wei Ko
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
27
|
Brain Symmetry Analysis during the Use of a BCI Based on Motor Imagery for the Control of a Lower-Limb Exoskeleton. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain–Computer Interfaces (BCI) are systems that allow external devices to be controlled by means of brain activity. There are different such technologies, and electroencephalography (EEG) is an example. One of the most common EEG control methods is based on detecting changes in sensorimotor rhythms (SMRs) during motor imagery (MI). The aim of this study was to assess the laterality of cortical function when performing MI of the lower limb. Brain signals from five subjects were analyzed in two conditions, during exoskeleton-assisted gait and while static. Three different EEG electrode configurations were evaluated: covering both hemispheres, covering the non-dominant hemisphere and covering the dominant hemisphere. In addition, the evolution of performance and laterality with practice was assessed. Although sightly superior results were achieved with information from all electrodes, differences between electrode configurations were not statistically significant. Regarding the evolution during the experimental sessions, the performance of the BCI generally evolved positively the higher the experience was.
Collapse
|
28
|
Si Y, Li F, Li F, Tu J, Yi C, Tao Q, Zhang X, Pei C, Gao S, Yao D, Xu P. The Growing From Adolescence to Adulthood Influences the Decision Strategy to Unfair Situations. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2981512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Cattai T, Colonnese S, Corsi MC, Bassett DS, Scarano G, De Vico Fallani F. Phase/Amplitude Synchronization of Brain Signals During Motor Imagery BCI Tasks. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1168-1177. [PMID: 34115589 DOI: 10.1109/tnsre.2021.3088637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the last decade, functional connectivity (FC) has been increasingly adopted based on its ability to capture statistical dependencies between multivariate brain signals. However, the role of FC in the context of brain-computer interface applications is still poorly understood. To address this gap in knowledge, we considered a group of 20 healthy subjects during an EEG-based hand motor imagery (MI) task. We studied two well-established FC estimators, i.e. spectral- and imaginary-coherence, and we investigated how they were modulated by the MI task. We characterized the resulting FC networks by extracting the strength of connectivity of each EEG sensor and we compared the discriminant power with respect to standard power spectrum features. At the group level, results showed that while spectral-coherence based network features were increasing in the sensorimotor areas, those based on imaginary-coherence were significantly decreasing. We demonstrated that this opposite, but complementary, behavior was respectively determined by the increase in amplitude and phase synchronization between the brain signals. At the individual level, we eventually assessed the potential of these network connectivity features in a simple off-line classification scenario. Taken together, our results provide fresh insights into the oscillatory mechanisms subserving brain network changes during MI and offer new perspectives to improve BCI performance.
Collapse
|
30
|
Neural Correlates of Motor Recovery after Robot-Assisted Training in Chronic Stroke: A Multimodal Neuroimaging Study. Neural Plast 2021; 2021:8866613. [PMID: 34211549 PMCID: PMC8208881 DOI: 10.1155/2021/8866613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1) regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional supramarginal gyrus and superior temporal gyrus. Pearson's correlations revealed that the interhemispheric asymmetry change significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.
Collapse
|
31
|
Li F, Yi C, Liao Y, Jiang Y, Si Y, Song L, Zhang T, Yao D, Zhang Y, Cao Z, Xu P. Reconfiguration of Brain Network Between Resting State and P300 Task. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2965135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Song X, Zeng Y, Tong L, Shu J, Li H, Yan B. Neural mechanism for dynamic distractor processing during video target detection: Insights from time-varying networks in the cerebral cortex. Brain Res 2021; 1765:147502. [PMID: 33901488 DOI: 10.1016/j.brainres.2021.147502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
In dynamic video target detection tasks, distractors may suddenly appear due to the dynamicity of the visual scene and the uncertainty of the visual information, strongly influencing participants' attention and target detection performance. Moreover, the neural mechanism that accounts for dynamic distractor processing remains unknown, which makes it difficult to compensate for in EEG-based video target detection. Here, cortical activities with high spatiotemporal resolution were reconstructed using the source localization method. The time-varying networks among important brain regions in different cognitive phases, including information integration, decision-making, and execution, were identified to investigate the neural mechanism of dynamic distractor processing. The experimental results indicated that dynamic distractors could induce a P3-like component. In addition, there was obvious asymmetry between the two hemispheres during video target detection. Specifically, the brain responses induced by dynamic distractors were weak and more concentrated in the left hemisphere during the information integration phase; left superior frontal gyrus activity related to preparation for the presence of distractors was critical, while the attention network and primary visual network, especially in the left visual pathway, were more active for dynamic targets during the decision-making phase. These findings provide guidance for designing an effective EEG-based model for dynamic video target detection.
Collapse
Affiliation(s)
- Xiyu Song
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China.
| | - Ying Zeng
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro Information, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Li Tong
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China.
| | - Jun Shu
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China.
| | - Huimin Li
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China; Software Technology School of Zhengzhou University, Zhengzhou 450001, China.
| | - Bin Yan
- The Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategy Support Force Information Engineering University, Zhengzhou 450001, China.
| |
Collapse
|
33
|
Zhang R, Li F, Zhang T, Yao D, Xu P. Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor imagery brain–computer interfaces (MI‐BCIs) have great potential value in prosthetics control, neurorehabilitation, and gaming; however, currently, most such systems only operate in controlled laboratory environments. One of the most important obstacles is the MI‐BCI inefficiency phenomenon. The accuracy of MI‐BCI control varies significantly (from chance level to 100% accuracy) across subjects due to the not easily induced and unstable MI‐related EEG features. An MI‐BCI inefficient subject is defined as a subject who cannot achieve greater than 70% accuracy after sufficient training time, and multiple survey results indicate that inefficient subjects account for 10%–50% of the experimental population. The widespread use of MI‐BCI has been seriously limited due to these large percentages of inefficient subjects. In this review, we summarize recent findings of the cause of MI‐BCI inefficiency from resting‐state brain function, task‐related brain activity, brain structure, and psychological perspectives. These factors help understand the reasons for inter‐subject MI‐BCI control performance variability, and it can be concluded that the lower resting‐state sensorimotor rhythm (SMR) is the key factor in MI‐BCI inefficiency, which has been confirmed by multiple independent laboratories. We then propose to divide MI‐BCI inefficient subjects into three categories according to the resting‐state SMR and offline/online accuracy to apply more accurate approaches to solve the inefficiency problem. The potential solutions include developing transfer learning algorithms, new experimental paradigms, mindfulness meditation practice, novel training strategies, and identifying new motor imagery‐related EEG features. To date, few studies have focused on improving the control accuracy of MI‐BCI inefficient subjects; thus, we appeal to the BCI community to focus more on this research area. Only by reducing the percentage of inefficient subjects can we create the opportunity to expand the value and influence of MI‐BCI.
Collapse
Affiliation(s)
- Rui Zhang
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fali Li
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Tao Zhang
- Science of School, Xihua University, Chengdu 610039, Sichuan, China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Peng Xu
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
34
|
Lau CCY, Yuan K, Wong PCM, Chu WCW, Leung TW, Wong WW, Tong RKY. Modulation of Functional Connectivity and Low-Frequency Fluctuations After Brain-Computer Interface-Guided Robot Hand Training in Chronic Stroke: A 6-Month Follow-Up Study. Front Hum Neurosci 2021; 14:611064. [PMID: 33551777 PMCID: PMC7855586 DOI: 10.3389/fnhum.2020.611064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hand function improvement in stroke survivors in the chronic stage usually plateaus by 6 months. Brain-computer interface (BCI)-guided robot-assisted training has been shown to be effective for facilitating upper-limb motor function recovery in chronic stroke. However, the underlying neuroplasticity change is not well understood. This study aimed to investigate the whole-brain neuroplasticity changes after 20-session BCI-guided robot hand training, and whether the changes could be maintained at the 6-month follow-up. Therefore, the clinical improvement and the neurological changes before, immediately after, and 6 months after training were explored in 14 chronic stroke subjects. The upper-limb motor function was assessed by Action Research Arm Test (ARAT) and Fugl-Meyer Assessment for Upper-Limb (FMA), and the neurological changes were assessed using resting-state functional magnetic resonance imaging. Repeated-measure ANOVAs indicated that long-term motor improvement was found by both FMA (F[2,26] = 6.367, p = 0.006) and ARAT (F[2,26] = 7.230, p = 0.003). Seed-based functional connectivity analysis exhibited that significantly modulated FC was observed between ipsilesional motor regions (primary motor cortex and supplementary motor area) and contralesional areas (supplementary motor area, premotor cortex, and superior parietal lobule), and the effects were sustained after 6 months. The fALFF analysis showed that local neuronal activities significantly increased in central, frontal and parietal regions, and the effects were also sustained after 6 months. Consistent results in FC and fALFF analyses demonstrated the increase of neural activities in sensorimotor and fronto-parietal regions, which were highly involved in the BCI-guided training. Clinical Trial Registration: This study has been registered at ClinicalTrials.gov with clinical trial registration number NCT02323061.
Collapse
Affiliation(s)
- Cathy C Y Lau
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick C M Wong
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wan-Wa Wong
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raymond K Y Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Vidaurre C, Haufe S, Jorajuría T, Müller KR, Nikulin VV. Sensorimotor Functional Connectivity: A Neurophysiological Factor Related to BCI Performance. Front Neurosci 2021; 14:575081. [PMID: 33390877 PMCID: PMC7775663 DOI: 10.3389/fnins.2020.575081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining “good” and “poor” BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in μ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance.
Collapse
Affiliation(s)
- Carmen Vidaurre
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Tania Jorajuría
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Klaus-Robert Müller
- Department of Machine Learning, Berlin University of Technology, Berlin, Germany.,Department of Artificial Intelligence, Korea University, Seoul, South Korea.,Max Planck Institute for Informatics, Saarbrücken, Germany.,Google Research, Brain Team, Berlin, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
36
|
Phang CR, Ko LW. Intralobular and Interlobular Parietal Functional Network Correlated to MI-BCI Performance. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2671-2680. [PMID: 33201822 DOI: 10.1109/tnsre.2020.3038657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain-computer interface (BCI) brings hope to patients suffering from neuromuscular diseases, by allowing the control of external devices using neural signals from the central nervous system. However, a portion of individuals was unable to operate BCI with high efficacy. This research aimed to study the brain-wide functional connectivity differences that contributed to BCI performance, and investigate the relationship between task-related connectivity strength and BCI performance. Functional connectivity was estimated using pairwise Pearson's correlation from the EEG of 48 subjects performing left or right hand motor imagery (MI) tasks. The classification accuracy of linear support vector machine (SVM) to distinguish both tasks were used to represent MI-BCI performance. The significant differences in connectivity strengths were examined using Welch's T-test. The association between accuracy and connection strength was studied using correlation model. Three intralobular and fourteen interlobular connections from the parietal lobe showed a correlation of 0.31 and -0.34 respectively. Results indicate that alpha wave connectivity from 8 Hz to 13 Hz was more related to classification performance compared to high-frequency waves. Subject-independent trial-based analysis shows that MI trials executed with stronger intralobular and interlobular parietal connections performed significantly better than trials with weaker connections. Further investigation from an independent MI dataset reveals several similar connections that were correlated with MI-BCI performance. The functional connectivity of the parietal lobe could potentially allow prediction of MI-BCI performance and enable implementation of neurofeedback training for users to improve the usability of MI-BCI.
Collapse
|
37
|
Yuan K, Wang X, Chen C, Lau CCY, Chu WCW, Tong RKY. Interhemispheric Functional Reorganization and its Structural Base After BCI-Guided Upper-Limb Training in Chronic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2525-2536. [PMID: 32997632 DOI: 10.1109/tnsre.2020.3027955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain-computer interface (BCI)-guided robot-assisted upper-limb training has been increasingly applied to stroke rehabilitation. However, the induced long-term neuroplasticity modulation still needs to be further characterized. This study investigated the functional reorganization and its structural base after BCI-guided robot-assisted training using resting-state fMRI, task-based fMRI, and diffusion tensor imaging (DTI) data. The clinical improvement and the neurological changes before, immediately after, and six months after 20-session BCI-guided robot hand training were explored in 14 chronic stroke subjects. The structural base of the induced functional reorganization and motor improvement were also investigated using DTI. Repeated measure ANOVA indicated long-term motor improvement was found (F[2, 26] = 6.367, p = 0.006). Significantly modulated functional connectivity (FC) was observed between ipsilesional motor regions (M1 and SMA) and some contralesional areas (SMA, PMd, SPL) in the seed-based analysis. Modulated FC with ipsilesional M1 was significantly correlated with motor function improvement (r = 0.6455, p = 0.0276). Besides, increased interhemispheric FC among the sensorimotor area from resting-state data and increased laterality index from task-based data together indicated the re-balance of the two hemispheres during the recovery. Multiple linear regression models suggested that both motor function improvement and the functional change between ipsilesional M1 and contralesional premotor area were significantly associated with the ipsilesional corticospinal tract integrity. The results in the current study provided solid support for stroke recovery mechanism in terms of interhemispheric interaction and its structural substrates, which could further enhance the understanding of BCI training in stroke rehabilitation. This study was registered at https://clinicaltrials.gov (NCT02323061).
Collapse
|
38
|
Lee M, Yoon JG, Lee SW. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling. Front Hum Neurosci 2020; 14:321. [PMID: 32903663 PMCID: PMC7438792 DOI: 10.3389/fnhum.2020.00321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022] Open
Abstract
Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this is considered to be a significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon referred to as “BCI-inefficiency,” in which they are unable to generate brain signals for BCI control. These subjects have significant difficulties in using BCI. The primary goal of this study is to identify the connections of the resting-state network that affect MI performance and predict MI performance using these connections. We used a public database of MI, which includes the results of psychological questionnaires and pre-experimental resting-state taken over two sessions on different days. A dynamic causal model was used to calculate the coupling strengths between brain regions with directionality. Specifically, we investigated the motor network in resting-state, including the dorsolateral prefrontal cortex, which performs motor planning. As a result, we observed a significant difference in the connectivity strength from the supplementary motor area to the right dorsolateral prefrontal cortex between the low- and high-MI performance groups. This coupling, measured in the resting-state, is significantly stronger in the high-MI performance group than the low-MI performance group. The connection strength is positively correlated with MI-BCI performance (Session 1: r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression based on this connection (r-squared = 0.31). The proposed predictors, based on dynamic causal modeling, can develop new strategies for improving BCI performance. These findings can further our understanding of BCI-inefficiency and help BCI users to lower costs and save time.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Jae-Geun Yoon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
39
|
Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery. PSYCHOLOGICAL RESEARCH 2020; 85:2237-2247. [PMID: 32743730 DOI: 10.1007/s00426-020-01399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Motor imagery has been used in training programs to improve the performance of motor skills. Handwriting movement may benefit from motor imagery training. To optimize the efficacy of this kind of training, it is important to identify the factors that facilitate the motor imagery process for handwriting movements. Several studies have shown that motor imagery is more easily achieved when there is maximum compatibility between the actual posture and the imagined movement. We, therefore, examined the effect of posture congruency on visual and kinesthetic motor imagery for handwriting movements. Adult participants had to write and imagine writing a sentence by focusing on the evocation of either the kinesthetic or visual consequences of the motion. Half the participants performed the motor imagery task in a congruent posture (sitting with a hand ready for writing), and half in an incongruent one (standing with arms crossed behind the back and fingers spread wide). The temporal similarity between actual and imagined movement times and the vividness of the motor imagery were evaluated. Results revealed that temporal similarity was stronger in the congruent posture condition than in the incongruent one. Furthermore, in the incongruent posture condition, participants reported greater difficulty forming a precise kinesthetic motor image of themselves writing than a visual image, whereas no difference was observed in the congruent posture condition. Taken together, our results show that postural information is taken into account during the mental simulation of handwriting movements. The implications of these findings for guiding the design of motor imagery training are discussed.
Collapse
|
40
|
Liu T, Huang G, Jiang N, Yao L, Zhang Z. Reduce brain computer interface inefficiency by combining sensory motor rhythm and movement-related cortical potential features. J Neural Eng 2020; 17:035003. [PMID: 32380494 DOI: 10.1088/1741-2552/ab914d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain Computer Interface (BCI) inefficiency indicates that there would be 10% to 50% of users are unable to operate Motor-Imagery-based BCI systems. Importantly, the almost all previous studieds on BCI inefficiency were based on tests of Sensory Motor Rhythm (SMR) feature. In this work, we assessed the occurrence of BCI inefficiency with SMR and Movement-Related Cortical Potential (MRCP) features. APPROACH A pool of datasets of resting state and movements related EEG signals was recorded with 93 subjects during 2 sessions in separated days. Two methods, Common Spatial Pattern (CSP) and template matching, were used for SMR and MRCP feature extraction, and a winner-take-all strategy was applied to assess pattern recognition with posterior probabilities from Linear Discriminant Analysis to combine SMR and MRCP features. MAIN RESULTS The results showed that the two types of features showed high complementarity, in line with their weak intercorrelation. In the subject group with poor accuracies (< 70%) by SMR feature in the two-class problem (right foot vs. right hand), the combination of SMR and MRCP features improved the averaged accuracy from 62% to 79%. Importantly, accuracies obtained by feature combination exceeded the inefficiency threshold. SIGNIFICANCE The feature combination of SMR and MRCP is not new in BCI decoding, but the large scale and repeatable study on BCI inefficiency assessment by using SMR and MRCP features is novel. MRCP feature provides the similar classification accuracies on the two subject groups with poor (< 70%) and good (> 90%) accuracies by SMR feature. These results suggest that the combination of SMR and MRCP features may be a practical approach to reduce BCI inefficiency. While, 'BCI inefficiency' might be more aptly called 'SMR inefficiency' after this study.
Collapse
Affiliation(s)
- Tengjun Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, People's Republic of China. Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Ko LW, Chikara RK, Lee YC, Lin WC. Exploration of User's Mental State Changes during Performing Brain-Computer Interface. SENSORS 2020; 20:s20113169. [PMID: 32503162 PMCID: PMC7308896 DOI: 10.3390/s20113169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 01/27/2023]
Abstract
Substantial developments have been established in the past few years for enhancing the performance of brain–computer interface (BCI) based on steady-state visual evoked potential (SSVEP). The past SSVEP-BCI studies utilized different target frequencies with flashing stimuli in many different applications. However, it is not easy to recognize user’s mental state changes when performing the SSVEP-BCI task. What we could observe was the increasing EEG power of the target frequency from the user’s visual area. BCI user’s cognitive state changes, especially in mental focus state or lost-in-thought state, will affect the BCI performance in sustained usage of SSVEP. Therefore, how to differentiate BCI users’ physiological state through exploring their neural activities changes while performing SSVEP is a key technology for enhancing the BCI performance. In this study, we designed a new BCI experiment which combined working memory task into the flashing targets of SSVEP task using 12 Hz or 30 Hz frequencies. Through exploring the EEG activity changes corresponding to the working memory and SSVEP task performance, we can recognize if the user’s cognitive state is in mental focus or lost-in-thought. Experiment results show that the delta (1–4 Hz), theta (4–7 Hz), and beta (13–30 Hz) EEG activities increased more in mental focus than in lost-in-thought state at the frontal lobe. In addition, the powers of the delta (1–4 Hz), alpha (8–12 Hz), and beta (13–30 Hz) bands increased more in mental focus in comparison with the lost-in-thought state at the occipital lobe. In addition, the average classification performance across subjects for the KNN and the Bayesian network classifiers were observed as 77% to 80%. These results show how mental state changes affect the performance of BCI users. In this work, we developed a new scenario to recognize the user’s cognitive state during performing BCI tasks. These findings can be used as the novel neural markers in future BCI developments.
Collapse
Affiliation(s)
- Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (L.-W.K.); (W.-C.L.)
| | - Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Chieh Lee
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Wen-Chieh Lin
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan;
- Correspondence: (L.-W.K.); (W.-C.L.)
| |
Collapse
|
42
|
Gu L, Yu Z, Ma T, Wang H, Li Z, Fan H. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis. Neuroscience 2020; 436:93-109. [PMID: 32283182 DOI: 10.1016/j.neuroscience.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
This study aims to investigate the difference in cortical signal characteristics between the left and right foot imaginary movements and to improve the classification accuracy of the experimental tasks. Raw signals were gathered from 64-channel scalp electroencephalograms of 11 healthy participants. Firstly, the cortical source model was defined with 62 regions of interest over the sensorimotor cortex (nine Brodmann areas). Secondly, functional connectivity was calculated by phase lock value for α and β rhythm networks. Thirdly, network-based statistics were applied to identify whether there existed stable and significant subnetworks that formed between the two types of motor imagery tasks. Meanwhile, ten graph theory indices were investigated for each network by t-test to determine statistical significance between tasks. Finally, sparse multinomial logistic regression (SMLR)-support vector machine (SVM), as a feature selection and classification model, was used to analyze the graph theory features. The specific time-frequency (α event-related desynchronization and β event-related synchronization) difference network between the two tasks was congregated at the midline and demonstrated significant connections in the premotor areas and primary somatosensory cortex. A few of statistically significant differences in the network properties were observed between tasks in the α and β rhythm. The SMLR-SVM classification model achieved fair discrimination accuracy between imaginary movements of the two feet (maximum 75% accuracy rate in single-trial analyses). This study reveals the network mechanism of the discrimination of the left and right foot motor imagery, which can provide a novel avenue for the BCI system by unilateral lower limb motor imagery.
Collapse
Affiliation(s)
- Lingyun Gu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Zhenhua Yu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Tian Ma
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China.
| | - Zhanli Li
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China.
| | - Hui Fan
- Co-innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, Shandong Technology and Business University, Yantai 264005, Shandong, PR China
| |
Collapse
|
43
|
Li P, Huang X, Zhu X, Li C, Liu H, Zhou W, Bore JC, Zhang T, Zhang Y, Yao D, Xu P. Robust brain causality network construction based on Bayesian multivariate autoregression. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Bacomics: a comprehensive cross area originating in the studies of various brain-apparatus conversations. Cogn Neurodyn 2020; 14:425-442. [PMID: 32655708 DOI: 10.1007/s11571-020-09577-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
The brain is the most important organ of the human body, and the conversations between the brain and an apparatus can not only reveal a normally functioning or a dysfunctional brain but also can modulate the brain. Here, the apparatus may be a nonbiological instrument, such as a computer, and the consequent brain-computer interface is now a very popular research area with various applications. The apparatus may also be a biological organ or system, such as the gut and muscle, and their efficient conversations with the brain are vital for a healthy life. Are there any common bases that bind these different scenarios? Here, we propose a new comprehensive cross area: Bacomics, which comes from brain-apparatus conversations (BAC) + omics. We take Bacomics to cover at least three situations: (1) The brain is normal, but the conversation channel is disabled, as in amyotrophic lateral sclerosis. The task is to reconstruct or open up new channels to reactivate the brain function. (2) The brain is in disorder, such as in Parkinson's disease, and the work is to utilize existing or open up new channels to intervene, repair and modulate the brain by medications or stimulation. (3) Both the brain and channels are in order, and the goal is to enhance coordinated development between the brain and apparatus. In this paper, we elaborate the connotation of BAC into three aspects according to the information flow: the issue of output to the outside (BAC-1), the issue of input to the brain (BAC-2) and the issue of unity of brain and apparatus (BAC-3). More importantly, there are no less than five principles that may be taken as the cornerstones of Bacomics, such as feedforward and feedback control, brain plasticity, harmony, the unity of opposites and systems principles. Clearly, Bacomics integrates these seemingly disparate domains, but more importantly, opens a much wider door for the research and development of the brain, and the principles further provide the general framework in which to realize or optimize these various conversations.
Collapse
|
45
|
Predicting individual decision-making responses based on single-trial EEG. Neuroimage 2020; 206:116333. [DOI: 10.1016/j.neuroimage.2019.116333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
|
46
|
Bore JC, Li P, Harmah DJ, Li F, Yao D, Xu P. Directed EEG neural network analysis by LAPPS (p≤1) Penalized sparse Granger approach. Neural Netw 2020; 124:213-222. [PMID: 32018159 DOI: 10.1016/j.neunet.2020.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
The conventional multivariate Granger Analysis (GA) of directed interactions has been widely applied in brain network construction based on EEG recordings as well as fMRI. Nevertheless, EEG is usually inevitably contaminated by strong noise, which may cause network distortion due to the L2-norm used in GAs for directed network recovery. The Lp (p ≤1) norm has been shown to be more robust to outliers as compared to LASSO and L2-GAs. Motivated to construct the sparse brain networks under strong noise condition, we hereby introduce a new approach for GA analysis, termed LAPPS (Least Absolute LP (0<p<1) Penalized Solution). LAPPS utilizes the L1-loss function for the residual error to alleviate the effect of outliers, and another Lp-penalty term (p=0.5) to obtain the sparse connections while suppressing the spurious linkages in the networks. The simulation results reveal that LAPPS obtained the best performance under various noise conditions. In a real EEG data test when subjects performed the left and right hand Motor Imagery (MI) for brain network estimation, LAPPS also obtained a sparse network pattern with the hub at the contralateral brain primary motor areas consistent with the physiological basis of MI.
Collapse
Affiliation(s)
- Joyce Chelangat Bore
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Dennis Joe Harmah
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.
| |
Collapse
|
47
|
Li F, Tao Q, Peng W, Zhang T, Si Y, Zhang Y, Yi C, Biswal B, Yao D, Xu P. Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study. Neuroimage 2020; 205:116285. [DOI: 10.1016/j.neuroimage.2019.116285] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/15/2022] Open
|
48
|
Si Y, Jiang L, Tao Q, Chen C, Li F, Jiang Y, Zhang T, Cao X, Wan F, Yao D, Xu P. Predicting individual decision-making responses based on the functional connectivity of resting-state EEG. J Neural Eng 2019; 16:066025. [DOI: 10.1088/1741-2552/ab39ce] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Chen M, Lin CH. What is in your hand influences your purchase intention: Effect of motor fluency on motor simulation. CURRENT PSYCHOLOGY 2019. [DOI: 10.1007/s12144-019-00261-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W, Xu P. Differentiation of Schizophrenia by Combining the Spatial EEG Brain Network Patterns of Rest and Task P300. IEEE Trans Neural Syst Rehabil Eng 2019; 27:594-602. [DOI: 10.1109/tnsre.2019.2900725] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|